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Abstract. 3D LiDAR semantic segmentation is fundamental for au-
tonomous driving. Several Unsupervised Domain Adaptation (UDA)
methods for point cloud data have been recently proposed to improve
model generalization for different sensors and environments. Researchers
working on UDA problems in the image domain have shown that sam-
ple mixing can mitigate domain shift. We propose a new approach of
sample mixing for point cloud UDA, namely Compositional Semantic
Mix (CoSMix), the first UDA approach for point cloud segmentation
based on sample mixing. CoSMix consists of a two-branch symmetric
network that can process labelled synthetic data (source) and real-world
unlabelled point clouds (target) concurrently. Each branch operates on
one domain by mixing selected pieces of data from the other one, and
by using the semantic information derived from source labels and target
pseudo-labels. We evaluate CoSMix on two large-scale datasets, showing
that it outperforms state-of-the-art methods by a large margin.5

Keywords: Unsupervised domain adaptation, point clouds, semantic
segmentation, LiDAR.

1 Introduction

Point cloud semantic segmentation is the problem of assigning a finite set of
semantic labels to a set of 3D points [6,42]. When deep learning-based approaches
are employed to perform this task, large-scale datasets with point-level anno-
tations are required to learn accurate models [3, 4, 20]. This implies a costly
and cumbersome data collection procedure, as point clouds need to be captured
in the real world and manually annotated. An alternative is to use synthetic
data, which can be conveniently generated with simulators [8]. However, deep
neural networks are known to underpeform when trained and tested on data from
different domains, due to domain shift [7]. Although significant effort has been
invested to design simulators that can reproduce the acquisition sensor with high
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Fig. 1: CoSMix applied to source and target data. Given (labelled) source and
(pseudo-labelled) target data, we select domain-specific patches with semantic
information to be mixed across domains. The resulting mixed data are a com-
positional semantic mix between the two domains, mixing source supervision in
the target domain and target self-supervision (object and scene structure) in the
source domain. Augmentations are applied at both local and global levels.

fidelity, further research is still needed to neutralize the domain shift between
real and synthetic domains [32].

Unsupervised Domain Adaptation (UDA) for semantic segmentation has been
widely studied for image data [9,25,28,44,45], however less attention has been paid
to adaptation techniques for point clouds. Approaches to address synthetic-to-real
UDA for point clouds can operate in the input space [32,41] by using dropout
rendering [41], or in the feature space through feature alignment [30], or can use
adversarial networks [32]. In the last few years, data augmentation approaches
based on mixing of training samples and their labels, such as Mixup [38] or
CutMix [36], have been proposed to promote generalization. These techniques
can be used for image classification [36,38], image recognition [17,33], and 2D
semantic segmentation [9,25]. A few works proposed to exploit sample mixing for
point cloud data [5,19,39,43], but they are formulated for supervised applications.
We argue that the major challenge in extending 2D mix-based UDA approaches
to point clouds lies in the application of these to geometric signals rather than
photometric signals, e.g., the weighted alpha blending performed of labels in
2D [36,38] is still unclear how to extend it to 3D.

In this paper, we propose a novel UDA framework for 3D LiDAR segmentation,
named CoSMix, which can mitigate the domain shift by creating two new
intermediate domains of composite point clouds obtained by applying a novel
mixing strategy at input level (Fig. 1). Our framework is based on a two-branch
symmetric deep network structure that processes synthetic labelled point clouds
(source) and real-world unlabelled point clouds (target). Each branch is associated
to a domain, i.e., on the source branch, a given source point cloud is mixed with
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parts of a target point cloud and vice versa for the target branch. The mixing
operation is implemented as a composition operation, which is similar to the
concatenation operation proposed in [5, 19,43], but unlike them, we account for
the semantic information from source labels and target pseudo-labels to apply
data augmentation both at local and global semantic level. An additional key
difference is the teacher-student learning scheme that we introduce to improve
pseudo-label accuracy and, thus, point cloud composition. We extensively evaluate
our approach on recent and large scale segmentation benchmarks, i.e., considering
SynLiDAR [32] as source dataset, and SemanticPOSS [20] and SemanticKITTI [3]
as target. Our results show that CoSMix successfully alleviates the domain shift
and outperforms state-of-the-art methods. We also perform an in-depth analysis
of CoSMix and an ablation study on each component, highlighting its strengths
and discussing its main limitations. To the best of our knowledge, this is the first
work to have proposed a sample mixing scheme for adaptation in the context of
3D point cloud segmentation.

Our main contributions can be summarised as follows:

– We introduce a novel scheme for mixing point clouds by leveraging semantic
information and data augmentation.

– We show that the proposed mixing strategy can be used for reducing the
domain shift and design CoSMix, the first UDA method for 3D LiDAR
semantic segmentation based on point cloud mixing.

– We conduct extensive experiments on two challenging synthetic-to-real 3D
LiDAR semantic segmentation benchmarks demonstrating the effectiveness
of CoSMix, which outperforms state-of-the-art methods.

2 Related works

Point cloud semantic segmentation. Point cloud segmentation can be per-
formed by using PointNet [21] that is based on a series of multilayer perceptrons.
PointNet++ [22] improves PointNet by leveraging point aggregations performed
at neighbourhood level and multi-scale sampling to encode both local features and
global features. RandLA-Net [13] extends PoinNet++ [22] by embedding local
spatial encoding, random sampling and attentive pooling. These methods are
computationally inefficient when large-scale point clouds are processed. Recent
segmentation methods have improved the computational efficiency by projecting
3D points on 2D representations or by using 3D quantization approaches. The for-
mer includes 2D projection based approaches that use 2D range maps and exploit
standard 2D architectures [24] to segment these maps prior to a re-projection in
the 3D space. RangeNet++ [18], SqueezeSeg networks [29,30], 3D-MiniNet [2]
and PolarNet [40] are examples of these approaches. Although these approaches
are efficient, they tend to loose information when the input data are projected in
2D and re-projected in 3D. The latter includes 3D quantization-based approaches
that discretize the input point cloud into a 3D discrete representations and
that employ 3D convolutions [37] or 3D sparse convolutions [6, 12] to predict
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per-point classes. In this category, we find methods such as VoxelNet [37], Spar-
seConv [11,12], MinkowskiNet [6] and, Cylinder3D [42]. In our work, we use the
MinkowskiNet [6] which provides a trade off between accuracy and efficiency.

Unsupervised domain adaptation for point cloud segmentation. Unsu-
pervised Domain Adaptation (UDA) for point cloud segmentation can be used
in the case of real-to-real [15,16,35] and synthetic to real scenarios [29,30,41].
Real-to-real adaptation can be used when a deep network is trained with data
of real-world scenes captured with a LiDAR sensors and then tested on un-
seen scenes captured with a different LiDAR sensor [16, 35]. Therein, domain
adaptation can be formulated as a 3D surface completion task [35] or by trans-
ferring the sensor pattern of the target domain to the source domain through ray
casting [16]. Synthetic-to-real domain adaptation can be used when the source
data are acquired with a simulated LiDAR sensor [8] and the target data are
obtained with a real LiDAR sensor. In this case, domain shift occurs due to
differences in (i) sampling noise, (ii) structure of the environment and (iii) class
distributions [30, 41]. Attention models can be used to aggregate contextual
information [29,30] and geodesic correlation alignment with progressive domain
calibration can be adopted to improve domain adaptation [30]. In [41], real
dropout noise is simulated on synthetic data through a generative adversarial
network. Similarly, in [32] domain shift is disentangled into appearance difference
and sparsity difference and a generative network is applied to mitigate each
difference. In our work, we do not use a learning-based approach to perturb
the input data, but we formulate a novel compositional semantic point cloud
mixing approach that enables the deep network to improve its performance on
the unlabelled target domain self-supervisedly.

Sample Mixing for UDA. Deep neural networks often exhibit undesired
behaviours such as memorization and overfitting. To alleviate this problem,
mixing strategies [36, 38] train a network on additional data derived from the
convex combination of paired samples and labels, which are obtained either
mixing the whole samples [38] or cutting and pasting their patches [36]. Mixing
strategies showed their effectiveness also in reducing domain shift in UDA for
image classification [31,33] and semantic segmentation [9, 25, 34]. In DACS [25],
mixed samples are created by mixing pairs of images from different domains by
using source ground-truth annotations pasted on pseudo-labelled target images.
In DSP [9], authors adopt a strategy that prioritize the selection of long-tail
classes from the source domain images, and to paste their corresponding image
patches on other source images and on target images. The first point cloud
mixing strategies [5,19,39] showed that point cloud pairs and their point-level
annotations can be mixed for improving accuracy in semantic segmentation [19]
and classification [5,39]. Zou et al. [43] propose to use Mix3D [19] as a pretext
task for classification by predicting the rotation angle of mixed pairs. Apply
mixing strategy to address UDA in 3D semantic segmentation has not been
previously investigated. We fill this gap by introducing a novel compositional
semantic mixing strategy that goes beyond the standard concatenation of two
point clouds [19,39] or of randomly selected crops [39].
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Fig. 2: Block diagram of CoSMix. In the top branch, the input source point cloud
X s is mixed with the target point cloud X t obtaining X t→s. In the bottom
branch, the input target point cloud X t is mixed with the source point cloud
X s obtaining X s→t. A teacher-student learning architecture is used to improve
pseudo-label accuracy while adapting over target domain. Semantic Selection (f
and g) selects subsets of points (patches) to be mixed based on the source labels

Ys and target pseudo-labels Ŷt information. Compositional Mix applies local h
and global r augmentations and mixes the selected patches among domains.

3 Our approach

CoSMix implements a teacher-student learning scheme that exploits the super-
vision from the source domain and the self-supervision from the target domain
to improve the semantic segmentation on the target domain. Our method is
trained on two different mixed point cloud sets. The first is the composition of
the source point cloud with pseudo-labelled pieces, or patches, of the target point
cloud. Target patches bring the target modality in the source domain pulling
the source domain closer to the target domain. The second is the composition of
the target point cloud with randomly selected patches of the source point cloud.
Source patches pull the target domain closer to the source domain, preventing
overfitting from noisy pseudo-labels. The teacher-student network enables the
iterative improvement of pseudo labels, progressively reducing the domain gap.

Fig. 2 shows the block diagram of CoSMix. Let S = {(X s,Ys)} be the source
dataset that is composed of Ns = |S| labelled point clouds, where X s is a point
cloud and Ys is its point-level labels, and |.| is the cardinality of a set. Labels
take values from a set of semantic classes C = {c}, where c is a semantic class.
Let T = {X t} be the target dataset composed of N t = |T | unlabelled point
clouds. On the top branch, the source point cloud X s is mixed with selected
patches of the target point cloud X t. The target patches are subsets of points
that correspond to the most confident pseudo-labels Ŷt that the teacher network
produces during training. On the bottom branch, the target point cloud X t is
mixed with the selected patches of the source point cloud X s. The source patches



6 C. Saltori et al.

are subsets of points that are randomly selected based on their class frequency
distribution in the training set. Let X t→s be the mixed point cloud obtained
from the top branch, and X s→t be the mixed point cloud obtained from the
bottom branch. We define the branch that mixes target point cloud patches to
the source point cloud as t → s and the branch that does the vice versa as s → t.
Lastly, let Φθ and Φθ′ be the student and teacher deep networks with learnable
parameters θ and θ′, respectively.

We explain how the semantic selection operates on the source and target
point clouds in Sec. 3.1. We detail the modules in charge of mixing the point
clouds coming from the different domains in Sec. 3.2. Then, we describe how the
teacher network is updated during training and the loss functions that we use to
train the student networks in Sec. 3.3.

3.1 Semantic selection

In order to train the student networks with balanced data, we select reliable and
informative point cloud patches prior to mixing points and labels across domains.
A point cloud patch corresponds to a subset of points of the same semantic class.
To select patches from the source point cloud, we rely on the class frequency
distribution by counting the number of points for each semantic class within
S. Unlike DSP [9], we do not select long-tail classes in advance, but we instead
exploit the source distribution and the semantic classes available to dynamically
sample classes at each iteration.

We define the class frequency distribution of S as P s
Y and create a function

f that randomly selects a subset of classes based on the labels Ỹs ⊂ Ys for
supervision at each iteration. The likelihood that f selects a class c is inversely
proportional to its class frequency in S. Specifically,

Ỹs = f(Ys, 1− P s
Y , α), (1)

where α is an hyperparameter that regulates the ratio of selected classes for each
point cloud. For example, by setting α = 0.5, the algorithm will select a number
of patches corresponding to the 50% of the classes available by sampling them
based on their class frequency distribution, i.e., long-tailed classes will have a
higher likelihood to be selected. We define the set of points that correspond to
Ỹs as X̃ s, and a patch as the set of points X̃ s

c ⊂ X̃ s that belong to class c ∈ C.
To select patches from the target point clouds, we apply the same set of

operations but using the pseudo-labels produced by the teacher network based
on their prediction confidence. Specifically, we define a function g that selects
reliable pseudo-labels based on their confidence value. The selected pseudo-labels
are defined as

Ỹt = g(Φθ′(X t), ζ), (2)

where Φθ′ is the teacher network, ζ is the confidence threshold used by the
function g and Ỹt ⊂ Ŷt. We define the set of points that correspond to Ỹt as X̃ t.
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3.2 Compositional mix

The goal of our compositional mixing module is to create mixed point clouds
based on the selected semantic patches. The compositional mix involves three
consecutive operations: local random augmentation, patches are augmented ran-
domly and independently from each other; concatenation, the augmented patches
are concatenated to the point cloud of the other domain to create the mixed
point cloud; global random augmentation, the mixed point cloud is randomly
augmented. This module is applied twice, once for the t → s branch (top of
Fig. 2), where target patches are mixed within the source point cloud, and once
for the s → t branch (bottom of Fig. 2), where source patches are mixed within
the target point cloud. Unlike Mix3D [19], our mixing strategy embeds data
augmentation at local level and global level.

In the s → t branch, we apply the local random augmentation h to all the
points X̃ s

c ⊂ X̃ s. We repeat this operation for all c ∈ Ỹs. Note that h is a random
augmentation that produces a different result each time it is applied to a set of
points. Therefore, we define the result of this operation as

h(X̃ s) =
{
h(X̃ s

c ),∀c ∈ Ỹs
}
. (3)

Then, we concatenate h(X̃ s) with the source point cloud and apply the global
random augmentation. Their respective labels are concatenated accordingly, such
as

X s→t = r(h(X̃ s) ∪ X t), Ys→t = Ỹs ∪ Yt, (4)

where r is the global augmentation function. The same operations are also
performed in the t → s branch by mixing target patches within the source point
cloud. Instead of using source labels, we use the teacher network’s pseudo-labels
obtained from the target data and concatenate them with the labels of the source
data. This results in X t→s and Yt→s.

3.3 Network update

We leverage the teacher-student learning scheme to facilitate the transfer of
knowledge acquired during the course of the training with mixed domains. We
use the teacher network Φθ′ to produce target pseudo-labels Ŷt for the student
network Φθ, and train Φθ to segment target point clouds by using the mixed point
clouds X s→t and X t→s based on their mixed labels and pseudo-labels (Sec. 3.2).

At each batch iteration, we update the student parameters Φθ to minimize a
total objective loss Ltot defined as

Ltot = Ls→t + Lt→s, (5)

where Ls→t and Lt→s are the s → t and t → s branch losses, respectively. Given
X s→t and Ys→t, we define the segmentation loss for the s → t branch as

Ls→t = Lseg(Φθ(X s→t),Ys→t), (6)
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the objective of which is to minimize the segmentation error over X s→t, thus
learning to segment source patches in the target domain. Similarly, given X t→s

and Yt→s, we define the segmentation loss for the t → s branch as

Lt→s = Lseg(Φθ(X t→s),Yt→s), (7)

whose objective is to minimize the segmentation error over X t→s where target
patches are composed with source data. We implement Lseg as the Dice segmen-
tation loss [14], which we found effective for the segmentation of large-scale point
clouds as it can cope with long-tail classes well.

Lastly, we update the teacher parameters θ′ every γ iterations following the
exponential moving average (EMA) [9] approach

θ′i = βθ′i−1 + (1− β)θ, (8)

where i indicates the training iteration and β is a smoothing coefficient hyper-
paramenter.

4 Experiments

We evaluate our method in the synthetic-to-real UDA scenario for LiDAR segmen-
tation. We use the SynLiDAR dataset [32] as (synthetic) source domain, and the
SemanticKITTI [1,3,10] and SemanticPOSS [20] datasets as (real) target domains
(more details in Sec. 4.1). We describe CoSMix implementation in Sec. 4.2. We
compare CoSMix with five state-of-the-art UDA methods: two general purpose
adaptation methods (ADDA [26], Ent-Min [27]), one image segmentation method
(ST [45]) and, two point cloud segmentation methods (PCT [32], ST-PCT [32])
(Sec. 4.3). Like [32], we compare CoSMix against methods working on 3D point
clouds for synthetic to real, such as PCT [32] and ST-PCT [32]. These are the
only two state-of-the-art methods for synthetic-to-real UDA that use 360◦ LiDAR
point clouds. Results of baselines are taken from [32].

4.1 Datasets and metrics

SynLiDAR [32] is a large-scale synthetic dataset that is captured with the Unreal
Engine [8]. It is composed of 198,396 LiDAR scans with point-level segmentation
annotations over 32 semantic classes. We follow the authors’ instructions [32],
and use 19,840 point clouds for training and 1,976 point clouds for validation.
SemanticPOSS [20] consists of 2,988 real-world scans with point-level annota-
tions over 14 semantic classes. Based on the official benchmark guidelines [20],
we use the sequence 03 for validation and the remaining sequences for training.
SemanticKITTI [3] is a large-scale segmentation dataset consisting of LiDAR
acquisitions of the popular KITTI dataset [1, 10]. It is composed of 43,552 scans
captured in Karlsruhe (Germany) and point-level annotations over 19 semantic
classes. Based on the official protocol [3], we use sequence 08 for validation and
the remaining sequences for training.
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Class mapping. Like [32], we make source and target labels compatible across our
datasets, i.e., SynLiDAR → SemanticPOSS and SynLiDAR → SemanticKITTI.
We map SynLiDAR labels into 14 segmentation classes for SynLiDAR → Seman-
ticPOSS and 19 segmentation classes for SynLiDAR → SemanticKITTI [32].
Metrics. We follow the typical evaluation protocol for UDA in 3D semantic
segmentation [32] and evaluate the segmentation performance before and after
adaptation. We compute the Intersection over the Union (IoU) [23] for each
segmentation class and report the per-class IoU. Then, we average the IoU over
all the segmented classes and report the mean Intersection over the Union (mIoU).

4.2 Implementation details

We implemented CoSMix in PyTorch and run our experiments on 4×NVIDIA
A100 (40GB SXM4). We use MinkowskiNet as our point cloud segmentation
network [6]. For a fair comparison, we use MinkUNet32 as in [32]. We use warm-
up, i.e., our network is pre-trained on the source domain for 10 epochs with Dice
loss [14] starting from randomly initialized weights. During the adaptation step,
we initialize student and teacher networks with the parameters obtained after
warm-up. The warm-up and adaptation stage share the same hyperparameters.
In both the warm-up and adaptation steps, we use Stochastic Gradient Descent
(SGD) with a learning rate of 0.001. We set α by analyzing the long-tailed classes
in the source domain during adaptation. We experimentally found α = 50%
to be a good value in each task. In the target semantic selection function
g, we set ζ such that about 80% of pseudo-labelled points per scene can be
selected. On SynLiDAR→SemanticPOSS, we use a batch size of 12 and perform
adaptation for 10 epochs. We set source semantic selection f with α = 0.5
while target semantic selection g with a confidence threshold ζ = 0.85 (Sec. 3.1).
On SynLiDAR→SemanticKITTI, we use a batch size of 16, adapting for 3
epochs. During source semantic selection f we set α = 0.5 while in target
semantic selection g we use a confidence threshold of ζ = 0.90. We use the same
compositional mix (Sec. 3.2) parameters for both the adaptation directions. We
implement the local augmentation h as rigid rotation around the z-axis, scaling
along all the axes and random point downsampling. We bound rotations between
[−π/2, π/2] and scaling between [0.95, 1.05], and perform random downsampling
for 50% of the patch points. For global augmentation r, we use a rigid rotation,
translation and scaling along all the three axes. We set r parameters to the same
used in [6]. During the network update step (Sec. 3.3), we obtain the teacher
parameters θ′i with β = 0.99 every γ = 1 steps on SynLiDAR→SemanticPOSS
and every γ = 500 steps on SynLiDAR→SemanticKITTI.

4.3 Quantitative comparisons

Tab. 1 and Tab. 2 reports the adaptation results on SynLiDAR→SemanticPOSS,
and on SynLiDAR→SemanticKITTI, respectively. The Source model is the lower
bound of each scenario with 20.7 mIoU on SynLiDAR→SemanticPOSS and 22.2
mIoU on SynLiDAR→SemanticKITTI. We highlight in gray the associated results
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Table 1: Adaptation results on SynLiDAR → SemanticPOSS. Source corresponds
to the model trained on the source synthetic dataset (lower bound in gray).
Results are reported in terms of mean Intersection over the Union (mIoU).

Model pers. rider car trunk plants traf. pole garb. buil. cone. fence bike grou. mIoU

Source 3.7 25.1 12.0 10.8 53.4 0.0 19.4 12.9 49.1 3.1 20.3 0.0 59.6 20.7

ADDA [26] 27.5 35.1 18.8 12.4 53.4 2.8 27.0 12.2 64.7 1.3 6.3 6.8 55.3 24.9
Ent-Min [27] 24.2 32.2 21.4 18.9 61.0 2.5 36.3 8.3 56.7 3.1 5.3 4.8 57.1 25.5
ST [45] 23.5 31.8 22.0 18.9 63.2 1.9 41.6 13.5 58.2 1.0 9.1 6.8 60.3 27.1
PCT [32] 13.0 35.4 13.7 10.2 53.1 1.4 23.8 12.7 52.9 0.8 13.7 1.1 66.2 22.9
ST-PCT [32] 28.9 34.8 27.8 18.6 63.7 4.9 41.0 16.6 64.1 1.6 12.1 6.6 63.9 29.6

CoSMix (Ours) 55.8 51.4 36.2 23.5 71.3 22.5 34.2 28.9 66.2 20.4 24.9 10.6 78.7 40.4

Table 2: Adaptation results on SynLiDAR → SemanticKITTI. Source corresponds
to the model trained on the source synthetic dataset (lower bound in gray). Results
are reported in terms of mean Intersection over the Union (mIoU).

Model c
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Source 42.0 5.0 4.8 0.4 2.5 12.4 43.3 1.8 48.7 4.5 31.0 0.0 18.6 11.5 60.2 30.0 48.3 19.3 3.0 20.4

ADDA [26] 52.5 4.5 11.9 0.3 3.9 9.4 27.9 0.5 52.8 4.9 27.4 0.0 61.0 17.0 57.4 34.5 42.9 23.2 4.5 23.0
Ent-Min [27] 58.3 5.1 14.3 0.3 1.8 14.3 44.5 0.5 50.4 4.3 34.8 0.0 48.3 19.7 67.5 34.8 52.0 33.0 6.1 25.8
ST [45] 62.0 5.0 12.4 1.3 9.2 16.7 44.2 0.4 53.0 2.5 28.4 0.0 57.1 18.7 69.8 35.0 48.7 32.5 6.9 26.5
PCT [32] 53.4 5.4 7.4 0.8 10.9 12.0 43.2 0.3 50.8 3.7 29.4 0.0 48.0 10.4 68.2 33.1 40.0 29.5 6.9 23.9
ST-PCT [32] 70.8 7.3 13.1 1.9 8.4 12.6 44.0 0.6 56.4 4.5 31.8 0.0 66.7 23.7 73.3 34.6 48.4 39.4 11.7 28.9

CoSMix (Ours) 75.1 6.8 29.4 27.1 11.1 22.1 25.0 24.7 79.3 14.9 46.7 0.1 53.4 13.0 67.7 31.4 32.1 37.9 13.4 32.2

in both tables. In SynLiDAR→SemanticPOSS (Tab. 1), CoSMix outperforms
the baselines on all the classes, with the exception of pole where ST achieves
better results. On average, we achieve 40.4 mIoU surpassing ST-PCT by +10.8
mIoU and improving over the Source of +19.7 mIoU. Interestingly, CoSMix
improves also on difficult classes as in the case of person, traffic-sign, cone and,
bike, whose performance were low before adaptation. SemanticKITTI is a more
challenging domain as the validation sequence includes a wide range of different
scenarios with a large number of semantic classes. In SynLiDAR→SemanticKITTI
(Tab. 2), CoSMix improves on all the classes when compared to Source, with
the exception of bicyclist and terrain. We relate this behaviour to the additional
noise introduced by pseudo labels on these classes and in related classes such
as sidewalk. Compared to the other baselines, CoSMix improves on 11 out of
19 classes, with a large margin in the classes car, motorcycle, truck, person,
road, parking and sidewalk. On average, also in this more challenging scenario,
we achieve the new state-of-the-art performance of 32.2 mIoU, outperforming
ST-PCT by +3.3 mIoU and improving over Source of about +11.8 mIoU.

4.4 Qualitative results

We report qualitative examples of the adaptation performance before (source) and
after CoSMix adaptation (ours), and compare them to ground-truth annotations
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source ours gt

Fig. 3: Results on SynLiDAR→SemanticPOSS. Source predictions are often wrong
and mingled in the same region. After adaptation, CoSMix improves segmentation
with homogeneous predictions and correctly assigned classes. The red circles
highlight regions with interesting results.

(gt). Fig. 3 shows the adaptation results on SynLiDAR→SemanticPOSS, while
Fig. 4 show the results on SynLiDAR→SemanticKITTI. Red circles highlight
regions with interesting results. In Fig. 3, improvements are visible in multiple
regions of the examples. Source predictions are often not homogeneous with
completely wrong regions. After adaptation, CoSMix improves segmentation
with more homogeneous regions and correctly assigned classes. In Fig. 4, source
predictions are less sparse but wrong for several spatial regions. After adaptation,
CoSMix allows better and correct predictions. Additional examples can be found
in the Supplementary Material.

5 Ablation study

We perform an ablation study of CoSMix by using the SynLiDAR → Semantic-
POSS setup. We compare our mixing approach with a recent point cloud mixing
strategy [19] by applying it to the synthetic-to-real setting (Sec. 5.2). In Sec. 5.3,
we investigate the importance of confidence threshold in CoSMix.

5.1 Method components

We analyze CoSMix by organizing its components into three groups: mixing
strategies (mix ), augmentations (augs) and other components (others). In the
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source ours gt

Fig. 4: Results on SynLiDAR→SemanticKITTI. Source predictions are often
wrong and mingled in the same region. After adaptation, CoSMix improves
segmentation with homogeneous predictions and correctly assigned classes. The
red circles highlight regions with interesting results.

mix group, we assess the importance of the mixing strategies (t → s and s → t)
used in our compositional mix (Sec. 3.2) after semantic selection. In the augs
group, we assess the importance of the local h and global r augmentations that
are used in the compositional mix (Sec. 3.2). In the others group, we assess
the importance of the mean teacher update (β) (Sec. 3.3) and of the long-tail
weighted sampling f (Sec. 3.1). When the t → s branch is active, also the pseudo-
label filtering g is utilized, while when f is not active, α = 0.5 source classes
are selected randomly. With different combinations of components, we obtain
different versions of CoSMix which we name CoSMix (a-h). The complete version
of our method is named Full, where all the components are activated. The Source
performance (Source) is also added as a reference for the lower bound. See Tab. 3
for the definition of these different versions.

When the t → s branch is used, CoSMix (a) achieves an initial 31.6 mIoU
showing that the t → s branch provides a significant adaptation contribution over
the Source. When we also use the s → t branch and the mean teacher β, CoSMix
(b-d) further improve performance achieving a 35.4 mIoU. By introducing local
and global augmentations in CoSMix (e-h), we can improve performance up to
39.1 mIoU. The best performance of 40.4 mIoU is achieved with CoSMix Full
where all the components are activated.
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Table 3: Ablation study of the CoSMix components: mixing strategy (t → s
and s → t), compositional mix augmentations (local h and global r), mean
teacher update (β) and, weighted class selection in semantic selection (f). Each
combination is named with a different version (a-h). Source performance are
added as lower bound and highlighted in gray to facilitate the reading.

CoSMix mix augs others
version t → s s → t h r β f mIoU

Source - - - - - - 20.7

(a) ✓ 31.6
(b) ✓ ✓ 31.9
(c) ✓ ✓ 35.0
(d) ✓ ✓ ✓ 35.4
(e) ✓ ✓ ✓ ✓ 36.8
(f) ✓ ✓ ✓ ✓ 37.3
(g) ✓ ✓ ✓ ✓ ✓ 39.0
(h) ✓ ✓ ✓ ✓ ✓ 39.1

Full ✓ ✓ ✓ ✓ ✓ ✓ 40.4

5.2 Point Cloud Mix

We compare CoSMix with Mix3D [19] and PointCutMix [39] to show the effec-
tiveness of the different mixing designs. As per our knowledge, Mix3D [19] is the
only mixup strategy designed for 3D semantic segmentation, while PointCutMix
is the only strategy for mixing portions of different point clouds. We implement
Mix3D [19] and PointCutMix [39] based on authors descriptions: we concatenate
point clouds (random crops for PointCutMix) of the two domains, i.e., X s and
X t, as well as their labels and pseudo-labels, i.e., Ys and Ŷt, respectively. CoSMix
double is our two-branch network with sample mixing. For a fair comparison, we
deactivate the weighted sampling and the mean teacher update. We keep local
and global augmentations (h and r) activated.

Fig. 5 shows that Mix3D [19] outperforms the Source model, achieving 28.5
mIoU, while PointCutMix [5] achieves 31.6 mIoU. When we use the t → s
branch alone we can achieve 32.9 mIoU and when we use the s → t branch
alone, CoSMix can further improve the results, achieving 34.8 mIoU. This shows
that the supervision from the source to target is effective for adaptation on the
target domain. When we use the contribution from both branches simultaneously,
CoSMix achieves the best result with 38.9 mIoU.

5.3 Pseudo label filtering

We investigate the robustness of CoSMix to increasingly noisier pseudo-labels
and study the importance of setting the correct confidence threshold ζ for pseudo-
label distillation in g (Sec. 3.1). We repeat the experiments with a confidence
threshold from 0.65 to 0.95 and report the obtained adaptation performance in
Fig. 5. CoSMix is robust to noisy pseudo-labels reaching a 40.2 mIoU with the
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Fig. 5: Comparison of the adaptation performance with (a) different point cloud
mix up strategies and (b) on confidence threshold values. (a) Compared to the
recent mixing strategy Mix3D [19], our mixing strategy and its variations achieve
superior performance. (b) Adaptation results show that ζ should be set such that
to achieve a trade-off between pseudo-label correctness and object completeness.

low threshold of 0.65. The best adaptation performance of 40.4 mIoU is achieved
with a confidence threshold of 0.85. By using a high confidence threshold of 0.95
performance is affected reaching 39.2 mIoU. With this configuration, too few
pseudo-labels are selected to provide an effective contribution for the adaptation.

6 Conclusions

In this paper, we proposed the first UDA method for 3D semantic segmentation
based on a novel 3D point cloud mixing strategy that exploits semantic and
structural information concurrently. We performed an extensive evaluation in
the synthetic-to-real UDA scenario by using large-scale publicly available LiDAR
datasets. Experiments showed that our method outperforms all the compared
state-of-the-art methods by a large margin. Furthermore, in-depth studies high-
lighted the importance of each CoSMix component and that our mixing strategy
is beneficial for solving domain shift in 3D LiDAR segmentation. Future research
directions may include the introduction of self-supervised learning tasks and the
extension of CoSMix to source-free adaptation tasks.
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