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This material provides additional analysis and results that have been omit-
ted due to the page limit. Section A presents in-depth analysis of LAMDA,
including detailed component analysis (Sec. A.1), computational complexity
(Sec. A.2), LAMDA with various UDA methods (Sec. A.3), t-SNE visualiza-
tion (Sec. A.4), and the component analysis of our sampling strategy (Sec. A.5).
Section B demonstrates more results, including comparison with SSDA methods
(Sec. B.1), comparison with cosine classifier (Sec. B.2), and more results of Do-
mainNet (Sec. B.3). Finally, the configuration of our DANN [2] (Sec. C.1) and
implementation details of ADA methods (Sec. C.2) are provided in Section C.

A Further analysis of LAMDA

A.1 Component analysis for each adaptation scenarios

Table a1-a2 quantifies the impact of each component of LAMDA, in every do-
main adaptation scenario of the two datasets. Every component in LAMDA
generally improves the performance of each domain adaptation scenario. Com-
paring the second and the third rows of Table a2, one can see the remarkable
performance gain by our label distribution matching strategy since it alleviates
the significant label distribution shift of OfficeHome-RSUT. Additionally, Our
random sampling baseline incorporating DANN achieves 86.7% on VisDA-2017
and 51.3% on DomainNet.

A.2 Computational complexity of LAMDA

In Table a3, we compare the computational complexity and computation time
per round of LAMDA and previous ADA methods. The computation time is
measured on Intel(R) Xeon(R) Gold 6240 CPU. While the computational com-
plexity of LAMDA exhibits quadratic growth regarding the target dataset’s size,
it is significantly faster than CLUE [9] and S3VAADA [10], even on the large
scale Clipart dataset of DomainNet consists of 30K images. This is because
the calculation for our sampling consists of simple matrix multiplication, which
can be computed efficiently in parallel. LAMDA achieves the best performance
among the previous arts with a reasonable sampling time.

⋆ Co-corresponding authors
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Table a1. Component analysis of LAMDA measured by accuracy (%) using 10%-
budget for each source-target domain pair of four domains of OfficeHome: Art, Clipart,
Product, and Real. We evaluate from ablation baseline at the last row to LAMDA at
the first row by sequentially adding three components: (i) Prototype: prototype set sam-
pling (o/w, sampling uniformly at random); (ii) Matching: label distribution matching
(o/w, replacing pi in Eq. (9)-(10) with uniform distribution); and (iii) Cosine: cosine
classifier (o/w, linear classifier). The ablation baseline is equipped with DANN [2]. The
accuracy is a mean of three runs, and the subscript denotes standard deviation.

Prototype Matching Cosine
OfficeHome

A ) C A ) P A ) R C ) A C ) P C ) R P ) A P ) C P ) R R ) A R ) C R ) P Avg

✓ ✓ ✓ 75.4 88.5 85.9 73.3 88.7 83.8 75.2 75.3 87.1 80.9 77.8 91.8 82.0±0.1

✓ ✓ ✗ 74.0 87.8 85.4 69.4 85.6 81.7 71.5 74.2 86.0 78.1 76.3 91.8 80.2±0.4

✓ ✗ ✗ 69.6 82.7 82.8 64.6 84.2 78.4 66.3 72.1 84.9 74.8 74.1 91.3 77.1±0.0

✗ ✗ ✗ 65.2 77.4 79.1 61.3 77.5 73.9 65.6 68.0 81.2 73.7 69.4 84.6 73.1±0.2

Table a2. Component analysis of LAMDA measured by accuracy (%) using 10%-
budget for each source-target domain pair of three domains of OfficeHome-RSUT:
Clipart, Product, and Real. We evaluate from ablation baseline at the last row to
LAMDA at the first row by sequentially adding three components: (i) Prototype: pro-
totype set sampling (o/w, sampling uniformly at random); (ii) Matching: label distri-
bution matching (o/w, replacing pi in Eq. (9)-(10) with uniform distribution); and (iii)
Cosine: cosine classifier (o/w, linear classifier). The ablation baseline is equipped with
DANN [2]. The accuracy is a mean of three runs, and the subscript denotes standard
deviation.

Prototype Matching Cosine
OfficeHome-RSUT

C ) P C ) R P ) C P ) R R ) C R ) P Avg

✓ ✓ ✓ 82.0 74.9 60.8 81.5 65.4 85.9 75.1±0.8

✓ ✓ ✗ 79.2 72.6 61.3 81.0 62.7 86.2 73.8±0.4

✓ ✗ ✗ 70.5 64.6 52.8 75.7 53.8 79.6 66.2±1.0

✗ ✗ ✗ 64.2 60.1 52.0 73.7 54.6 73.6 63.1±0.9

Table a3. Computational complexity and computation time (seconds and minutes) per
round on two source-target domain pairs: Art to Clipart of OfficeHome and Clipart to
Sketch of DomainNet, where nT is the size of the target dataset, t is the number of
clustering iterations, B is the budget, d is the dimension of embedding, and nP is the
size of the prototype set. The query time is measured at the first round when 2% of
the target dataset is actively sampled. (†): Sampling of S3VAADA[10] requires a large
computation cost of network forward and backward pass proportional to nT, since it
adversarially perturbs each sample to measure uncertainty.
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Fig. a1. Accuracy versus the percent of labeled target instances as budget, when each
method is equipped with MME [11]. The accuracies are measured on the source-target
domain pair of two domains of OfficeHome: Clipart and Product; and OfficeHome-
RSUT: Clipart and Real). w/o COS: Ours without cosine classifier.

A.3 Combine LAMDA with other DA methods

In Fig. a1, we compare the performance of LAMDA with with CLUE [9] varying
budget, when equipped with MME [11], on source-target domain pair of Of-
ficeHome: Clipart and Product; and OfficeHome-RSUT: Clipart and Real. We
follow the training protocol of CLUE, where at each round, the model is pro-
vided with the budget and is trained for 20 epochs with MME loss. While CLUE
is specialized with MME, the result shows that LAMDA constantly outperforms
CLUE in all four domain adaptation scenarios. The performance gap between
LAMDA and CLUE increases as the budget increases. In Table a4, we compare
the performance of ADA methods coupled with MCC [4], the state-of-the art
UDA method, when using 10%-budget; the cosine classifier is not used in this
comparison to verify the generalization of our sampling strategy. While MCC
increases the overall performance of ADA methods, LAMDA still shows the best
performance among them. This result demonstrates that LAMDA can signifi-
cantly improve the performance regardless of adaptation technique by using the
budget effectively for label distribution matching and supervised learning.

Table a4. Accuracy (%) of ADA methods coupled with MMC [4] on OfficeHome using
10%-budget for each source-target pair of four domains: Art, Clipart, Product, and
Real. w/o COS: Ours without cosine classifier

DA method AL method
OfficeHome

A ) C A ) P A ) R C ) A C ) P C ) R P ) A P ) C P ) R R ) A R ) C R ) P Avg

MCC [4]

TQS[1] 70.9 91.4 87.8 74.2 90.1 84.6 74.4 72.8 87.3 78.7 75.6 92.7 81.7

CLUE[9] 77.3 91.1 87.7 74.3 90.6 85.4 74.7 77.2 87.2 81.3 78.4 93.1 83.2

S3VAADA[10] 71.3 89.1 87.7 74.2 87.5 85.5 74.9 71.8 86.3 81.3 76.2 92.4 81.5

Ours w/o COS 76.9 90.2 89.0 76.7 91.5 86.8 77.8 77.4 88.5 83.5 78.5 93.5 84.2
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Fig. a2. t-SNE [8] visualization of target feature vectors from source pre-trained model
on OfficeHome Real to Art scenario. The feature vector of the selected samples from
each method are colored red. GT class: target feature vectors colored by ground-truth
class labels.

A.4 t-SNE visualization

In Fig. a2, we visualize the target feature vectors selected by LAMDA and the
previous ADA methods from the source pre-trained model. When the feature
vectors are clustered, LAMDA selects a comparably large number of prototypes
within the cluster to reflect its density (Fig. a2a), which provides a better es-
timation of target statistics as in Fig. 4. In the clustered region, most proto-
types are pseudo labeled since there tend to include easy samples (GT class in
Fig. a2). While for the unclustered region, the prototypes are labeled by an or-
acle (Fig. a2a), providing ground-truth supervision to the uncertain prototypes.
This allows us to mainly invest a budget on uncertain samples while utilizing
density-aware samples to estimate the target label distribution.

On the other hand, the selected samples of the previous methods less pre-
serve the density of the target data as they avoid selecting easy samples within
the clustered regions. Even though CLUE [9] and S3VAADA [10] select part of
the samples within the clustered region, they do not reflect the density of the
cluster. Since CLUE and S3VAADA spend part of their budgets in the clustered
regions, they cannot select samples as many as LAMDA in the unclustered re-
gions (Fig. a2c and Fig. a2d). Oppositely, while TQS [1] selects samples as many
as LAMDA within the unclustered region, it ignores samples in the clustered
region (Fig. a2b).
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A.5 Detailed component analysis of prototype set sampling

Table a5 quantifies the contribution of each components of our sampling strat-
egy: (i) Subset sampling using MMD measure; (ii) Preventing labeling of the
easy prototypes; and (iii) Utilizing the pseudo-labeled prototypes for the label
distribution estimation. Every component of our sampling strategy improves the
performance for every adaptation scenario in OfficeHome. The performance gap
between the last (random sampling with DANN [2]) and the second last rows ver-
ifies that our distribution-aware sampling boosts the effect of supervised learning.
Comparing the second and the third rows, one can see the performance gain by
considering uncertainty for the sampling. The performance gap between the first
and the second rows shows utilizing the pseudo-labeled prototypes improves the
quality of the label distribution estimation.

Table a5. Component analysis of prototype set sampling measured by accuracy (%)
using 10%-budget for each source-target domain pair of four domains of OfficeHome:
Art, Clipart, Product, and Real. We evaluate from ablation baseline at the last row
to our sampling strategy at the first row by sequentially adding three components: (i)
Density: Sampling with MMD (o/w, sampling uniformly at random); (ii) Uncertainty:
only label uncertain prototypes using the top-2 margin (o/w, using ∆ = 1 in Algo-
rithm 1; and (iii) Pseudo label: utilizing the pseudo-labeled prototypes for the label
distribution estimation (o/w, ignoring the pseudo labeled prototypes in Eq. (7)). The
ablation baseline is equipped with DANN [2].

Density Uncertainty Pseudo label
OfficeHome

A ) C A ) P A ) R C ) A C ) P C ) R P ) A P ) C P ) R R ) A R ) C R ) P Avg

✓ ✓ ✓ 75.4 88.5 85.9 73.3 88.7 83.8 75.2 75.3 87.1 80.9 77.8 91.8 82.0

✓ ✓ ✗ 72.5 87.3 84.1 73.2 87.6 81.3 74.0 73.6 84.8 78.7 76.0 90.6 80.3

✓ ✗ ✗ 69.4 84.1 82.6 71.0 83.5 79.6 71.6 70.4 83.9 77.2 73.9 88.0 77.9

✗ ✗ ✗ 66.1 76.7 79.2 62.2 76.1 73.6 66.1 70.3 82.1 72.9 71.3 83.1 73.3

(a) OfficeHome (b) OfficeHome-RSUT

Fig. a3. The ratio (%) of the pseudo-labeled prototypes among all the prototypes and
the precision (%) of the pseudo-labeled prototypes, along with different threshold ∆.
The score is averaged over all scenarios of OfficeHome and OfficeHome-RSUT.
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A.6 The ratio of the pseudo-labeled prototypes

In Fig. a3, we measure the ratio of the pseudo-labeled prototypes among all
the prototypes with different threshold values. As shown in Fig. a3, a consider-
able amount of prototypes is pseudo-labeled. When ∆ increases, the portion of
pseudo-labeled prototypes decreases, while their precision increases.

B More results

B.1 Comparison with SOTA semi-supervised DA method

Semi-Supervised Domain Adaptation (SSDA) is a label-efficient domain adap-
tation task that allows a small amount of labeled data per class (i.e., k-shot
per class) in the target domain. While SSDA and ADA are similar in that both
utilize a small amount of labeled target data for domain adaptation, the focus
of their methods is slightly different. While ADA methods focus on sampling
the most performance-profitable data, SSDA methods focus on effective training
strategies to utilize the few labeled target data.

In Table a6-a7, we compare LAMDA with state-of-the-art SSDAmethods [6,7]
using a 10%-budget for the source-target domain pair of OfficeHome and OfficeHome-
RSUT. LAMDA surpasses previous arts of both ADA and SSDA in every setting
of the datasets. The performance of state-of-the-art SSDA methods is often as
competitive as or even outperforms the previous ADA methods, Thus, combining
the training strategy of SSDA with ADA methods would boost the performance
of ADA.

B.2 Previous methods equipped with cosine classifier

In Fig. a4, we combine the cosine classifier with the existing approaches and
compare their performance with that of LAMDA varying budget for each of
OfficeHome and OfficeHome-RSUT datasets. hods with 10%-budget. LAMDA

Table a6. Comparison with state-of-the-art Semi-Supervised Domain Adaptation
(SSDA) methods [6,7] measured by accuracy (%) when using 10%-budget for each
source-target domain pair of four domains of OfficeHome: Art, Clipart, Product, and
Real. (†): Since ECACL requires the same number of labels for each class, we randomly
sample the same number of instances within each class.

Task Method
OfficeHome

A ) C A ) P A ) R C ) A C ) P C ) R P ) A P ) C P ) R R ) A R ) C R ) P Avg

SSDA
ECACL† [7] 72.2 86.7 82.8 70.5 85.0 82.6 70.9 71.5 82.9 76.0 74.0 88.9 78.7
CDAC [6] 69.5 83.2 80.2 66.9 82.4 78.7 66.1 70.6 80.9 72.3 70.5 87.2 75.7

ADA

TQS [1] 64.3 84.8 83.5 66.1 81.0 76.7 66.5 61.4 82.0 73.7 65.9 88.5 74.5
CLUE [9] 62.1 80.6 73.9 55.2 76.4 75.4 53.9 62.1 80.7 67.5 63.0 88.1 69.9

S3VAADA [10] 67.8 83.9 82.9 67.0 81.4 79.5 65.8 65.9 82.4 74.8 68.6 87.9 75.7
Ours 74.8 88.5 86.9 73.8 88.2 83.3 74.6 75.5 86.9 80.8 77.8 91.7 81.9
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Fig. a4. Accuracy versus the percent of labeled target instances as budget, when each
method is equipped with DANN [2] and cosine classifier. The accuracies are averaged on
all scenarios of the OfficeHome and OfficeHome-RSUT. W/ COS: with cosine classifier.

constantly outperforms the previous arts in every setting on both datasets, where
it with 6%-budget is often as competitive as or even surpasses the previous meth-
ods with 10%-budget. The performance gap between LAMDA and other methods
increases as the budget increases (Fig. a4a), indicating that LAMDA effectively
utilizes the budget in label distribution matching and supervised learning.

B.3 Evaluation on DomainNet

In Fig. a5, we compare the performance of LAMDA and the existing methods
varying budget for two source-target domain pairs: Art to Product and Product
to Clipart of DomainNet. LAMDA clearly outperforms the previous arts for the
two domain adaptation settings, which demonstrates the scalability of LAMDA
in the large-scale datasets. In particular, LAMDA with only 2%-budget is often

Table a7. Comparison with state-of-the-art Semi-Supervised Domain Adaptation
(SSDA) methods [6,7] measured by accuracy (%) when using 10%-budget for each
source-target domain pair of three domains of OfficeHome-RSUT: Clipart, Product,
and Real. (†): Since ECACL requires the same number of labels for each class, we
randomly sample the same number of instances within each class.

Task Method
OfficeHome-RSUT

C ) P C ) R P ) C P ) R R ) C R ) P Avg

SSDA
ECACL† [7] 78.6 68.6 59.5 77.1 61.9 82.0 71.3
CDAC [6] 73.0 58.7 55.8 73.3 50.3 77.3 64.7

ADA

TQS [1] 69.4 65.7 53.0 76.3 53.1 81.1 66.4
CLUE [9] 69.7 65.9 57.1 73.4 59.5 82.7 68.1

S3VAADA [10] 73.0 63.0 50.7 69.6 52.6 78.3 64.5
Ours 81.2 75.7 64.1 81.6 65.1 87.2 75.8
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Fig. a5. Accuracy versus the percent of labeled target instances as budget for two
source-target domain pair of DomainNet: (a) Real to Clipart, (b) Clipart to Sketch.

as competitive as or even outperforms the previous methods with a 10%-budget.

C Experiment details

C.1 Configuration of DANN

We adopt the implementation of DANN [2] from [5] and follow its default con-
figurations. The discriminator consists of three fully connected layers of 1024,
where each hidden layer is followed by batch normalization layer [3] and ReLU.
We utilize Gradient Reverse Layer (GRL) for adversarial learning, where the
coefficient λ of GRL is scheduled with λ(s) = 2

1+exp(−s) , where s denotes the

training progress that scales from 0 to 1. We use the same DANN configuration
and training schedule when combining previous ADA methods with DANN.

C.2 Implementation details of previous ADA methods

We evaluate the previous ADA methods based on the official implementations
of TQS1 [1], CLUE2 [9], and S3VAADA3 [10]. We fit their implementations into
our evaluation protocol with minimal modifications. We change the architecture
of CLUE from ResNet34 into ResNet50, and we add missing parts of TQS im-
plementation to make the code follow the original paper. When training each
method, we use hyper-parameter values stated in each original paper, and if not
stated, we tune them using the validation set.

1 https://github.com/thuml/Transferable-Query-Selection
2 https://github.com/virajprabhu/CLUE
3 https://github.com/val-iisc/s3vaada
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