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A Appendix

In the appendix, we demonstrate the benefits of leveraging both cropped and
remained regions for training with longer training epochs (A.1) and larger models
(A.2). We also demonstrate the training efficiency of RegionCL in section A.1.
Pose estimation for both human and animals are also employed to evaluate
the effectiveness of region-level contrastive learning on downstream tasks (A.3).
Besides, we also independently feed the paste and canvas views into the networks
for training to further validate the performance of regional contrastive pairs
without swapping (A.4). The analysis of parameters, architecture details, and
implementation details are provided in A.5, A.6, and A.7, respectively.

A.1 Training efficiency with longer training epochs

ImageNet Top-1

MS COCO AP

MS COCO AP™F

Epochs 200 400 800 |200 400 800 |200 400 800
MoCo v2 67.5 69.6 T71.1|40.9 41.3 415 |37.0 37.5 37.6
RegionCL-M | 69.4 72.1 73.1|41.6 41.9 42.1 |37.7 38.0 38.2

RegionCL-M* | 76.8 77.8 78.1 |- - - - - -

Table S1: Results of MoCo v2 [3] and RegionCL-M trained for 200, 400, and 800
epochs. “*” denotes that we end-to-end finetune RegionCL-M pretrained models
for 50 epochs [8,1].

We investigate effectiveness of leveraging remained regions for longer pre-
training by extending the epochs to 200, 400, and 800 respectively. We train
MoCov2 [3] and the corresponding RegionCL-M respectively and present their
results in Table S1. We evaluate these models’ image classification performance
on the ImageNet [7] dataset with linear probing. Their object detection and
instance segmentation performance are also evaluated on the MS COCO [4]
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dataset with ResNet50-FPN and Mask-RCNN [9]. The detection and segmenta-
tion models are trained following the 2x schedule, i.e., the models are trained
for 180K iterations in total.

As can be seen, with only 200 epochs for training, the proposed RegionCL-M
obtains competitive results compared with MoCov2 trained for 400 epochs, no
matter on classification or dense prediction tasks. The performance of RegionCL-
M increases with the total training epochs increasing, and RegionCL-M can
obtain better performance with less training cost, i.e., RegionCL-M with 400
epochs pretraining has significantly outperformed MoCov2 trained with 800
epochs, confirming the good property of training efficiency brought by simply
training with the regional contrastive pairs. Although RegionCL costs more for-
wards each iterations than the baseline method, it improves the overall training
efficiency, i.e., RegionCL with 400 epochs training (1200 forwards) beats the
baseline methods with 800 epochs training (1600 forwards).

Besides, RegionCL-M sees an further improvement especially for classifica-
tion (by 1% accuracy) when extending to 800 training epochs, reaching 73.1%
Top-1 accuracy for classification, 42.1 AP for object detection and 38.2 AP for
instance segmentation. Such observation demonstrates that the abundant con-
trastive pairs with both cropped and remained regions can not only improves
the model’s convergence but also effectively enhance the model’s representation
capacity with more training epochs.

A.2 Generalization ability for models with variant sizes

ImageNet Top-1 | MS COCO AP® [ MS COCO AP™F
Models R50 w2 w4 R50 w2 w4 R50 w2 w4
MoCo v2 675 72.0 74.1|40.9 432 439 |37.0 387 394
RegionCL-M | 69.4 752 76.2|41.6 43.8 44.5 |37.7 39.3 39.7
RegionCL-M* | 76.8 79.7 80.4 | - - - - - -

Table S2: Results of MoCo v2 [3] and RegionCL-M with R50 [10], R50w2 [10],
and R50w4 [10] as backbones. ‘*’ denotes that we end-to-end finetune RegionCL-
M pretrained models for 50 epochs [8,1].

To investigate the benefits of regional contrastive pairs on models with vari-
ant sizes, we adopt ResNet50 [10], ResNet50-w2 (2xparameters), and ResNet50-
w4 (4xparameters) as backbone networks and train them for 200 epochs with
MoCov2 and RegionCL-M, respectively. The results of linear probing on Ima-
geNet along with object detection and instance segmentation on MS COCO are
reported in Table S2. We use Mask-RCNN with ResNet50-FPN as the object de-
tection and instance segmentation framework and train them for 180K iterations,
following the 2x schedule. It can be observed that RegionCL-M with ResNet50-
w2 outperforms MoCov2 with ResNet50-w4 on image classification and obtains
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competitive performance on both object detection and instance segmentation
tasks on MS COCO. RegionCL-M with ResNet50-w4 obtains the best perfor-
mance on all tasks. It indicates that the proposed RegionCL method is scalable
to large models and can improve their performance on both classification and
dense prediction tasks, further validating the importance of using both cropped
and left regions in self-supervised learning.

A.3 Results on pose estimation

MS COCO [1] AP-10K [15]

AP AP
Supervised 71.8 69.9
MoCo v2 [3] 72.0 70.1
RegionCL-M 72.3 70.6
DenseCL [13] 72.4 71.1
RegionCL-D 72.6 72.1
SimSiam [] 71.9 70.5
RegionCL-S 72.2 71.6

Table S3: Results of RegionCL compatible models on human (MS COCO [4])
and animal (AP-10K [15]) pose estimation.

Besides the evaluation on detection and segmentation tasks, we also evalu-
ate the models’ performance on both human pose estimation and animal pose
estimation tasks on MS COCO [4] and AP-10K [15] datasets. We adopt Simple-
Baseline [14] as the base pose estimation framework and utilizes backbone models
pretrained by MoCov2 [3], DenseCL [13], SimSiam [5], and their RegionCL com-
patible counterparts. We train these models for 210 epochs. We adopt an Adam
optimizer with initial learning rate at le-4, which decreases by a factor of 10 at
the 170 and 200 epochs respectively, following the same setting as in mmpose [6].
The results are available in Table S3. It can be observed that the SSL pretrained
models outperforms the supervised counterpart. Besides, with both cropped and
left regions taken into consideration, RegionCL improves the pretrained models’
transfer performance on both pose estimation tasks, especially on the smaller
animal pose dataset AP-10k. Such observation further demonstrates that ex-
ploiting supervisory signals from both instance and region levels can help the
model obtain a better trade-off on both classification and dense prediction tasks.

A.4 Influence of the region swapping operation

To further understand the performance gains brought by the abundant con-
trastive pairs, we adopt a simple RegionCL variant without the swapping op-
eration, i.e., simply cropping a region from candidate images as paste views
and filling zeros into the cropped regions to formulate the canvas views. Using
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Configuration|ImageNet Top-1]MS COCO AP?
MoCov2 67.5 40.9
w/0 swapping 69.2 414
w/ swapping 69.4 41.6

Table S4: Influence of the region swapping strategy.

RegionCL-M as the base, we train RegionCL-M and its variant without the re-
gion swapping operation for 200 epochs, and evaluate their performance on the
ImageNet [7] dataset and on the MS COCO [1] dataset with ResNet50-FPN
and Mask-RCNN [9] following the 2x schedule. The results are available in Ta-
ble S4. Without the region swapping operations, the proposed RegionCL still
improves the model’s performance on both classification and dense prediction
tasks, while the region swapping operation can further improve the performance
on both tasks, e.g., 0.2% accuracy gains for ImageNet Top-1 accuracy and 0.2
mAP gains for object detection. It indicates that although taking both regions
into consideration without swapping can facilitate the models learning, compos-
ing the hard negative samples, i.e., the paste and canvas views via swapping,
in the same images can further help the model learn better and discriminative
feature representations from both instance- and region-level pairs, since features
of these two kinds of views share some context from each other during network
forward calculation.

A.5 Influence of different batch size

ImageNet MS COCO
Batch Size LR Top-1 Top-5 | AP® Apm™k

MoCo v2 256 0.03 67.5 - 40.9 37.0
MoCo v2 1024 0.15 67.5 88.2 41.0 37.2
RegionCL-M 256 0.03 70.0 90.0 41.6 37.8
RegionCL-M 1024 0.15 69.4 89.6 41.6 37.7

Table S5: The influence of batch size of MoCo v2 and RegionCL.

As the number of negative pairs plays an important role in the InfoNCE [11]
loss and affects the pretrained model’s performance as pointed in [2], MoCov2
maintains a huge memory queue to provide enough negative samples, which
makes the calculation of the InfoNCE loss and the training process not cou-
pled with the batch size. Thus we accelerate the training of MoCov2 [3] and
RegionCL-M by increasing the batch size from 256 to 1,024. We train the mod-
els for 200 epochs with an initial learning rate 0.15 (around linear growth w.r.t.
the batch size) and a cosine learning rate scheduler, while the origin training
setting is 200 epochs with an initial learning rate 0.03 and a cosine learning rate



RegionCL 5

q =

X9 =W A
Augmentation Mm‘

[

A
Cop -
Ha 3 xi .a,! 3
— x"-@r
3 ir
Momentum Update Momentum Update

L N
— — Encoder DM’ /—‘ Projector _— / / A‘”
k

Augmentation |+ Memory Queue

Avg Pool / /q

Encoder

Projector

Mask Pool /. 4
— 74

Fig. S1: Hlustration of the proposed RegionCL with the MoCov2 framework, i.e.,
RegionCL-M. Taking the two augmented views 29, z* as inputs, RegionCL
employs region swapping among the batch of 29 to generate the composite images
with paste views xP and canvas views €. Then, for the composite images, mask
pooling is used to extract the features belonging to the paste and canvas views,
respectively. The pooled region-level features (with stripes in the figure) are
batched with the instance-level features and processed by the projector. The
projected features q, p, ¢, k, and features from the memory queue form both
instance- and region-level contrastive pairs.

scheduler. The other settings are exactly the same, including the data augmen-
tation strategies, optimizers, and the values of hyper-parameters. We validate
the performance difference of the two training settings and present the results in
Table S5. It can be observed that MoCov2’s performance are consistent for both
classification and dense prediction tasks with both training settings, confirming
the rationality of the batch size to be 1,024 for MoCo v2. Thus, we choose such
batch size for MoCo v2-based models in our paper.

We also conduct similar experiments for RegionCL-M as shown in the last
two rows in Table S5. Similar conclusion can be observed in the evaluation of
RegionCL-M with different batch size for training. Besides, as we adopt the
batch-wise implementation for region swapping, RegionCL-M with small batch
size and thus more iterations can see more diverse paste views and canvas views
in terms of different sizes and locations, thus learning better feature representa-
tions. As a result, RegionCL-M with a batch size of 256 obtains slightly better
performance for image classification by 0.6% Top-1 accuracy. Nevertheless, we
choose the batch size of 1024 in this paper for acceleration purpose.

A.6 Architecture details

We present the details of the proposed RegionCL-M (MoCov2), RegionCL-D
(DenseCL), and RegionCL-S (SimSiam) in this section. We also provide the
pseudo codes for RegionCL-M, RegionCL-D, and RegionCL-S as in Algorithm 1,
2, and 3, respectively, with red color denoting the modifications of RegionCL
compared with the base architecture.

RegionCL-D. As shown in Algorithm 2 and Figure S2, DenseCL [13] adopts
both instance-level and pixel-level losses during pretraining. The modifications
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Algorithm 1: Example code of RegionCL-M.

Input: Two augmented views z¢, ="

Input: The negative Queue @
Output: The contrastive loss L
/* Feature extraction
// Online Branch
1 2% = RegionSwapping(z?)
2 q = Projector(AvgPool(Encoder(z?)))
3 p,c = Projector(MaskPool(Encoder(z?%)))
// Momentum Branch
4 k = Projector s (AvgPool(Encoder s (z*)))
/* Loss computation
// Eq. 1
5 Lins = LOSS(‘L k‘Q)
// Eq. 2
6 Lrey = (Loss(p, k@, sg(¢)) + Loss(c, kIQ, sg(p)))/2
7 L = Lins + Lreg

*/

*/

Algorithm 2: Example code of RegionCL-D.

Input: Two augmented views z9, z*

Input: The instance negative Queue Qins
Input: The dense negative Queue Qgense
Output: The contrastive loss L
/* Feature extraction
// Online Branch
1 2f = RegionSwapping(x?)
2 g = Projector(AvgPool(Encoder(z?)))
p,c = Projector(MaskPool(Encoder(zf)))
// Extract dense feature
4 gq = Projectorq(Encoder(z?))
// Momentum Branch
5 k = Projectora (AvgPool(Encoder (z*)))
6 kq = Projectorqaa (Encoderas (ZEk))
/* Loss computation
// Eq. 1
7 Lins = Loss(q, k|Qins)
8 Lgense = DenseLoss(qa, ka|Qdense)
// Eq. 2
9 Lreg = (Loss(p, k|Q, sg(c)) + Loss(c, k|Q, sg(p)))/2
10 L = Ljns + Lreg + Lgense

w

*/

*/
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Fig. S2: Illustration of the proposed RegionCL with the DenseCL framework, i.e.,
RegionCL-D. Taken the instance-level views 2¢ and x*, and the region-level
views x¢ and 2P as inputs, RegionCL-D firstly extract the instance- and region-
level features using the same way as RegionCL-M. The extracted and projected
features ¢, p, ¢, and k are constructed the contrastive pairs. The instance-level
views z¢ and z* are also used to enhance dense feature correspondences before
the average pooling operation, with another projector for pixel-wise feature pro-
jection and memory queue.
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Fig. S3: Illustration of the proposed RegionCL with the SimSiam framework, i.e.,
RegionCL-S. Taking the two augmented views as inputs, RegionCL-S extracts
the region-level features in the same way as RegionCL-M. The pooled region-
level features are then batched with the instance-level features and processed by
the projector. Following SimSiam, the projected features ¢, p, ¢, k build positive
pairs.

from DenseCL to RegionCL-D appears at the instance-level branch in a same
way as the modifications from MoCov2 [3] to RegionCL-M, i.e., we use the
encoder, mask pooling, and the instance-level projector to extract the features
belonging to the canvas and paste views, separately. Then, the contrastive pairs
are also enriched by the regions while the dense correspondences related loss
functions are remained the same as in DenseCL.

RegionCL-S. As shown in Algorithm 3 and Figure S3, SimSiam [5] does not
require the negative pairs during pretraining and focuses on attracting the fea-
tures among positive pairs. The modifications from SimSiam [5] to RegionCL-S
are simply providing abundant positive pairs from both instance and region lev-
els. Specifically, given the augmented views 29, z* and the composite images
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Algorithm 3: Example code of RegionCL-S.

Input: Two augmented views z9, z*
Output: The contrastive loss L
/* Feature extraction */
// 1st Branch
1 2f = RegionSwapping(x?)
2 g = Predictor(Projector(AvgPool(Encoder(x?))))
3 p,c = Predictor(Projector(MaskPool(Encoder(z?))))
// 2nd Branch, weight sharing with the 1st Branch
4 k = Projector(AvgPool(Encoder(z")))
/* Loss computation */
// Eq. 1
5 Lins = Loss(q,sg(k))
// Eq. 2
6 Lrcg = (Loss(p,sg(k)) + Loss(c,sg(k))/2
L = Lins + Lreg

~

with the canvas view z¢ and the paste view xP as inputs, RegionCL-S adopts an
encoder, average pooling (mask pooling) layer, a projector, and a predictor to
get the instance-level (region-level) features ¢ (p and c¢). The other view z* are
processed by the weight-shared encoder and projector to get the feature k, where
an stop gradient operation is applied on k to stabilize the training. Thus, there
are three cases of positive pairs in the modified RegionCL-S, i.e., the instance-
level pairs ¢ and k as in origin SimSiam, the region-level pairs ¢ and k., and
p and kp, and we keep the learning objectives and architecture the same as in
SimSiam.

A.7 Implementation details

In this section we give the implementation details of all the three RegionCL mod-
els, i.e., RegionCL-M (MoCov?2 [3]), RegionCL-D (DenseCL [13]), and RegionCL-
S (SimSiam [5]), respectively.

RegionCL-M and RegionCL-D

— Training settings. To accelerate the training, we train the RegionCL-M
and RegionCL-D with a total batch size of 1,024 and initial learning rate
0.15, which is slightly different from the original setting but does not affect
the performance and our conclusion as shown in Sec A.5. The other settings
are the same as in MoCov2 [3] and DenseCL [13]. For example, the input
images are first randomly cropped and resized to 224 x 224 by remaining
20% — 100% regions, which is followed by color jitter with a probability of
0.8, grayscale with a probability of 0.2, Gaussian blur with a probability of
0.5, and random horizontal flips, which are the same as the origin settings
in the two base methods. The SGD [12] optimizer is adopted with weight
decay at le-4 and momentum at 0.9.
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— Architecture settings. There is no difference in the model’s architectures
comparing the base models and RegionCL models. The instance-level and
region-level features share the same projector, which has the structure of
Linear(2048, 2048) — ReLU — Linear(2048, 128), where 2048 is the hid-
den dimension and 128 is the output dimension. The dense correspondences
projectors in DenseCL and RegionCL-D have the structure of Conv2d(2048,
2048) — ReLU — Conv2d (2048, 128), where the kernel size for the convo-
lutions is 1 x 1, and 128 is the output dimension. The length of the memory
queue is 65,536.

RegionCL-S

— Training settings. As there is no component like memory queues in Sim-
Siam’s architecture, we follow exactly the same training settings as in ori-
gin SimSiam to train the RegionCL model RegionCL-S. Specifically, a total
batch size of 512 is employed during the pretraining process. The SGD op-
timizer with learning rate 0.1, weight decay le-4, and momentum 0.9 is
adopted to train the model. The data augmentation strategy is the same as
the in MoCov2 [3] and DenseCL [13], i.e., the input images are first ran-
domly cropped and resized to 224 x 224 by remaining 20% — 100% regions,
which is followed by color jitter with a probability of 0.8, grayscale with a
probability of 0.2, Gaussian blur with a probability of 0.5, and random hori-
zontal flips. The models are trained for 100 epochs with cosine learning rate
scheduler.

— Architecture settings. There is no modification on the model’s architec-
tures settings comparing the SimSiam and RegionCL-S. The projection head
follows average pooling or mask pooling and has 3 layers to project the fea-
tures, which takes the form of Linear(2048,2048) — BN (2048) — ReLU —
Linear(2048,2048) — BN (2048) — ReLU — Linear(2048,2048) — BN (2048).
The predictor head has 2 layers to further process the features and align them
with the features extracted from the key views. The structure of the predic-
tor head is Linear(2048,512) — BN (512) — ReLU — Linear(512,2048).
These structures are the same as the original settings in SimSiam.
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