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Abstract. Unsupervised partial domain adaptation (PDA) is a unsu-
pervised domain adaptation problem which assumes that the source label
space subsumes the target label space. A critical challenge of PDA is the
negative transfer problem, which is triggered by learning to match the
whole source and target domains. To mitigate negative transfer, we note
a fact that, it is impossible for a source sample of outlier classes to find a
target sample of the same category due to the absence of outlier classes
in the target domain, while it is possible for a source sample of shared
classes. Inspired by this fact, we exploit the cycle inconsistency, i.e., cat-
egory discrepancy between the original features and features after cycle
transformations, to distinguish outlier classes apart from shared classes
in the source domain. Accordingly, we propose to filter out source sam-
ples of outlier classes by weight suppression and align the distributions
of shared classes between the source and target domains by adversarial
learning. To learn accurate weight assignment for filtering out outlier
classes, we design cycle transformations based on domain prototypes
and soft nearest neighbor, where center losses are introduced in individ-
ual domains to reduce the intra-class variation. Experiment results on
three benchmark datasets demonstrate the effectiveness of our proposed
method.

Keywords: Unsupervised partial domain adaptation, negative transfer,
cycle inconsistency

1 Introduction

Deep neural networks have achieved remarkable success in various machine learn-
ing problems and applications [31, 22, 41, 50, 17]. Usually, training a deep neural
network requires large amounts of labeled data and assumes that the training
data follow identical distribution as the test ones. Therefore, networks may de-
grade drastically when applied in new scenarios, where the training and test
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data follow very different distributions [69, 59]. By utilizing both labeled data
from the source domain and unlabeled data from the target domain, unsuper-
vised domain adaptation (UDA) [42, 15] attempts to safely transfer knowledge
from the label-sufficient source domain to the label-free target domain, such that
networks can generalize to the target domain. Existing UDA methods typically
mitigate the distribution shift by minimizing the discrepancy between the source
and target domains [15, 43, 59, 60].

UDA always assumes that the source and target domains share identical label
space. Such an assumption would not be held in real-world applications since the
labels of target data are unknown. In this paper, we focus on a variant of UDA,
namely unsupervised partial domain adaptation (PDA), which is challenging but
realistic in real-world applications [4, 5, 72]. Compared with UDA, PDA does not
assume that the source domain has identical label space as the target domain,
but assumes that the target label space is a subset of the source label space. In
this case, we term the classes absent in the target domain as outlier classes and
the other classes as shared classes. A critical challenge of PDA is how to mitigate
negative transfer, which causes that a transfer model performs even worse than
a source-only model which is trained solely in the source domain.

We demonstrate an example about the negative transfer problem in PDA.
Consider applying an adversarial learning method for standard UDA (e.g., DANN
[15]) in PDA scenarios. By confusing a domain discriminator, the adversarial
learning method makes the distribution of the source domain (consisting of both
shared and outlier classes) similar to the distribution of the target domain (con-
sisting of only shared classes). However, in ideal cases, the distribution of source
outlier classes should be dissimilar to the target distribution, since the outlier
classes in the source domains are absent in the target domain. As a result, the
adversarial learning method makes some target samples of the shared classes
indistinguishable from the source samples of outlier classes, which hinders trans-
ferable discriminative feature learning and triggers negative transfer.

To mitigate the negative transfer problem, we attempt to match only the
shared classes between the source and target domains. To this end, we should
filter out source samples of outlier classes when applying adversarial learning.
However, since no label information is available in the target domain, it is chal-
lenging to identify which classes are outlier for the target domain. To tackle the
challenge, we explore the differences between outlier and shared classes. We note
a fact that, it is impossible for a source sample of outlier classes to find a target
sample of the same category due to the absence of outlier classes in the target
domain while it is possible for a source sample of shared classes to find one, and
it is also possible for a target sample to find a source sample of the same cate-
gory since all target classes are shared across domains. Inspired by this fact, we
develop a solution to distinguish outlier classes apart from shared classes based
on cycle inconsistency modeling.

Specifically, we design a cycle transformation for source samples. The pro-
posed cycle transformation first transforms a source sample feature into the
target domain and then transforms it back into the source domain. We hold an
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Fig. 1. (a) A PDA example with two shared classes and one outlier class. In PDA, due
to the absence of outlier classes in the target domain, a source sample of outlier classes
cannot find a target sample of the same category, while it is possible for a source sample
of shared classes to find one. Inspired by this fact, we design a cycle transformation to
distinguish outlier classes from shared classes. Our assumption is that, source samples
of outlier classes are more likely to alter their category after cycle transformations com-
pared with source samples of shared classes, with appropriate transformation functions.
(b) Assumption verification using source-only models on three real-world datasets. We
conduct cycle transformations on source samples by two cross-domain feature transfor-
mations, which is implemented by searching the most similar samples across domains
in feature space. Then we calculate the accuracy of cycle transformations, i.e., the pro-
portion of samples to keep their categories after cycle transformations. The empirical
results show that the accuracy of samples in shared classes is much higher than samples
in outlier classes, which verifies our assumption. Best viewed in color.

assumption that, source samples of outlier classes are more likely to alter their
category after cycle transformations compared with source samples of shared
classes, with appropriate transformation functions (see empirical verification in
Fig. 1). Accordingly, we propose a weighted adversarial learning method with a
novel weight assignment scheme based on cycle inconsistency, i.e., the category
discrepancy between the original features and features after cycle transforma-
tions. Our method filters out source samples in outlier classes by sample weight
suppression and aligns the distributions of shared classes between the source
and target domains iteratively. With such a filter-and-align manner, our method
gradually learns accurate transformation functions based on feature similarity
for exploiting cycle inconsistency. For accurate sample weight assignment, we de-
sign cross-domain feature transformation functions based on domain prototypes
and soft nearest neighbor to alleviate unexpected category alteration under large
intra-class variation. For further improving the accuracy of cross-domain feature
transformations, we adopt center losses within individual domains to reduce the
intra-class variation. We conduct quantitative and qualitative experiments on
three benchmark datasets, which demonstrates the effectiveness of our method.
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2 Related Work

2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) is one of the most classical transfer
learning tasks [48]. UDA aims to transfer knowledge from the label-sufficient
source domain to the label-free target domain, such that the transfer model can
generalize to the target domain. A critical challenge of the UDA problem is how
to diminish the distribution discrepancy between the source and target domains.

Typically, existing UDA methods explore domain invariance based on feature
alignment. A mainstream type of feature alignment methods explicitly minimizes
well-defined statistical distances (e.g., Maximum Mean Discrepancy) between
the source and target domains [60, 42, 58, 71, 10]. Inspired by GANs [17], an-
other mainstream type introduces an auxiliary domain discriminator and makes
the feature extractor confuse the domain discriminator in an adversarial learn-
ing manner. Usually, these methods design different criteria for training domain
discriminators [15, 59, 74, 66, 9]. Moreover, some works focus on specific differ-
ences between domains for implicit alignment [65, 28]. Häusser et al. propose to
reinforce associations between domains directly in feature space [21, 30, 7].

In addition to methods based on feature alignment, generative methods in-
troduce GANs for synthesizing labeled target data and align the two domains in
both pixel and feature levels [1, 55, 27, 23, 47]. Among them, Hoffman et al. [23]
propose to utilize the cycle consistency constraint for better synthesis without
cross-domain pairs, inspired by CycleGAN [75]. Furthermore, some methods at-
tempt to explore domain-specific information [53, 52, 37, 56, 44, 13]. For example,
Saito et al. [52] and Liang et al. [37] assign pseudo labels to selected samples in
the target domains, and Long et al. [44] and Shu et al. [56] apply the entropy
minimization principle from the semi-supervised learning literature [18, 73].

Although UDA makes generalization in label-free domains possible, it is not
realistic in real-world applications. UDA always assumes that the source and tar-
get domains share identical label space, which is too rigorous as label information
of the target domain is unknown. Therefore, recent works make attempts to re-
lax the assumption. For example, open-set domain adaptation assumes there are
private classes in the target domain, which requires models to recognize both
known and unknown classes in the target domain [3, 54, 40, 32]. Universal do-
main adaptation further assumes that both the source and target domains have
private classes, leading to a large category gap between domains [70, 14, 34]. In
addition, UDA usually assumes that both the source and target data are accessi-
ble, which violates the data privacy policy in some cases. Therefore, some works
explore source-free settings with the source data unavailable [33, 36, 38, 68, 67].

2.2 Partial Domain Adaptation

Unsupervised partial domain adaptation (PDA) is an extreme case of imbal-
anced unsupervised domain adaptation [24]. PDA assumes that the source label
space subsumes the target label space, which is more realistic than the standard
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UDA. A critical challenge of PDA is the negative transfer problem triggered
by learning to match the whole source and target domains. Typically, to mit-
igate negative transfer, existing methods introduce weighting schemes to filter
out source samples of outlier classes and then apply adversarial learning meth-
ods for domain alignment. SAN [4] and PADA [5] propose class-wise weighting
schemes according to the statistics of label predictors. IWAN [72] and ETN [6]
assign sample-wise weights by introducing extra domain discriminators and label
predictors, respectively. TWINs [46] proposes to estimate the label distribution
using two classifiers. Apart from methods based on weighting schemes, there are
PDA methods of other types. For example, Chen et al. [8] propose a reinforced
data selector based on reinforcement learning, Liang et al. [39] propose a bal-
anced and uncertainty-aware method which augments the small target domain
to match the large source domain, Hu et al. [26] propose to maximize the dis-
tribution divergence between outlier and shared classes beyond aligning shared
classes across domains, and Xiao et al. [63] propose to promote positive transfer
by aligning the distributions of implicit semantic topics across domains.

In this paper, we propose a novel weighted adversarial learning method which
filters out the source samples of outlier classes by cycle inconsistency. Existing
weighted adversarial learning methods also make attempts to filter out the source
samples of outlier classes. However, these methods usually calculate the weights
of source samples in indirect ways, which apply extra auxiliary networks on top
of features to infer the category gap between domains (e.g., domain discrimi-
nator in IWAN [72], label predictor in ETN [6]). The quality of sample weights
significantly depends on the performance of the auxiliary networks, as there
are representation gaps between the feature extractor and auxiliary networks.
By contrast, the proposed method exploits the category discrepancy between
original and cycle-transformed features, which directly exploits the property of
feature space without auxiliary networks and is more straightforward.

3 Methodology

In unsupervised partial domain adaptation (PDA), the source domain Ds =
{(xs

i , y
s
i )}

ns
i=1 consists of ns labeled samples from |Cs| classes and the target

domain Dt = {xt
i}

nt
i=1 consists of nt unlabeled samples from |Ct| classes. The two

domains follow different but related input distributions, i.e., ps(x
s
i ) ̸= pt(x

t
i),

which is termed domain gap. Different from the standard unsupervised domain
adaptation (UDA) problem, PDA further assumes a specific category gap be-
tween domains. In PDA, the label space of the target domain Ct is a subset of
the label space of the source domain Cs, i.e., Ct ⊂ Cs. We term the classes absent
in the target domain as outlier classes and the other classes as shared classes.
The goal of PDA is to learn a generalizable model in the small target domain by
transferring knowledge from the large source domain. In this paper, we aim to
learn a transferable classification model, which is composed of a feature extractor
F : X → Z and a label predictor G : Z → Y.
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Fig. 2. An overview of the proposed weighted adversarial learning method based on
cycle inconsistency. The blue components indicate the calculation process of sample
weight, which is based on the category discrepancy between the original and cycle-
transformed features. Three losses are involved during training, namely weighted clas-
sification, weighted domain alignment and center loss. Best viewed in color.

A critical challenge in PDA is the negative transfer problem, which is trig-
gered by learning to match the whole source and target domains. To mitigate neg-
ative transfer, we design a cycle transformation consisting of two cross-domain
feature transformations to distinguish outlier classes from shared classes. Our
basic assumption is that, source samples of outlier classes are more likely to
alter their category after cycle transformations compared with source samples
of shared classes, with appropriate transformation functions. According to the
assumption, we propose a weighted adversarial learning method with a cycle-
inconsistency-based weighting scheme, which filters out source samples of outlier
classes and aligns shared classes between the two domains iteratively. Next, we
elaborate the proposed method, whose overview is given in Fig. 2.

3.1 Weighted Adversarial Learning for PDA

In this subsection, we illustrate the weighted adversarial learning framework.
The framework is based on Domain Adversarial Neural Network (DANN) [15],
which is one of the most widely used adversarial learning methods for the stan-
dard UDA problem. DANN introduces a domain discriminator and develops a
two-player game for exploring domain invariance. Two losses are involved in
DANN, namely classification losses for discriminating categories and domains,
respectively. By confusing the domain discriminator, the feature extractor ex-
tracts domain-invariant features.

Although DANN is effective in UDA, it triggers the negative transfer problem
in PDA. In principle, DANN implicitly learns to align the whole source and target
domains. However, since there are outlier classes in the source domain in PDA,
aligning the whole domains confuses some target samples with the source samples
in outlier classes, leading to a loss of discriminative power in the target domain.
Therefore, we should distinguish source samples of outlier classes apart from
shared classes in adversarial learning. To this end, we assign a weight to each



Adversarial Partial Domain Adaptation by Cycle Inconsistency 7

source sample in losses. Denoted the domain discriminator by D : Z → {0, 1},
the losses of weighted adversarial learning framework are given as follows:

Lw
cls(θf , θg) =

1

ns

ns∑
i=1

ws
iLce(G(F (xs

i )), y
s
i ) +

λe

nt

nt∑
j=1

E(G(F (xt
j))),

Lw
adv(θf , θd) =

1

ns

ns∑
i=1

ws
iLce(D(F (xs

i )), d
s
i ) +

1

nt

nt∑
j=1

Lce(D(F (xt
j)), d

t
j),

(1)

where θf , θg and θd are parameters of the feature extractor F , label predictor G
and domain discriminator D, respectively. Lce(·) is the cross-entropy loss, and
dsi = 0 and dtj = 1 are domain labels. E(·) is the entropy function (entropy min-
imization encourages the low-density separation between classes [18]), and λe is
a trade-off hyperparameter. ws

i is the weight of the i-th source sample. Ideally,
samples in shared classes have large weights and samples in outlier classes have
zero weights. In this case, the adversarial learning ignores the source samples
of outlier classes and aligns the distributions of shared classes between the two
domains. Also, the weights are introduced in the classification loss for concen-
trating on classifying the shared classes. Next, we illustrate how to quantify the
sample weights by cycle inconsistency.

3.2 Exploring Outlier Classes by Cycle Inconsistency

To quantify the sample weights, we exploit a key difference between source sam-
ples in shared and outlier classes by designing a cycle transformation. The cycle
transformation consists of two cross-domain feature transformations by search-
ing the most similar samples across domains in feature space. Specifically, given
a source sample feature, we first transform it into the target domain and then
transform it back into the source domain (i.e., use the most similar feature cross
domains as the transformed feature). We assume that, source samples of outlier
classes are more likely to alter their category after cycle transformations com-
pared with source samples of shared classes, if an appropriate similarity metric is
learned. Empirically, we verify the assumption using source-only models as fea-
ture extractors on three real-world datasets, as shown in Fig. 1b. The assumption
is inspired by a fact, i.e., if a source sample belongs to outlier classes, apply-
ing the source-to-target transformation always alters its category. Since no label
information is available in the target domain during training, we cannot verify
the category alternation for filtering out outlier classes, thus we consider trans-
forming the feature after source-to-target transformation back into the source
domain.

According to the above assumption, we propose to exploit the cycle inconsis-
tency, namely category discrepancy between the original and cycle-transformed
features, to filter out source samples of outlier classes. Specifically, in each iter-
ation, we assign weights to source samples based on the cycle inconsistency:

ws
i = G(Tt→s(Ts→t(F (xs

i ))))[y
s
i ], (2)
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where Ts→t : Z → Z and Tt→s : Z → Z are functions for source-to-target
and target-to-source feature transformations, respectively. G(z)[c] : Z → [0, 1]
denotes the c-th element of the classification probability vector given feature z. In
Eq. (2), we first extract the feature of xs

i using the feature extractor F , then apply
cycle transformation by Ts→t and Tt→s, and finally get the cycle-transformed
feature. We use the classifier G to predict the probability of category alternation
after the cycle transformation as it is trained with labeled source samples. If the
cycle-transformed feature has lower probability at its original category (i.e., ysi ),
the sample xs

i is more likely from the outlier classes (and vice versa).

Remark. The prerequisite of the proposed method is an appropriate fea-
ture similarity metric, based on which our method can find similar samples of
the same categories across domains with acceptable accuracy for cross-domain
feature transformations. In our method, the feature similarity metric is gradu-
ally learned by network training, and the cross-domain feature transformations
gradually become more accurate as a result. The accuracy of cross-domain fea-
ture transformations is guaranteed by two factors. First, we use a source-only
model as the initialization, since the model trained solely with source samples
can distinguish target samples of different classes to some extent. Such an initial-
ization scheme guarantees the accuracy of cross-domain similar sample search
at the beginning of training (as shown in Fig. 1b). Second, our method uses
a filter-and-align manner, which alternates between filtering out source sam-
ples of outlier classes by weight suppression and aligning the distributions of
shared classes between the two domains by adversarial learning. As the training
goes, our method gradually aligns shared classes across domains and thus the
cross-domain similar sample search is gradually more accurate. In Sec. 3.3, we
introduce prototype-based cross-domain feature transformation functions, which
improve the accuracy of cross-domain similar sample search.

As the shared classes in the source and target domains gradually align during
training, the classifier G gradually obtains classification power in the target do-
main. Therefore, if the classifier is confident in the prediction for the transformed
feature Ts→t(F (xs

i )), we can use the classifier to estimate the probability of cat-
egory alternation after the source-to-target feature transformation Ts→t, which
contributes to filtering out source samples of outlier classes. Accordingly, by ex-
ploiting the category discrepancy between original features and features after
source-to-target transformations, we propose a mixed strategy beyond cycle-
inconsistency-based sample weighting, which is given as follows:

ws
i = G(Tt→s(Ts→t(F (xs

i ))))[y
s
i ] + λwe

s
iG(Ts→t(F (xs

i )))[y
s
i ], (3)

where λw is a trade-off hyperparameter and the entropy-aware weight esi = 1 +
exp{−E(G(Ts→t(F (xs

i ))))} indicates the classification confidence of the trans-
formed feature Ts→t(F (xs

i )). By using Eq. (3), our method considers the in-
consistency in both cycle transformations and source-to-target transformations
when the classifier is confident in its predictions, which contributes to more
accurate sample weight assignment.
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3.3 Prototype-based Cross-Domain Feature Transformation

In previous sections, we have introduced the cycle transformation consisting of
two cross-domain feature transformations, which are implemented by searching
the most similar sample across domains in the whole feature space. However,
such an exhaustive searching process is too time-consuming and not practical
for training. In addition, the exhaustive searching process will introduce noise
into cross-domain feature transformations, especially when classes have large
intra-class variation in feature space. For example, if a sample belongs to a class
with large intra-class variation in feature space, its feature may fall close to
the classification boundary (or even be misclassified). Therefore, for a sample of
shared classes, the large variation improves the probability of finding a sample
of another category in the cross-domain similar sample search. In ideal cases,
the adopted transformation functions keep the categories of samples in shared
classes. Besides, for samples of shared classes, variation between the original and
cycle-transformed features is permitted if the category is not altered.

To this end, we propose an efficient and accurate cross-domain feature trans-
formation method based on domain prototypes (dynamically updated) [62, 64,
37]. Specifically, to abstract the dataset, we obtain |Cs| and K domain proto-
types in the source and target domains by class-wise feature mean and K-means
clustering, respectively. Considering hyperparameter tuning in practice, we set
K = |Cs| as the number of target classes is unknown. The sets of prototypes in

the source and target domains are denoted by {csk}
|Cs|
k=1 and {ctk}Kk=1, respectively.

Given the domain prototypes, we conduct cross-domain feature transformations
by using the most similar prototypes across domains, which fall away from the
classification boundaries. And, the cost of one feature transformation comes from
calculating sample similarity at the feature level for only |Cs|/K times. Therefore,
we reduce the computation cost of the exhaustive search and the noise induced
by the large intra-class variation. Furthermore, to improve the representation
power of transformed features, we propose cross-domain feature transformation
functions based on soft nearest neighbor [16, 57, 12] as follows:

Ts→t(z
s) =

K∑
k=1

esim(zs,ct
k)∑K

l=1 e
sim(zs,ct

l)
ctk, Tt→s(z

t) =

|Cs|∑
k=1

esim(zt,cs
k)∑|Cs|

l=1 e
sim(zt,cs

l )
csk, (4)

where zs/zt denotes a feature vector in the source/target domain, and sim(·, ·)
is a function measuring the similarity between features. In our experiments,
we adopt the negative square Euclidean distance as the similarity function for
cross-domain feature transformations, i.e., sim(zs, ctk) = −∥zs − ctk∥22.

In each training iteration, domain prototypes are updated using on-the-fly
features in the current batch. Specifically, the updating rules are given as follows:

csk ← λmcsk + λ̄m

∑B
i=1 δ(y

s
i = k)xs

i∑B
i=1 δ(y

s
i = k)

, ctk ← λmctk + λ̄m

∑B
j=1 δ(ŷ

t
j = k)xt

j∑B
j=1 δ(ŷ

t
j = k)

, (5)

where λ̄m = 1−λm, ysi is the ground-truth label, ŷtj = argmaxKk=1 sim(F (xt
j), c

t
k)

indicates the cluster assignment, B is the batch size, and λm is the momentum
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hyperparameter controlling the update rate. δ(condition) is the indicator func-
tion, i.e., δ(condition) = 1 if the condition is satisfied and δ(condition) = 0
otherwise. We do not update the prototypes absent in the current batch.

As discussed in previous works [62], classes will distribute in radial pattern
in feature space, as the model is trained with a linear layer on top of the feature
extractor and cross-entropy losses. Accordingly, the large intra-class variation
in feature space negatively affects the source-to-target feature transformations
and clustering in the target domain. Therefore, we adopt center losses within
individual domains to reduce the intra-class variation, which are given as follows:

Lctr(θf ) =
1

2ns

∑ns

i=1
∥F (xs

i )− csys
i
∥22 +

1

2nt

∑nt

j=1
∥F (xt

j)− ctŷt
j
∥22. (6)

By applying Eq. (6), each sample will be pushed closer to the corresponding
prototype (i.e., the ground-truth one in the source domain or the nearest one
in the target domain) and classes will tend to distribute in sphere pattern in
feature space. As a result, the center losses improve the compactness of classes
and thus improve the accuracy of cross-domain feature transformations.

By cooperating the cycle-inconsistency-based weighting scheme with center
losses, the overall objective of the proposed weighted adversarial learning method
is given as follows:

min
θf ,θg

max
θd
Lw
cls(θf , θg)− λadvLw

adv(θf , θd) + λctrLctr(θf ), (7)

where λadv and λctr are trade-off hyperparameters. The above minimax game is
implemented by Gradient Reversal Layer [15], and the network parameters and
domain prototypes are optimized in an alternating manner.

4 Experiment

4.1 Setups

- Datasets.We use three benchmark datasets in our experiments, namely Office-
31, Office-Home and VisDA-2017. Office-31 [51] is a small-sized standard domain
adaptation benchmark which consists of three domains, namely Amazon (A),
DSLR (D) and Webcam (W). It contains 31 categories of objects in office set-
ting, and the 10 categories shared with Caltech-256 [19] are taken as the target
categories. Office-Home [61] is a medium-sized benchmark which consists of four
domains, namely Artistic images (A), Clip Art (C), Product images (P), and
Real-World images (R). It contains 65 categories of objects in office and home
settings, and the first 25 categories (in alphabetical order) are taken as the
target categories. VisDA-2017 [49] is a challenging large-scale dataset consist-
ing of real (Re.) and synthetic (Sy.) images of 12 object categories, where the
first 6 categories (in alphabetical order) are taken as the target categories. On
VisDA-2017, we use center crop (rather than random crop) for training follow-
ing previous works. There are 6, 12 and 2 transfer settings in these datasets,
respectively. Classification accuracy (ACC) is used for evaluation.
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Table 1. Comparison with the state-of-the-art methods on Office-31 and VisDA-2017
in terms of ACC (%). † indicates existing weighted adversarial learning methods for
PDA. * indicates that the source-only model is used as initialization. The best result
is marked as bold red, and the second best result is marked as italic blue.

Method
Office-31 VisDa-2017

A→D A→W D→A D→W W→A W→D Avg. Re.→Sy. Sy.→Re. Avg.

ResNet-50 [22] 83.44 75.59 83.92 96.27 84.97 98.09 87.05 64.30 45.30 54.80
ADDA [59] 83.41 75.67 83.62 95.38 84.25 99.85 87.03 - - -

CDAN+E [43] 77.07 80.51 93.58 98.98 91.65 98.09 89.98 - - -
RTN [44] 66.90 75.30 85.60 97.10 85.70 98.30 84.80 72.90 50.00 61.45

†PADA [5] 89.17 88.70 94.61 99.77 95.79 100.00 94.67 69.46 62.76 66.11
†SAN [4] 94.27 93.90 94.15 99.32 88.73 99.36 94.96 69.70 49.90 59.80

†IWAN [72] 88.54 89.94 93.84 99.77 94.75 99.36 94.37 78.18 63.87 71.02
†ETN [6] 95.03 94.52 96.21 100.00 94.64 100.00 96.73 69.69 63.99 66.84

†MWPDA [25] 95.12 96.61 95.02 100.00 95.51 100.00 97.05 - - -

SSPDA [2] 90.87 91.52 90.61 92.88 94.36 98.94 93.20 - - -
DRCN [35] 86.00 88.05 95.60 100.00 95.80 100.00 94.30 73.20 58.20 65.70
RTNet [8] 97.60 96.20 92.30 100.00 95.40 100.00 96.90 - - -

BA3US [39] 99.36 98.98 94.82 100.00 94.99 98.73 97.81 - - -
DPDAN [26] 96.82 96.27 96.35 100.00 95.62 100.00 97.51 - 65.26 -
A2KT [29] 96.79 97.28 96.13 100.00 96.14 100.00 97.72 - - -

AdvRew [20] 91.72 97.63 95.62 100.00 95.30 100.00 96.71 - - -

Source-only 76.86 74.46 86.60 97.97 86.71 98.94 86.92 63.13 51.90 57.51
*DANN (baseline) [15] 59.24 56.84 70.22 82.60 86.19 90.45 74.25 50.09 44.02 47.05

†*PADA [5] 89.17 95.03 94.82 99.77 95.69 99.79 95.71 65.84 58.12 61.98
†*IWAN [72] 86.84 91.30 94.02 100.00 94.82 99.79 94.46 73.47 57.79 65.63
†*ETN [6] 84.71 87.23 94.08 98.76 94.57 98.73 93.01 67.42 60.87 64.15

Ours 96.82 99.66 96.14 100.00 96.56 100.00 98.19 86.50 69.75 78.13

- Existing methods. In our experiments, we compare the proposed method
with both standard UDA and state-of-the-art PDA methods. Among existing
PDA methods, we pay close attention to the methods based on weighted adver-
sarial learning, which adopt different weighting schemes (e.g., PADA [5] based
on label predictor, IWAN [72] based on auxiliary domain discriminator). Apart
from weighted adversarial learning methods, we also compare with PDA methods
of other types, e.g., RTNet [8], BA3US [39], DPDAN [26].
- Implementation details. We adopt ResNet-50 [22] pre-trained on ImageNet
[11] as the backbone and add a bottleneck layer of dimension 256 between the
backbone and classification layer. All network parameters are optimized using
mini-batch SGD with batch size of 36, momentum of 0.9 and weight decay of
0.001. The learning rates of the bottleneck layer, classification layer and domain
discriminator are 10 times that of the backbone, which are set as 0.001 initially
and adjusted following the rules in previous works [15, 43]. By default, the hy-
perparameters are set as λe = 0.1, λadv = 1, λctr = 0.2 and λm = 0.99. For the
mixed strategy, λw = 1 and esi is normalized within each batch. We initialize our
model by the source-only model. On Office-Home, we adopt the source center
loss after the source-only pre-training for one epoch. We normalize the sample
weights in a batch of size B by ws

i ← Bws
i /

∑B
i=1 w

s
i following the previous

works [72, 6].

4.2 Results

- Comparison with the state-of-the-arts. Tables 1 and 2 summarize the re-
sults on Office-31, Office-Home and VisDA-2017. Overall, the proposed method
outperforms the state-of-the-art methods on all the three datasets, and Ours ob-
tains the best or second best performance on most transfer settings. On VisDA-
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Table 2. Comparison with the state-of-the-art methods and ablation study on Office-
Home in terms of ACC (%). † indicates existing weighted adversarial learning methods
for PDA. * indicates that the source-only model is used as initialization. The best
result is marked as bold red, and the second best result is marked as italic blue.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ResNet-50 [22] 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
ADDA [59] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82

CDAN+E [43] 47.52 65.91 75.65 57.07 54.12 63.42 59.60 44.30 72.39 66.02 49.91 72.80 60.73
SAFN [65] 58.93 76.25 81.42 70.43 72.97 77.78 72.36 55.34 80.40 75.81 60.42 79.92 71.83

†PADA [5] 49.31 71.95 82.09 57.73 58.86 65.03 67.03 41.87 83.60 79.55 52.12 84.37 66.13
†SAN [4] 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30

†IWAN [72] 59.28 74.49 82.99 61.40 64.43 70.96 68.93 53.49 83.78 78.30 59.60 80.73 69.87
†ETN [6] 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45

†MWPDA [25] 55.39 77.53 81.27 57.08 61.03 62.33 68.74 56.42 86.67 76.70 57.67 80.06 68.41

SSPDA [2] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
DRCN [35] 54.00 76.40 83.00 62.10 64.50 71.00 70.80 49.80 80.50 77.50 59.10 79.90 69.00
RTNet [8] 63.20 80.10 80.70 66.70 69.30 77.20 71.60 53.90 84.60 77.40 57.90 85.50 72.30

BA3US [39] 60.62 83.16 88.39 71.75 72.79 83.40 75.45 61.59 86.53 79.25 62.80 86.05 75.98
DPDAN [26] 59.40 - 79.04 - - - - - 81.79 76.77 58.67 82.18 -
A2KT [29] 62.54 83.92 86.69 65.44 74.96 75.04 67.40 55.14 84.37 73.25 60.51 84.09 72.78

AdvRew [20] 62.13 79.22 89.12 73.92 75.57 84.37 78.42 61.91 87.85 82.19 65.37 85.27 77.11

Source-only 46.45 69.04 79.79 57.45 58.04 65.54 59.35 38.23 76.31 69.76 45.27 76.06 61.77
*DANN (baseline) [15] 47.22 58.71 71.67 48.45 44.50 54.74 53.38 40.48 69.57 63.09 47.74 71.02 55.88

†*PADA [5] 49.97 70.78 82.18 59.44 59.35 66.91 68.84 44.78 83.42 78.70 55.02 84.33 66.98
†*IWAN [72] 59.34 81.49 85.64 68.07 71.75 74.51 71.84 57.15 83.86 77.32 62.37 83.16 73.04
†*ETN [6] 52.78 70.84 78.29 69.54 69.76 73.37 63.12 50.10 74.47 75.18 55.07 79.23 67.65

Ours-Cycle w/o Lctr 62.45 84.71 89.18 76.40 75.57 77.75 77.04 59.70 86.86 82.37 62.87 85.77 76.72
Ours-Cycle 62.51 85.71 90.17 74.75 75.57 82.66 77.96 62.87 86.36 84.76 63.76 85.60 77.72

Ours-Cycle-Hard 64.84 84.99 90.72 75.30 75.69 82.83 77.23 63.10 85.42 80.62 63.64 84.87 77.44
Ours-Src2Trg 60.48 85.66 89.23 73.92 72.89 79.85 80.72 56.72 88.57 80.26 62.75 84.99 76.33
Ours (Full) 61.73 86.89 90.50 77.23 76.86 83.77 79.61 63.82 88.46 85.03 65.79 86.22 78.83

Oracle 69.19 82.75 88.99 75.94 76.88 83.99 77.29 66.19 90.06 84.14 74.33 91.04 80.07

2017, our method obtains significant improvement over the state-of-the-arts, i.e.,
8.32% on Re.→Sy. and 4.49% on Sy.→Re., respectively. In addition, Ours out-
performs all existing weighted adversarial learning methods (marked by †, e.g.,
PADA [5], IWAN [72], etc.), which demonstrates the superiority of the proposed
cycle-inconsistency-based sample weighting scheme. We also make a compari-
son with weighted adversarial learning methods using the source-only model as
initialization (i.e., *PADA, *IWAN and *ETN). Although such an initializa-
tion brings performance improvement in some cases (e.g., *IWAN vs. IWAN on
Office-Home), our method still outperforms them, which demonstrates that our
performance improvement does not come from the initialization.

- Ablation study. On Office-Home, we conduct an in-depth analysis of our
model components. We first compare the source-only model with DANN [15], a
classical UDA method based on adversarial learning. Although using source-only
models as initialization, DANN obtains worse performance, which is caused by
negative transfer. By introducing the proposed cycle-inconsistency-based weight-
ing scheme, our method (Ours-Cycle w/o Lctr) obtains significant performance
improvement over the source-only model. The result demonstrates the effective-
ness of the proposed cycle-inconsistency-based weighting scheme, which miti-
gates negative transfer. By further introducing center losses, Ours-Cycle obtains
higher performance, which attributes to the reduction of intra-class variation.
By using the vanilla nearest neighbor (prototype) search for cross-domain fea-
ture transformations, Ours-Cycle-Hard obtains slightly lower performance com-
pared with that using the soft nearest neighbor (Ours-Cycle), which is because
that the soft-nearest-neighbor-based transformations improve the representation
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Fig. 3. Quantitative analysis of our method and existing weighted adversarial learning
methods based on mean sample weights and validation ACCs during training on the
A→C setting of Office-Home. Best viewed in color.

power of transformed features. If we cancel the cycle-back operation in the cycle-
inconsistency-based weighting scheme (Ours-Src2Trg), the performance drops
(e.g., A→C, P→C), which demonstrates the effectiveness of cycle inconsistency
modeling. This is because the model has weak classification power in the target
domain at the early stages of training, resulting in inaccurate weight assign-
ment. Furthermore, by adopting the mixed strategy, Ours (Full) obtains further
improvement since it considers the inconsistency in both cycle transformations
and source-to-target transformations. Also, we report the results of the oracle
method (Oracle) as the upper bound, i.e., an ideal weighted adversarial learning
method which assigns sample weights according to the ground-truth. Compared
with all existing methods, our performance is the closest to that of Oracle.

- Analysis of sample weights. Fig. 3 shows variation curves of the mean
sample weight of our method during training on the A→C setting of Office-
Home (the blue curves). Overall, our method assigns large weights to samples
of shared classes and small weights to samples of outlier classes. At the begin-
ning of training, the sample weights of shared classes are moderate (about 0.5)
and the sample weights of outlier classes are small (about 0.1). As the training
goes, the sample weights of shared classes gradually increase (from 0.5 to 0.8)
while the sample weights of outlier classes keep stably low, and the validation
ACC gradually increases as the shared classes across domains gradually align.
Also, we compare our method with existing weighted adversarial learning meth-
ods, and we report the results of the oracle method (Oracle) as the upper bound.
From the figure, we find that our method assigns much more accurate weights to
samples compared with existing methods (i.e., *PADA, *IWAN, *ETN). Specif-
ically, our method assigns much higher weights to samples in shared classes and
assigns relatively lower weights (with respect to shared weights) to samples in
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Fig. 4. Feature distribution by t-SNE of the (a) source-only model and (b) our model
on VisDA-2017. The triangle and star markers denote the source and target samples,
and different colors denote different categories. For better visualization, we only show
the shared classes. Best viewed in color.

outlier classes. As a result, our method obtains higher validation ACC. Besides,
our method performs closely with Oracle in terms of mean sample weights and
obtains the closest performance to the upper bound compared with others.

- Feature distribution visualization. Fig. 4 shows the feature distribution
by t-SNE [45]. From Fig. 4a, we find that the source-only model can discrimi-
nate target samples of different classes to some extent. However, the source-only
model does not align the shared classes in the source and target domains and
confuse the target samples from different classes at the central area. By contrast,
as shown in Fig. 4b, our model aligns the two domains well and the classification
boundaries are much clearer in the target domain.

5 Conclusion

To address unsupervised partial domain adaptation, in this work, we propose
a weighted adversarial learning method with a novel sample weighting scheme.
Our method exploits the cycle inconsistency, i.e., category discrepancy between
original and cycle-transformed features, to distinguish outlier classes from shared
classes in the source domain. Accordingly, our method filters out the source sam-
ples of outlier classes and aligns shared classes across domains iteratively. With
such a filter-and-align manner, our method gradually learns accurate cycle trans-
formation functions based on feature similarity. Extensive experiments demon-
strate the effectiveness of our method. In the future, we will explore properties of
the feature space in more practical settings, e.g., universal domain adaptation.
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