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Abstract. Self-supervised learning methods (SSL) have achieved sig-
nificant success via maximizing the mutual information between two
augmented views, where cropping is a popular augmentation technique.
Cropped regions are widely used to construct positive pairs, while the
remained regions after cropping have rarely been explored in existing
methods, although they together constitute the same image instance
and both contribute to the description of the category. In this paper, we
make the first attempt to demonstrate the importance of both regions
in cropping from a complete perspective and the effectiveness of using
both regions via designing a simple yet effective pretext task called Re-
gion Contrastive Learning (RegionCL). Technically, to construct the two
kinds of regions, we randomly crop a region (called the paste view) from
each input image with the same size and swap them between different im-
ages to compose new images together with the remained regions (called
the canvas view). Then, instead of taking the new images as a whole for
positive or negative samples, contrastive pairs are efficiently constructed
from the regional perspective based on the following simple criteria, i.e.,
each view is (1) positive with views augmented from the same origi-
nal image and (2) negative with views augmented from other images.
With minor modifications to popular SSL methods, RegionCL exploits
those abundant pairs and helps the model distinguish the regions fea-
tures from both canvas and paste views, therefore learning better visual
representations. Experiments on ImageNet, MS COCO, and Cityscapes
demonstrate that RegionCL improves MoCov2, DenseCL, and SimSiam
by large margins and achieves state-of-the-art performance on classifica-
tion, detection, and segmentation tasks. The code is publicly available
at https://github.com/Annbless/RegionCL.

1 Introduction

Self-supervised learning (SSL) has become an active research topic in computer
vision because of its ability to learn generalizable representations from large-scale
unlabeled data and offer good performance in downstream tasks [59,60,28,6,44].
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Fig. 1: Transfer results on the Im-
ageNet [15] (classification) and MS
COCO [10] (detection) datasets. In-
volving region-level contrastive pairs
during pretraining, RegionCL helps
DenseCL [47], MoCov2 [9], and Sim-
Siam [11] achieve a better performance
trade-off between image classification
and object detection tasks.
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Fig. 2: Illustration of the region swap-
ping strategy. Taking two images A
and B as input, it randomly crops and
swaps the paste views and generates
the composite images C and D. As a
result, the canvas and paste views in
image C form a negative pair, while the
canvas view and A (the paste view and
B) are positive pairs.

Contrastive learning, one of the popular directions in SSL, has attracted a lot of
attention due to its ease of use in pretext designing and capacity to generalize
across various visual tasks.

Current contrastive learning methods typically use augmented views of the
same image as positive pairs and maximize their mutual information. Cropping is
by far the most popular augmentation technique. By randomly cropping regions
from the same images and treating the cropped regions as positive pairs, the
methods in [7,9,11,19,21,8] have shown promising results in image classification.
Multi-crop [3,4] has been investigated as a way to improve performance even
further by generating more diverse candidates and facilitating the model learning
a better feature representation. Constrained cropping strategies [62,50,56,37,52]
have recently been developed to ensure that two cropped views contain shared
regions of a specific size and to improve models’ performance on dense prediction
tasks by constructing contrastive pairs within the shared regions. These methods
have achieved superior performance on a variety of visual tasks by leveraging
various cropping strategies to construct contrastive pairs during pretraining.

However, the remained regions after cropping have received little attention,
despite the fact that the cropped and remained regions together make up the
same image instance and both contribute to the category’s description. We ar-
gue that using both regions during pretraining would help the model learn bet-
ter complete visual representations of object instances, which will improve the
model’s performance on downstream classification and dense prediction tasks.



RegionCL 3

Based on this motivation, we propose a simple yet effective pretext task called
Region Contrastive Learning (RegionCL) to demonstrate the effectiveness of us-
ing both regions for contrastive learning. Technically, given two different images,
RegionCL randomly crops a region (called the paste view) from each image with
the same size and swaps them to compose two new images together with the re-
mained regions (called the canvas view), respectively. It is worth noting that the
two views that compose the new images are from different source images. Then,
contrastive pairs can be constructed from the regional perspective following the
simple criteria, i.e., each view is (1) positive with views augmented from the same
original image and (2) negative with views augmented from other images. In this
way, RegionCL generates abundant pairs that contain not only the instance-level
pairs as other methods [9,7] but also the region-level pairs, e.g ., the paste and
canvas views in the composite images. By exploiting these pairs in popular SSL
frameworks, RegionCL helps the models learn better feature representations of
object instances owing to the abundant contrastive supervisory signals at both
instance and region levels, delivering better performance on various downstream
tasks. As shown in Figure 1, RegionCL helps MoCov2 [9], DenseCL [47], and
SimSiam [11] improve their linear classification accuracy by 2%∼5% on the Im-
ageNet [15] dataset and object detection performance by 0.8∼1.0 mAP on the
MS COCO [10] dataset, simultaneously.

In summary, the contribution of the paper is threefold:

1. We make the first attempt to demonstrate the importance of both regions,
i.e., the cropped and remained regions in cropping, from a complete per-
spective for self-supervised learning.

2. We propose a simple yet effective pretext task, i.e., RegionCL, to demon-
strate the effectiveness of using both regions for learning. It is compatible
with various popular SSL methods with minor modifications and improves
their performance on many downstream visual tasks.

3. Extensive experimental results with MoCov2, SimSiam, and DenseCL on the
ImageNet, MS COCO, and Cityscapes datasets demonstrate the effective-
ness of the proposed RegionCL on classification, detection, and instance and
semantic segmentation tasks.

2 Related Work

Self-supervised learning has shown great potential in learning visual represen-
tations that can generalize to a series of downstream visual tasks. Early works
generate pseudo labels using specific tasks [33,25,61,35] such as image corruption
and restoration, reordering, re-colorization. However, the models pretrained in
these tasks may be too coupled with the designed tasks and the transfer results
on other visual tasks may not be competitive.

Recently, contrastive learning [11,9,7,21,19,42,8] has made rapid progress and
shown promising transfer performance. Typically, they take augmented views
from the same (different) images as positive (negative) pairs and learn to pull
the features from positive pairs while pushing away those from the negative
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pairs via a contrastive loss. Among the augmentation techniques, cropping plays
an important role in improving the performance, as shown in [7]. Taking the
cropped augmented views as input, SimCLR [7] obtains superior results on im-
age classification. MoCo [21,9] utilizes a momentum encoder to better utilize
the cropped views during pretraining, as it provides consistent optimization di-
rection. However, as cropping at a single resolution may not provide enough
descriptions of the target object, a multi-crop strategy is explored in [3,4] by
fusing several cropped views at different resolutions. Such a strategy helps the
models learn a better feature representation at different scales and boost their
performance on the image classification task.

On the other hand, [47,52,37,36] focus on advancing the performance on dense
prediction tasks by establishing dense correspondences between the augmented
cropped views. Some methods [62,37,5,30] further design contrained cropping
strategies during pretraining to improve the transfer results on detection, e.g .,
they require the two cropped views have some shared regions and attract the
dense positive features within the shared regions based on explicit spatial cor-
respondences. By exploring different properties of cropping-based augmented
views, these methods obtain superior performance. However, the remained re-
gions after cropping have rarely been explored. Different from them, we make
the first attempt to investigate the importance of both regions in this study via
adopting a simple region swapping strategy to generate abundant contrastive
pairs at both instance and region levels for contrastive learning (RegionCL),
from which the model can learn better visual representations of object instances.

Although several methods also explore region-level contrastive learning, they
have not yet explored the complementary remained regions after cropping, i.e.,
the canvas view in our paper. For example, SCRL [37], DUPR [16], and MaskCo [62]
incorporate bounding boxes generation and alignment between the shared area
of two cropped views during pretraining. InstLoc [56] further introduces anchors
with bounding boxes augmentations to boost the transfer results on dense pre-
diction tasks at the cost of decreased image classification accuracy. DetCo [50]
designs delicate cropping strategies to generate separate patches at different
resolutions and uses extra memory banks to capture patch features. Without
the requirement of extra information such as bounding boxes alignment, Re-
gionCL adopts the most simple strategy to demonstrate that using both regions
for contrastive learning isolated helps to boost the SSL methods performance
without bells and whistles. The simple task is compatible with popular SSL
frameworks, e.g ., we validate the effectiveness of using both regions for training
with MoCov2 [9], SimSiam [11], and DenseCL [47], with only minor modifica-
tions to them. The theoretical analysis of these works have been well studied
in [43,40,45,46] and is beyond this paper’s scope. It is also noteworthy that
although the adopted swapping strategy is similar to co-current methods like
UnMix [38]/HEXA [26]/InsCon [57], they do not explore region-level pairs, i.e.,
they still treat the composite images as a whole from the global perspective. Re-
gionCL explores both region- and global-level pairs from the composite images,
which is more efficient and obtains better performance on various vision tasks.
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Fig. 3: Illustration of the proposed RegionCL with the MoCov2 framework, i.e.,
RegionCL-M. Taking the two augmented views xq, xk as inputs, RegionCL em-
ploys region swapping among the batch of xq to generate the composite images
with paste views xp and canvas views xc. Then, mask pooling is used to extract
the features belonging to the paste and canvas views, respectively. The resultant
region-level features (with stripes in the figure) are batched with the instance-
level features and processed by the projector.

3 Method

3.1 The region swapping strategy

Different from current methods that only use the cropped regions, we take both
the cropped and remained regions into consideration for self-supervised learning.
Given two different images, we randomly crop a region with the same size from
each image and swap them to compose two new images. As shown in Figure 2-C,
the composite image after region swapping contains two views: one is the paste
view (the cropped region), i.e., the cat’s face, and the other is called the canvas
view (the remained region), i.e., the dog’s body. Specifically, we first sample
a size of the paste view, i.e., the height and width, and then determine the
coordinates of the origin point from which the cropping starts. We make sure the
size and location of the cropped region match the network’s downsampling ratio
R during region swapping so that the region’s feature can be directly extracted
from the feature map by a simple operation of mask pooling. The height and
width are determined by R and a discrete uniform distribution C ∼ U(CL, CU ),
where the ratio R is typically 32 for ResNet [23] and CL, CU are two predefined
hyper-parameters shared for both spatial dimensions for simplicity. They are set
to 3 and 5 in the paper unless specified. We sample twice from the distribution
C and get two observations ch and cw. Then, we calculate the width and height
as rh = ch ×R, rw = cw ×R, respectively. Then we uniformly sample the origin
point coordinates (rx, ry) from a valid range that guarantees there is enough
remaining area to crop a patch of size rw × rh. In this way, the candidate region
is determined by (rx, ry, rw, rh). It is noteworthy that within a mini-batch of the
training images, we use the same coordinates (rx, ry, rw, rh) for efficient batch-
wise implementation during training.
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3.2 The region contrastive learning

The architecture. We take MoCov2 as an example here to describe the pro-
posed RegionCL method in depth, denoted as RegionCL-M. The overall archi-
tecture is presented in Figure 3. As can be seen, RegionCL-M has exactly the
same architecture with MoCov2 and only requires marginal modifications to the
inputs and learning objectives, i.e., a region-level branch in the middle.

RegionCL-M uses a Siamese network structure in pretraining. Given image
instances x, RegionCL-M first creates two randomly augmented views, i.e., the
query view xq and the key view xk following the same augmentation strategy
as in MoCov2. The online network processes the query view, and the other
branch, i.e., the momentum updated network, processes the key view. Unlike
other methods that also utilize region-level contrastive learning [37,16,62], we
follow the same cropping strategies as in MoCov2 and do not need the two
views xq, xk to have a sufficiently large overlap, which keeps the diversity of
the contrastive pair candidates. We construct the region-level contrastive pairs
using the region-swapping strategy. Specifically, given two image instances from
the query view xq, we randomly crop a region with the same size in each image
instance and swap them to compose two new images xpc, where the cropped
region after swapping and the remained region in the new images are the paste
view xp and canvas view xc, respectively.

The region- and instance-level contrastive loss. In this way, we have a
total of four different views, i.e., the query view, the paste view, the canvas
view, and the key view, denoted as xq, xp, xc, xk, respectively. RegionCL-M
projects these views into the corresponding feature representations q, p, c, k,
among which the features q, k are instance-level feature representations while
the features p, c are region-level feature representations. Note that features of the
paste view and canvas view are extracted from the feature maps of xpc via mask
pooling, where the mask is obtained according to the coordinates (rx, ry, rw, rh)
as described in Section 3.1. The other views’ features are from the global average
pooling upon the corresponding feature maps. Then we can efficiently construct
the contrastive pairs for these views according to the simple criteria, i.e., each
view is (1) positive with views augmented from the same original image and
(2) negative with views augmented from other images. We follow the practice of
MoCov2 in our implementation and ignore the positive pairs whose features are
both generated by the online network to stabilize the training.

We use contrastive loss [20,21] as the learning objectives, which can be
thought of as training an encoder for a dictionary lookup task at both instance
and region levels. We first introduce the instance-level contrastive loss and then
present the region-level one. Assume that we have a set of encoded samples
{ki|i = 1, 2, ...,K} as keys of a dictionary. For each query feature q, if there is a
single key (k+) that matches the query q, the contrastive loss aims to increase
the similarity between q and k+ meanwhile reducing the similarity between q
and all other keys (considered as the negative counterparts for q). We use L2-
normalized dot product to measure the similarity between the queries and keys,
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and the contrastive loss, i.e., the InfoNCE [34] loss, is therefore formulated as:

Lins = − log
exp (q · k+/τ)∑K
i=0 exp (q · ki/τ)

, (1)

where τ is a temperature hyper-parameter (set to 0.2 by default) [48,21]. Follow-
ing MoCov2, the dictionary keys {ki|i = 1, 2, ...,K} in RegionCL-M are main-
tained using a first-in-first-out queue with a predefined maximum number of
samples (K), which is set to 65,536. The features from the key view k is treated
as the positive sample and used to progressively update the memory queue,
which serves as the negative samples. This form of contrastive loss is the exact
one that appeared in MoCov2 [21], while it can have other forms for different
SSL methods [34,11]. Apart from the instance-level pairs, the features of other
views formulate the region-level pairs with the modified contrastive loss:

Lreg =− 1

2
log

exp (p · k+p /τ)∑K
i=0 exp (p · ki/τ) + exp (p · sg(c)/τ)

− 1

2
log

exp (c · k+c /τ)∑K
i=0 exp (c · ki/τ) + exp (c · sg(p)/τ)

,

(2)

where the features p, c are obtained from the identical composite image xpc (thus
the term is divided by 1

2 for normalization). sg(·) represents ‘stop gradient’,
which helps stabilize the training. p and c are indeed hard negative pairs since
they involve some context information from each other due to convolution and
pooling operations, thereby helping the model to learn robust and discriminative
feature representations. Thus the total contrastive loss is formulated as:

Ltotal = Lins + Lreg. (3)

Since the query, canvas, and paste views share the online network, we believe
that the features of these views should be in the same feature space. Thus,
RegionCL-M only needs a single queue to provide negative samples for features
of all the three views, in contrast to the usage of multiple queues as in [50,56].

Extension to other SSL methods. As RegionCL defines a model-agnostic
pretext task and requires minor modifications to the SSL methods, we also choose
two other representative approaches, i.e., DenseCL [47] and SimSiam [11], to
further validate its effectiveness, denoted as RegionCL-D and RegionCL-S, re-
spectively. Specifically, DenseCL [47] focuses on dense prediction tasks and has
two learning objectives, i.e., the instance-level contrastive loss as in MoCov2
and the pixel-level dense loss. Therefore, RegionCL-D includes the proposed
region-level loss seamlessly as in RegionCL-M and keeps the pixel-level loss un-
changed. For SimSiam [11], it only adopts instance-level positive pairs {p, k+}
for training. Thus, we only enrich the positive pairs by collecting those abundant
instance- and region-level positive pairs provided by RegionCL-S while retaining
the other components. Similar strategy is adopted for vision transformer back-
bones [55,31,17] with MoBy [51]. Please refer to the supplementary for details.
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4 Experiments

To thoroughly validate the improvements brought by introducing both regions
into pretraining, we incorporate the RegionCL in representative state-of-the-art
SSL methods, i.e., MoCov2 [9], DenseCL [47], and SimSiam [11], and propose the
RegionCL compatible models, i.e., RegionCL-M, RegionCL-D, and RegionCL-S.
The models are pretrained following the same settings as their own base meth-
ods, i.e., we train RegionCL-M and RegionCL-D for 200 epochs, and RegionCL-S
for 100 epochs, with an SGD [39] optimizer and corresponding augmentations,
respectively. All the methods are based on ResNet-50 [23] backbone. Please re-
fer to the supplementary material for more details. Vision transformer-based
methods [51] are also explored to further evaluate RegionCL’s effectiveness.

4.1 Image classification on ImageNet

Settings. To evaluate the effectiveness of regional contrastive learning for image
classification, we benchmark the RegionCL on ImageNet [15], which contains
1.28M images in the training set and 50K images in the validation set from
1,000 classes, respectively. The pretrained models of other SSL methods are
either obtained from their authors or reproduced using their official codes. The
performance of Top-1 and Top-5 accuracy on a single crop is reported. We have
two experimental settings regards evaluation: linear classification and few-shot
finetuning. The former setting follows the default setting of MoCov2 [21,9] and
SimSiam [11] with SGD [39] and LARS [58] optimizer. The latter one using
randomly sampled data per class from the training set.

Results with linear classification. We report the linear classification results
of different methods in Table 1 and 2. ‘Real’ indicates that the labels used for
evaluation are provided by [2]. From the table, we can see that RegionCL im-
proves the aforementioned SSL baseline methods significantly by a large margin:
+1.9% for RegionCL-M, +4.8% for RegionCL-D, and +3.2% for RegionCL-S.
This proves RegionCL helps various SSL methods learn better feature represen-
tations owing to the abundant contrastive supervisory signals with contrastive
pairs from both regional and global perspective. Comparing with methods that
also exploring mixing two images for contrastive learning but from the global
perspective only, i.e., UnMix [38] and HEXA [26], RegionCL-M obtains better
performance no matter using 200/800 epochs for training, demonstrating the
benefits of leveraging regional contrastive pairs. Besides, RegionCL-S reaches
71.3% Top-1 accuracy using only 100 epochs, while the vanilla SimSiam requires
a significantly longer training schedule of 800 epochs, proving the effectiveness of
RegionCL in accelerating the model convergence and improving the performance.
It is noteworthy that DenseCL focuses on dense prediction tasks and does not
perform that well on classification. In contrast, RegionCL brings a large improve-
ment on DenseCL for image classification, indicating that introducing remained
regions to promote pretraining is not only compatible with classification-favored
SSL methods but also generalizes well on dense prediction-favored approaches.
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Results with linear few-shot finetuning. Table 3 presents the results of
different methods at the linear few-shot finetuning setting. Thanks to the abun-
dant contrastive pairs brought by RegionCL, the models pretrained by RegionCL
have learned better feature representations from a complete perspective and can
generalize well on classification tasks, thus delivering much more significant im-
provements over their baselines when only a limited number of data are available
for finetuning, i.e., a gain of +2.5%, +8.9%, +9.5% for 1% data and 1.8%, 6.4%,
8.1% for 10% data achieved by RegionCL-M, RegionCL-D, RegionCL-S.

Epochs
ImageNet Real

Top-1 Top-5 Top-1

MoCo [21] 200 60.6 - 69.1
SimCLR [7] 1000 69.3 89.0 77.6
PIRL [32] 800 64.3 - 71.7
CPC-v2 [24] 200 63.8 85.3 -
InstLoc [56] 200 61.7 - -
MaskCo [62] 200 65.1 - -
ISD [41] 200 69.8 - -
PCLv1 [27] 200 61.5 - -
PCLv2 [27] 200 67.6 - -
DUPR [16] 200 63.8 85.6 -
DetCo [50] 200 68.6 88.5 -
UnMix [38] 200 68.6 - -
HEXA [26] 200 68.9 - -
MoCov3 [12] 100 68.9 - -
SimSiam [11] 800 71.3 - -

MoCov2 [9] 200 67.5 88.2 77.8
RegionCL-M 200 69.4 89.6 78.7

DenseCL [47] 200 63.6 85.5 72.3
RegionCL-D 200 68.5 89.0 78.4

SimSiam [11] 100 68.1 88.2 77.8
RegionCL-S 100 71.3 90.4 80.8

Table 1: Linear classification results
comparison on ImageNet [15].

Epochs
ImageNet

Top-1 Top-5

MoCov2 [9] 800 71.1 90.2
UnMix [38] 800 71.8 -
HEXA [26] 800 71,7 -
RegionCL-M 800 73.1 91.5

MoCov2* [11] 800 72.3 -
RegionCL-M* 800 73.9 92.0

MoCov3 [12] 1000 74.6 -
RegionCL-M3 1000 75.4 92.6

Table 2: Linear classification results
with more pretraining epochs. * means
using symmetric loss.

1% Data 10% Data
Top-1 Top-5 Top-1 Top-5

MoCov2 [9] 43.6 70.9 58.8 82.4
RegionCL-M 46.1 72.9 60.4 83.5

DenseCL [47] 38.9 66.2 54.0 79.3
RegionCL-D 47.8 74.0 60.4 83.1

SimSiam [11] 32.8 61.5 51.8 77.7
RegionCL-S 42.3 70.6 59.9 83.8

Table 3: Linear classification results on
ImageNet [15] using 1% and 10% data.

4.2 Detection and segmentation on MS COCO

Settings. We show the detection performance of the models pretrained with
the RegionCL pretext task. The experiments are conducted on the MS COCO
dataset [10], which contains about 118K images with bounding boxes and in-
stance segmentation annotations and covers 80 object categories in total. We
choose two representative detectors: the two-stage detector Mask-RCNN [22]
and the one-stage detector RetinaNet [29], following the same settings as in
[50,62].
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Mask-RCNN-C4-1x Mask-RCNN-FPN-1x

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand Init 26.4 44.0 6.9 7.6 14.8 7.2 31.0 49.5 33.2 28.5 46.8 30.4
Supervised 38.2 58.2 41.2 33.3 54.7 35.2 38.9 59.6 42.7 35.4 56.5 38.1

InsDis [48] 37.7 57.0 40.9 33.0 54.1 35.2 37.4 57.6 40.6 34.1 54.6 36.4
PIRL [32] 37.4 56.5 40.2 32.7 53.4 34.7 37.5 57.6 41.0 34.0 54.6 36.2
SwAV [3] 32.9 54.3 34.5 29.5 50.4 30.4 38.5 60.4 41.4 35.4 57.0 37.7
MoCo [21] 38.5 58.3 41.6 33.6 54.8 35.6 38.5 58.9 42.0 35.1 55.9 37.7
DetCo [50] 39.4 59.2 42.3 34.4 55.7 36.6 39.5 60.3 43.1 35.9 56.9 38.6
DetCo-AA [50] 39.8 59.7 43.0 34.7 56.3 36.7 40.1 61.0 43.9 36.4 58.0 38.9

MoCo v2 [9] 38.9 58.4 42.0 34.2 55.2 36.5 38.9 59.4 42.4 35.5 56.5 38.1
RegionCL-M 39.8 59.8 43.0 34.8 56.4 36.9 40.1 60.7 43.9 36.3 57.7 39.0

DenseCL [47] 39.3 59.1 42.2 34.5 55.6 36.8 39.1 59.4 42.5 35.5 56.4 38.0
RegionCL-D 40.3 60.3 43.9 35.2 57.0 37.3 40.4 61.3 44.2 36.7 58.2 39.4

SimSiam [11] 37.9 57.5 40.9 33.2 54.2 35.2 37.3 57.2 40.5 33.9 54.2 36.1
RegionCL-S 38.7 58.2 41.3 33.7 55.0 35.6 38.8 58.8 42.4 35.2 56.0 37.6

Table 4: Object detection results on the MS COCO [10] dataset with Mask-
RCNN [22] C4 and FPN (1x).

Results of Mask-RCNN on MS COCO. Table 4 and 5 summarize the
Mask-RCNN results on 1x and 2x schedules respectively, where the RegionCL
variants are highlighted in bold. We can see that RegionCL has significantly
improved all approaches with ResNet50-C4 and ResNet50-FPN backbones, con-
firming the benefits of region-level contrastive learning on various SSL methods.
According to the tables, incorporating RegionCL into MoCov2 (RegionCL-M)
can further improve the performance over the MoCov2 baseline with both back-
bones. It is also noticeable that RegionCL-M has already surpassed the previous
representative SSL methods designed for dense prediction, e.g ., DetCo [50] and
DenseCL [47]. More importantly, when incorporating RegionCL into DenseCL,
RegionCL-D achieves the best scores for all metrics in both the 1x and 2x set-
tings. It suggests that RegionCL can still help the dense prediction-favored meth-
ods to learn more discriminative features from a complete perspective.

Results of RetinaNet on MS COCO. The results of RetinaNet on MS
COCO using different SSL methods are presented in Table 6. From the table,
we can see that the improvement brought by RegionCL still holds in all metrics
and at all the training settings. Similarly, RegionCL-D achieves the best results
at 38.8 AP and 40.6 AP for the two training schedules respectively, significantly
surpassing the supervised baseline by 1.4 AP and 1.7 AP. It is also noted that
the improvement in the more stringent metric APbb

75 is more significant than that
in the APbb metric, demonstrating that leveraging both cropped and remained
regions for contrastive learning contributes to learning better feature represen-
tations for object detection and thus improving the detection accuracy. These
results show that the simple strategy RegionCL can help existing SSL meth-
ods achieve a better trade-off between the classification and detection tasks (see
Figure 1), further validating the benefits of using both regions for pretraining.
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Mask-RCNN-C4-2x Mask-RCNN-FPN-2x

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand Init 35.6 54.6 38.2 31.4 51.5 33.5 36.7 56.7 40.0 33.7 53.8 35.9
Supervised 40.0 59.9 43.1 34.7 56.5 36.9 40.6 61.3 44.4 36.8 58.1 39.5

MoCo [21] 40.7 60.5 44.1 35.4 57.3 37.6 40.8 61.6 44.7 36.9 58.4 39.7
MaskCo [62] 40.8 60.5 44.2 35.5 57.1 38.0 - - - - - -
UnMix [38] - - - - - - 41.2 60.9 44.7 - - -
DetCo [50] 41.4 61.2 44.7 35.8 57.8 38.3 41.5 62.1 45.6 37.6 59.2 40.5
DetCo-AA [50] 41.3 61.2 45.0 35.8 57.9 38.2 41.5 62.5 45.6 37.7 59.5 40.5

MoCo v2 [9] 41.0 60.6 44.5 35.6 57.2 38.0 40.9 61.5 44.7 37.0 58.7 39.8
RegionCL-M 41.5 61.4 44.9 35.9 57.7 38.6 41.6 62.5 45.6 37.7 59.3 40.4

DenseCL [47] 39.7 59.1 43.0 34.5 55.9 37.3 41.4 62.1 45.1 37.5 58.8 40.3
RegionCL-D 41.8 61.6 45.4 36.4 58.5 39.2 42.1 62.9 45.9 38.0 60.0 40.7

SimSiam [11] 38.8 58.0 41.9 34.0 55.1 36.2 40.1 60.6 43.8 36.4 57.7 39.1
RegionCL-S 40.7 60.4 44.4 35.4 57.0 37.7 41.0 61.6 44.7 37.1 58.6 39.8

Table 5: Object detection results on the MS COCO [10] dataset with Mask-
RCNN [22] C4 and FPN (2x).

4.3 Segmentation on Cityscapes

Settings. Further, we evaluate the models’ transfer performance for both in-
stance and semantic segmentation on the Cityscapes [14] dataset, which con-
tains over 5K well-annotated images of street scenes from 50 different cities. We
follow the same setting as in MoCov2 [21] for instance segmentation, with Mask-
RCNN and trained for 24K iterations. UPerNet [49] in mmseg [13] is employed
for semantic segmentation evaluation.
Results on Cityscapes. Table 7 presents the performance of different SSL
methods and their variants with RegionCL. The second and third columns show
the performance for instance and semantic segmentation, respectively. Accord-
ing to the table, RegionCL consistently improves the three representative SSL
methods by large margins. For example, RegionCL-M reaches the best on in-
stance segmentation at 34.9 AP and 62.5 AP75, while RegionCL-D outperforms
the others on semantic segmentation at 78.7 mIoU and 79.5 mIoU with dif-
ferent training schedules, confirming the generalization and the effectiveness of
region-level contrastive learning with remained regions on segmentation tasks.

4.4 Generalization on vision transformer

To further evaluate the benefits of using both regions for pretraining, we apply
RegionCL on vision transformer-based methods and train them following the
design in MoBy [51]. As shown in Table 8, RegionCL improves MoBy by over
3.0 accuracy on both ImageNet and ImageNet Real with 100 epochs pretraining
and over 1.5 accuracy with 300 epochs pretraining. It can be concluded that Re-
gionCL can successfully improve the vision transformer’s performance, validating
its effectiveness for advanced neural architectures like vision transformers.
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RetinaNet-1x RetinaNet-2x

APbbAPbb
50APbb

75APbbAPbb
50APbb

75

Rand Init 24.5 39.0 25.7 32.2 49.4 34.2
Supervised 37.4 56.5 39.7 38.9 58.5 41.5

InsDis [48] 35.5 54.1 38.2 38.0 57.4 40.5
PIRL [32] 35.7 54.2 38.4 38.5 57.6 41.2
SwAV [3] 35.2 54.9 37.5 38.6 58.8 41.1
MoCo [21] 36.3 55.0 39.0 38.7 57.9 41.5
DUPR [16] 38.0 57.2 40.7 40.0 59.6 43.0
DetCo [50] 38.0 57.4 40.7 39.8 59.5 42.4
DetCo-AA [50] 38.4 57.8 41.2 39.7 59.3 42.6

MoCov2 [9] 37.2 56.2 39.6 39.3 58.9 42.1
RegionCL-M38.4 58.1 41.2 40.1 59.9 43.2

DenseCL [47] 37.7 56.4 40.2 39.8 59.2 42.8
RegionCL-D 38.8 58.6 41.6 40.6 60.4 43.6

SimSiam [11] 35.5 53.7 38.1 38.1 57.4 40.8
RegionCL-S 36.8 55.9 39.5 39.1 58.5 41.8

Table 6: Detection results on MS
COCO [10] with RetinaNet [29].

Inst. Seg Sem. Seg
AP AP75 40K 80K

Supervised 32.9 59.6 77.1 78.2

MoCov2 [9] 33.9 60.8 77.8 78.6
RegionCL-M34.962.578.179.0

DenseCL [47] 34.5 61.9 78.3 79.1
RegionCL-D 34.862.378.779.5

SimSiam [11] 33.6 61.0 76.2 78.1
RegionCL-S 34.961.677.878.7

Table 7: Instance (Inst.) and semantic
(Sem.) segmentation results (mIoU) on
Cityscapes [14].

4.5 Ablation Study

We conduct the ablation studies with RegionCL-M. All models are trained for
100 epochs due to the limitation of computation resources and follow the practice
of previous works [50,62]. We adopt a k-NN classifier to evaluate their classifi-
cation accuracy on ImageNet [15] and train these models for 12K iterations on
MS COCO [10] to evaluate their dense prediction performance.

BackboneEpochs
ImageNet Real
Top-1Top-5Top-1

MoBy [51] Swin-T 100 70.9 89.7 77.5
RegionCL+MoBy Swin-T 100 73.9 91.8 81.2
MoBy [51] Swin-T 300 75.3 92.2 82.4
RegionCL+MoBy Swin-T 300 77.0 93.1 83.9

Table 8: Linear classification re-
sults comparsion on ImageNet
with vision transformer-based
method MoBy [51].

The size of the paste view. We investigate the influence of the size of the
paste view by varying the lower and upper bounds CL and CU . Note that the
image size is set as 224 during the training and the downsampling ratio for
the backbone network ResNet-50 [23] is 32, thus CL, CU are valid in the range
[1, 7]. The optimal hyper-parameters are determined through two steps. (1) We
first fix the upper bound CU to 5 and search different configurations for the
lower bound CL. As shown in Table 9, the performance on both classification
and detection peaks with CL = 3. (2) Then we fix CL to 3 and search for CU .
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Configuration ImageNet MS COCO

CL CU 20-NN100-NNAPbbAPmk

- - 49.3 47.3 26.3 24.0

1 5 51.8 49.8 27.3 24.9
2 5 53.0 51.2 27.9 25.5
3 5 54.7 52.7 28.0 25.6
4 5 53.9 51.8 27.9 25.5

3 4 55.1 52.8 27.8 25.5
3 6 54.3 52.5 27.8 25.5

Table 9: The influence of paste view’s
size. CL and CU denote the lower and
upper bound of the size for the paste
view generation. ‘-’ denotes no paste
view is used during the training, i.e.,
downgrading to the original MoCov2.

Configuration ImageNet MS COCO

PasteCanvasNeg20-NN100-NNAPbbAPmk

× × × 49.3 47.3 26.3 24.0
× ✓ × 51.8 50.0 26.9 24.7
✓ × × 50.0 50.2 27.0 24.7
✓ ✓ × 54.6 52.4 27.8 25.5

✓ ✓ ✓ 54.7 52.7 28.0 25.6

Table 10: The influence of paste and
canvas views. ‘Paste’/‘Canvas’ denote
using paste/canvas views as positive
pairs. ‘Neg’ means using the canvas and
paste counterpart views in the compos-
ited images as negative pairs.

It is interesting to see that decreasing CU from 5 to 4 slightly improves the
performance on classification but degrades that on detection. This suggests that
the optimal configurations of CL, CU for classification and dense prediction tasks
may be slightly different, and we select CL = 3, CU = 5 as default values to
achieve a trade-off on both classification and dense prediction tasks.

The influence of using paste and canvas views. We further investigate the
importance of using both paste and canvas views during pretraining. The results
are concluded in Table 10, where ✓under Paste or Canvas denotes whether to
use the former or latter term in Eq. (2). The ‘Negative’ option means whether to
treat the canvas and paste counterpart views from the same composite image xpc

as negative pairs, i.e., exp (c · sg(p)/τ) or exp (p · sg(c)/τ) in the denominator
in Eq. (2). With all columns marked ×, the method becomes standard MoCov2.
From the first three rows in the table, we can see that using either the paste or
canvas views can bring performance gains, and the performance will be further
boosted when considering both regions. For example, in the 4th row, the model
gains more than 5% accuracy improvement over MoCov2 in both ImageNet 20-
and 100-NN classification. We attribute it to that leveraging both regions during
pretraining can help models learn better category features from a complete per-
spective. Comparing the 4th row with the last row, where intra-image negative
pairs are utilized, the performance on both tasks is slightly improved. It demon-
strates that using negative pairs within images can help models learn more dis-
criminative features between different regions, again validating the importance
of introducing region-level contrastive pairs in self-supervised learning.

4.6 Analysis of RegionCL

To better analyze the performance gains brought by RegionCL, we monitor
the KNN accuracy and gradients of the target regions during training. We use



14 Y. Xu et al.

25

30

35

40

45

50

55

60

20 40 60 80 100120140160180200

K
N

N
 A

cc
u

ra
cy

Epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

20 40 60 80 100120140160180200

G
ra

d
ie

n
t 

N
o

rm
 o

f 
R

O
I

Epoch

RegionCL-M

MoCov2

Fig. 4: The KNN accuracy and
average gradient magnitude of
MoCov2 [9] and RegionCL-M
with different training epochs.

YOLOX [18] to detect the objects in the images and record the average magni-
tude of gradients back-propagated from the loss of MoCov2 and RegionCL-M in
the object bounding boxes on the training set. As shown in Figure 4, the KNN
accuracy of RegionCL-M consistently outperforms MoCov2 while the gradients
inside the object regions of RegionCL-M are larger than those of MoCov2, imply-
ing that using both regions for training can help models pay more attention on
the targets and learn better object representation from a complete perspective.

5 Limitation and Discussion

We make the first attempt to demonstrate the importance of considering both
cropped and remained regions in SSL via a simple yet effective RegionCL pretext
task. The simple task makes minor modifications to representative SSL methods
to show the benefits brought by leveraging regional contrastive pairs. Although
RegionCL effectively improve these methods, there is still much to be explored
in utilizing the remained regions for more tasks [53,54,28,1], e.g ., introducing
additional bounding box selection and alignment modules or adopting multi-level
supervision for learning. Besides, RegionCL temporally costs more computations
per iteration (about 50% for RegionCL-M). Although it demonstrates better
results with fewer computation resources as discussed in the supplementary, it
will be beneficial to reduce the training costs, which we leave as our future work.

6 Conclusion

This paper demonstrates the importance of using both cropped and remained
regions after cropping for self-supervised learning. A simple yet effective pretext
task RegionCL is proposed to validate the models can learn better category fea-
ture representation from a complete perspective. Experimental results on image
classification, object detection, and instance and semantic segmentation bench-
marks demonstrate the effectiveness of leveraging remained regions in pretrain-
ing and its compatibility to representative self-supervised learning methods. We
hope that this study will provide valuable insights into the subsequent studies
of self-supervised learning in exploring region-based contrast methodology.
Acknowledgement Mr. Yufei Xu, Mr. Qiming Zhang, and Dr. Jing Zhang are
supported by ARC FL-170100117.
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