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Abstract. While pose estimation is an important computer vision task,
it requires expensive annotation and suffers from domain shift. In this
paper, we investigate the problem of domain adaptive 2D pose estima-
tion that transfers knowledge learned on a synthetic source domain to a
target domain without supervision. While several domain adaptive pose
estimation models have been proposed recently, they are not generic
but only focus on either human pose or animal pose estimation, and
thus their effectiveness is somewhat limited to specific scenarios. In this
work, we propose a unified framework that generalizes well on various
domain adaptive pose estimation problems. We propose to align repre-
sentations using both input-level and output-level cues (pixels and pose
labels, respectively), which facilitates the knowledge transfer from the
source domain to the unlabeled target domain. Our experiments show
that our method achieves state-of-the-art performance under various do-
main shifts. Our method outperforms existing baselines on human pose
estimation by up to 4.5 percent points (pp), hand pose estimation by up
to 7.4 pp, and animal pose estimation by up to 4.8 pp for dogs and 3.3
pp for sheep. These results suggest that our method is able to mitigate
domain shift on diverse tasks and even unseen domains and objects (e.g.,
trained on horse and tested on dog). Our code will be publicly available
at: https://github.com/VisionLearningGroup/UDA_PoseEstimation.

Keywords: Unsupervised Domain Adaptation; Pose Estimation; Semi-
supervised Learning; Transfer Learning

1 Introduction

Recent developments in dense prediction tasks, e.g., semantic segmentation [1,
4, 26, 33] or pose estimation [30, 36, 42], are limited by the difficulty in the ac-
quisition of massive datasets [5, 6, 10, 16] due to the expensiveness as well as the
unreliability that originates from the annotation phase. In addition, these models
often perform poorly under domain shift. In this work, we address the problem
of 2D pose estimation in the unsupervised domain adaptation (UDA) setting.

⋆ Equal Contribution.
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Fig. 1: (a) Top row: An example of high input-level variance in animal pose es-
timation benchmarks (large color and textual differences). Middle and bottom
row: An example of high output-level variance in human and hand pose estima-
tion benchmarks (large pose differences). (b) Visualization of pose estimation
results from baselines, our method and ground-truth (GT). Note that both CC-
SSL and UDA-Animal(UDA-A) are proposed for animal pose estimation, while
RegDA is only validated on hand and human pose estimation tasks. Most base-
line methods suffer from performance degradation when applied to the other
task. In comparison, our unified framework can more accurately estimate poses
of hand, human and animal under various scenarios

The UDA setting allows us to train a pose estimation model with supervision
from synthetic (source) domains, where data and accurate annotations are much
cheaper to acquire, and optimize the model’s performance on an unlabeled real
(target) domain. Nevertheless, the domain gap between source and target do-
mains due to distributional shift greatly undermines the ability of the model to
transfer learned knowledge across different domains. This is a challenge that has
been addressed previously for UDA for classificational tasks [14, 25, 27, 34].

Less attention has been paid to using UDA for regression tasks such as 2D
pose estimation. Existing works are not generic but specifically target human
pose estimation (RegDA [17]) or animal pose estimation (CCSSL [29], UDA-
Animal [23]). A reason for this specialization may be the nature of the particular
datasets used in those benchmarks. Animal datasets typically show large input-
level variance (Fig. 1-(a)top) while human and hand datasets show large output-
level variance (Fig. 1-(a)middle and bottom). Therefore, existing UDA methods
do not generalize well to different objects of interest, for example, training and
testing a human pose estimation model on an animal species or vice versa.

To address the aforementioned problems and keep the framework model-
agnostic, we propose to bridge the domain gap via both input-level and output-
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level adaptations, i.e., alignments across domains in both the input and the
output space of a pose estimation model. In input-level adaptation, we first
translate images through a pre-trained style transfer model [15] that can extract
similar visual features and bridge the gap between domains. In output-level
adaptation, we borrow the architecture of Mean Teacher [8, 37] that enforces
consistency in the output space of a student and a teacher model to generate
reliable pseudo labels and learn from the unlabeled target domain.

As a typical approach for pose estimation, heatmap regression [38] predicts
probabilities of the presence of keypoints in 2D space. However, unlike the output
probabilities from other classification models that represent relative significance
in the output space and sum to 1, the output heatmaps from a pose estimation
model, which learns the task as predicting absolute value, are not normalized.
The learning objectives of the student model, guided by the non-normalized
output from the teacher model, will then be diverted from learning relative sig-
nificance in the heatmap to learning absolute values, which is a more challenging
task as the output space is no longer constrained. Therefore, the stability of the
consistency learning is greatly undermined, and the lack of constraints leads to
a problem we identify as a drift effect. Meanwhile, the drifted output heatmap
also poses challenges while selecting confident guidance from the teacher model
via the confidence thresholding method in Mean Teacher, as it potentially brings
in noise that further deteriorates unsupervised learning. Therefore, we propose
to normalize the output of the teacher model to make the guidance more stable.
Our empirical results demonstrate the importance of this simple yet crucial step
to deploy the Mean Teacher model for regression tasks.

In addition to revising consistency learning for the regression task, we de-
sign differing self-guiding strategies for student and teacher, developed especially
for domain adaptive pose estimation. With style transfer, we generate target-like
images from the source images and train a model to minimize the supervised loss
with source labels. For the target domain, we generate source-like images from
the target images to generate high-quality pseudo-labels from the teacher and
give better guidance to the student model. In addition, in the student branch, we
adaptively apply an occlusion mechanism, which has shown promising effective-
ness especially in pose estimation tasks [7, 19, 43], based on the feedback of the
teacher model. This strengthens the robustness of the pose estimation model.

In experiments we validate the effectiveness and generalization ability of our
method under various scenarios including hand and human pose estimation as
well as animal pose estimation. Our results show significant improvements over
the existing domain adaptive pose estimation baselines by up to 4.5 percent
point (pp) on hand pose, 7.4 pp on human pose estimation, and 4.8 pp for dog
as well as 3.3 pp for sheep on animal pose estimation. Additionally, we present
generalization experiments where we test models on unseen datasets or cate-
gories (i.e., different animals), and verify the generalization capability. Further
sensitivity analysis and ablation studies reveal the relation and interaction be-
tween modules and explain the effectiveness of each component of our unified
framework. To summarize, our contributions in this work include:
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– Unlike prior works, we propose a unified framework for general pose estima-
tion that generalizes well on diverse objects in the pose estimation task.

– We propose a multi-level (i.e., input-level and output-level) alignment method
for domain adaptive pose estimation that can effectively address domain gap
problems in different levels under different scenarios (e.g., Fig. 1-(a)).

– We address the drifting problem in the Mean Teacher paradigm and facilitate
its learning from unlabeled data especially for pose estimation tasks.

– We unified benchmarks from human pose estimation and animal pose esti-
mation in this work and present state-of-the-art performance in general pose
estimation, providing a stronger baseline in this line of research.

2 Related Works

2.1 Pose Estimation

Pose estimation has become an active research topic for years. In this paper, we
focus on 2D pose estimation. Hourglass [30] is one of the dominant approaches
for human pose estimation which applies an encoder-decoder style network with
residual modules and finally generate heatmaps. A mean-squared error loss is
applied between the predicted heatmap and ground-truth heatmap consisting
of a 2D Gaussian centered on the annotated joint location [38]. Xiao et al. [42]
propose a simple baseline model that combines upsampling and deconvolutional
layers without using residual modules. HRNet [36] is proposed to maintain high-
resolution in the model and achieves promising results. In this paper, we adopt
the architecture of the Simple baseline model [42] following [17] to fairly compare
our method with prior domain adaptation algorithms.

2.2 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) aims to bridge the domain gap be-
tween a labeled source domain and unlabeled target domain. Existing domain
adaptation methods utilize adversarial learning [9, 28], minimize feature dis-
tances using MMD [11], optimal transport [2], pixel-level adaptation [13], or
maximum classifier discrepancy [34] for classification. In addition several other
UDA methods have been proposed for dense prediction tasks including semantic
segmentation [14, 25, 39, 44] and depth estimation [21, 22, 32]. Compared to other
visual tasks, domain adaptation for regression tasks are still not well explored.

2.3 Domain Adaptive Pose Estimation

There are two categories in domain adaptation pose estimation: (1) For human
pose estimation, RegDA [17] made changes in MDD [45] for human and hand
pose estimation tasks, which measures discrepancy by estimating false predic-
tions on the target domain. (2) For animal pose estimation, pseudo-labeling
based approaches have been proposed in [23, 29]. Mu et al. [29] proposed in-
variance and equivariance consistency learning with respect to transformations
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Fig. 2: An overview of our unified framework comprising a supervised branch
that learns from source domain data with corresponding annotation, as well
as an unsupervised branch that learns from unlabeled target domain data. We
perform domain alignment both in the input-level via style-transfer with style
references from the opposite domain, and the output-level of the model that
guides the training on the target domain with more reliable pseudo-labels. The
student model is trained by the combination of two losses, while the teacher
model is updated with the exponential moving average weights of the student

as well as temporal consistency learning with a video. Li et al. [23] proposed a
refinement module and a self-feedback loop to obtain reliable pseudo labels. Be-
sides, WS-CDA [3] leverages human pose data and a partially annotated animal
pose dataset to perform semi-supervised domain adaptation. In our experiments,
we observed that (1) and (2) do not work well on the other tasks. A likely cause
could be that each estimation task has different types of domain shifts, as shown
in Fig 1(a). To address this, we propose a unified framework that generalizes
well on diverse tasks by utilizing both input-level and out-level cues.

3 Method

3.1 Preliminaries

Given a labeled pose dataset S = {(xi
s, y

i
s)}Ni=1 in source domain consisting of

N pairs of images xs ∈ RH×W×3 and corresponding annotation heatmap ys ∈
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RK×2 representing the coordinates of K keypoints, as well as an unlabeled pose
dataset T = {xi

t}Mi=1 in target domain consisting of M images xt ∈ RH×W×3,
we aim to learn a 2D pose estimation model h and optimize the performance
on the target domain. Typically, the pose estimation model h is pre-trained on
the source domain dataset in a supervised manner to learn pose estimation from
heatmaps Hs = L(ys), where H ∈ RK×H′×W ′

with the output heatmap size
H ′ and W ′, generated through the heatmap generating function L : RK×2 →
RK×H′×W ′

, with classic MSE loss: Lsup = 1
N

∑
xs∈S ||h(xs)−Hs||2.

3.2 Input-level Alignment via Style Transfer

Different from prior works [13, 14, 40] that adopt adversarial learning, we propose
to perform input-level alignments via style transfer for the sake of efficiency and
simplicity. We borrow notations from AdaIN [15] and follow its settings and
training procedure to extract content features from a content image c and style
feature from a style image s through a pre-trained VGG [35] model f . Formally,
style transfer is performed with a generator g pre-trained as in AdaIN:

T (c, s, α) = g(αt+ (1− α)f(c)) (1)

where t = AdaIN(f(c), f(s)) is the combination of content and style feature
through adaptive instance normalization and α is the content-style trade-off pa-
rameter. Exemplar results are illustrated in the appendix. With a fixed AdaIN
model, we transform source domain images with styles from target domain
xs→t = T (xs, xt, α) and revise the supervised loss above:

Lsup =
1

N

∑
xs∈S

||h(xs→t)−Hs||2 (2)

3.3 Output-level Alignment via Mean Teacher

To better exploit information from the unlabeled target domain, we adopt the
paradigm of Mean Teacher that trains a student pose estimation model hs by
the guidance produced by its self-ensemble, i.e., the teacher pose estimation
model ht in an unsupervised learning branch. The input image for each model
is augmented by A1 and A2 stochastically sampled from data augmentation A.
While the student hs is updated according to the supervised loss in Eq. 2 and
self-guidance from the teacher ht, the weights of the latter are updated as the
estimated moving average of the former.

On the opposite direction to the supervised learning branch that transforms
the source image to the target domain, we also propose to transform the tar-
get domain image back to the direction of the source domain where supervised
learning happens and bridge the domain gap when generating guidance from the
teacher model. Formally, we take a source domain image as the style reference
and generate xt→s = T (A1(xt), xs, α). After that, we pass the transformed image
through the teacher model and get corresponding heatmap Ht = ht(xt→s).
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Fig. 3: Drift effect and its influence to the consistency learning. In the left plot,
the gray curve represents the averaged value of the ground-truth heatmap. We
observe that the averaged activation of teacher’s output (blue curve) gradually
decreases and drift away from the gray curve while minimizing the unsupervised
loss (red curve). This leads to a degradation in accuracy as shown in the right
plot

With the generated guidance heatmap from the teacher model, we still need
to address the drifting effect that brings in instability in the unsupervised learn-
ing, as illustrated in Fig. 3. Technically, we generate pseudo-labels Ĥt = L(ŷt)
with the positions that produce maximum activation ŷt = argmaxp H

:,p
t from

each keypoints of the guidance heatmap to normalize the heatmap. We also re-
vise the typical thresholding mechanism using a fixed value in Mean Teacher
and determine the confidence threshold τconf with the top p%-th values among
maximum activation from each keypoint to exclude noises and further improve
the quality of the self-guidance.

In addition to improving the quality of the teacher’s prediction, we also seek
to challenge the student model by adaptively occluding the input to the student
model according to feedback from the teacher. To be more specific, we mask the
regions where the teacher model makes confident prediction of a keypoint with
activation greater than τocc via an occlusion operation: x̂t = O(A2(xt), τocc),
and let the student to learn robust prediction based on its contextual correlation
with other keypoints from teacher’s pseudo-label after reversing augmentations
Ã1 and Ã2. Overall, the student model hs will be guided by the normalized
heatmap Ĥt via an unsupervised learning loss on keypoints k producing maxi-
mum activation Hk,ŷt

t greater than or euqal to threshold τconf :

Lunsup =
1

M

∑
xt∈T

K∑
k=0

1(Hk,ŷt

t ≥ τconf )||Ã1(Ĥt
k
)− Ã2(h

s(x̂t)
k)||2 (3)

Combining our supervised learning loss from Eq. 2 and unsupervised learning
loss from Eq. 3, we present the illustration for the overall pipeline in Fig. 2 and
the final learning objectives:

L = Lsup + λLunsup (4)
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4 Experiments

To verify the effectiveness and reliability of our method under various pose es-
timation scenarios (hand, human body, animals), we conducted experiments on
benchmark datasets in those domains (Sec. 4.2) and compared our methods with
SOTA baselines (Sec. 4.3). We also evaluated our method on domain generaliza-
tion tasks where we tested our models on unseen domains (i.e., different datasets)
and objects (i.e., different animals) (Sec. 4.4). Finally, we present a sensitivity
analysis on hyper-parameters and ablation studies to analyze the contribution
and interaction between each component in our paradigm (Secs. 4.5 and 4.6).

4.1 Experiment Protocols

We adopted the architecture of Simple Baseline [42] as our pose estimation model
for both hs and ht, with backbone of pre-trained ResNet101 [12]. Following
Simple Baseline and RegDA, we adopted Adam [20] as the optimizer and set
the base learning rate as 1e-4. It decreased to 1e-5 at 45 epochs and 1e-6 at 60
epochs, while the whole training procedure consisted of 70 epochs. The batch size
was set to 32 and there are in total 500 iterations for each epoch. The confidence
thresholding ratio p is 0.5, while the occlusion thresholding value τocc is 0.9. The
momentum η for the update of the teacher model is 0.999 and the unsupervised
learning weight was set to 1 to balance the supervised and unsupervised loss to
a similar level. Also, the model was only trained by the supervised loss on the
source domain for the first 40 epochs. On the basis of augmentation in RegDA,
we added rotation (-30◦, 30◦) and random 2D translation (-5%, 5%) for the
input source and target domain images. Finally, it should be noted that we
used the same hyper-parameters for all experiments, did not tune the number
of training epochs on test sets, and always report the accuracy of models from
the last epoch. As for the architecture and optimization procedure of the style
transfer model, we follow settings in AdaIN, except that we pre-train the model
bidirectionally, i.e., both source and target domain image can be a content or a
style image. Additional details can be found in the appendix.

4.2 Dataset

Rendered Hand Pose Dataset [47] (RHD) provides 44k synthetic hand im-
ages including 41.2k training images and 2.7k test images along with correspond-
ing 21 hand keypoints annotations. Hand-3D-Studio [46] (H3D) is a real-world
multi-view indoor hand pose images dataset with 22k frames. We follow RegDA’s
policy to split 3.2k frames as the test set. FreiHAND [48] includes 44k frames
of real-world multi-vew hand pose images with more varied pose and view points.
It contains 130k training image, and we still follow settings in RegDA to select
32k test images. SURREAL [41] provides more than 6 million synthetic hu-
man body pose images with annotations. Human3.6M [16] contains 3.6 million
frames of real-world indoor human body pose images captured from videos. We
follow protocols in [24] and split 5 subjects (S1, S5, S6, S7, S8) as the training



A Unified Framework for Domain Adaptive Pose Estimation 9

Method MCP PIP DIP Fin All
Source only 67.4 64.2 63.3 54.8 61.8

Oracle 97.7 97.2 95.7 92.5 95.8
CCSSL [29] 81.5 79.9 74.4 64.0 75.1

UDA-Animal [23] 82.3 79.6 72.3 61.5 74.1
RegDA [17] 79.6 74.4 71.2 62.9 72.5

Ours 86.7 84.6 78.9 68.1 79.6

Table 1: Prediction accuracy
PCK@0.05 on RHD→H3D, i.e.,
source dataset is RHD, target
dataset H3D, for four hand parts
and the full hand. Higher values are
better

set and 2 subjects (S9, S11) as test set. Leeds Sports Pose [18] (LSP) is a
real-world outdoor human body pose dataset containing 2k images. Synthetic
Animal Dataset [29] is a synthetic animal pose dataset rendered from CAD
models. The dataset contains 5 animal classes, horse, tiger, sheep, hound, and
elephant, each with 10k images. TigDog Dataset [31] includes 30k frames from
real-world videos of horses and tigers. Animal-Pose Dataset [3] provides 6.1k
real-world images from 5 animals including dog, cat, cow, sheep, and horse.

4.3 Experimental Results

Baselines. We consider the following SOTA baselines: semi-supervised learning
based CCSSL [29], UDA-Animal [23], and RegDA [17] under various adaptation
tasks. For the sake of fair comparison, we re-train CCSSL and UDA-Animal
with the backbone of ResNet-101 as ours, and train CCSSL jointly among all
categories in animal pose estimation tasks. Oracle is the performance of a model
trained jointly with target 2D annotations following previous works
Metrics. We adopt the evaluation metric of Percentage of Correct Keypoint
(PCK) for all experiments and report PCK@0.05 that measures the ratio of
correct prediction within the range of 5% with respect to the image size.
Results on Hand Pose Estimation. First, we present the adaption results on
the hand pose estimation task RHD→H3D on 21 keypoints. We report different
anatomical parts of a hand including metacarpophalangeal (MCP), proximal
interphalangeal (PIP), distal interphalangeal (DIP), and fingertip (Fin). Our
baselines can greatly improve the performance of their pose estimation model on
the target domain (Table 1), while UDA-Animal, which is originally proposed for
animal pose estimation tasks, achieves a performance of 75.1%. In comparison,
our method outperforms all the baseline methods by a noticeable margin of 4.5%
and reaches 79.6%.
Results on Human Body Pose Estimation. As for the adaptation in human
body pose estimation, we measure the performance of all baselines and ours in the
task of SURREAL→Human3.6M and SURREAL→LSP on 16 keypoints on the
human body grouped with different parts, i.e., shoulders, elbow, wrist, hip, knee,
and ankle. RegDA can successfully adapt its model closer to the target domain,
while CCSSL and UDA-Animal, designed for animal pose estimation, fail to
adapt under such scenarios (Table 2). This could probably be because their self-
guidance paradigm is more hyper-parameter sensitive and cannot guarantee to
generalize to other scenarios, including the high out-level variance (i.e., high pose
variance) in human pose estimation. Our method, in contrast, enables effective
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Table 2: PCK@0.05 on SURREAL→Human3.6M and SURREAL→LSP. Sld:
Shoulder, Elb: Elbow

Method
SURREAL→Human3.6M SURREAL→LSP

Sld Elb Wrist Hip Knee Ankle All Sld Elb Wrist Hip Knee Ankle All

Source only 69.4 75.4 66.4 37.9 77.3 77.7 67.3 51.5 65.0 62.9 68.0 68.7 67.4 63.9

Oracle 95.3 91.8 86.9 95.6 94.1 93.6 92.9 - - - - - - -

CCSSL [29] 44.3 68.5 55.2 22.2 62.3 57.8 51.7 36.8 66.3 63.9 59.6 67.3 70.4 60.7

UDA-Animal [23] 51.7 83.1 68.9 17.7 79.4 76.6 62.9 61.4 77.7 75.5 65.8 76.7 78.3 69.2

RegDA [17] 73.3 86.4 72.8 54.8 82.0 84.4 75.6 62.7 76.7 71.1 81.0 80.3 75.3 74.6

Ours 78.1 89.6 81.1 52.6 85.3 87.1 79.0 69.2 84.9 83.3 85.5 84.7 84.3 82.0

and robust unsupervised learning via the heatmap normalization which addresses
the drift effect and therefore ensures the high quality of the self-guidance.

Results on Animal Pose Estimation. We finally compare our method with
the baselines in domain adaptive animal pose estimation under SynAnimal→Tig-
Dog and SynAnimal→AnimalPose as shown in Tables 3 and 4. In SynAni-
mal→TigDog, we follow settings in UDA-Animal and estimate 18 keypoints
from different parts including eye, chin, shoulder, hip, elbow, knee, and hoof
of horse and tiger shared in the Synthetic Animal and the TigDog datasets. In
SynAnimal→AnimalPose, we also perform adaptation on the hound and sheep
categories for 14 keypoint estimation of eye, hoof, knee, and elbow. For a fair
comparison, we run all experiments with the same data augmentation as in
CCSSL and UDA-Animal for all tasks, as these augmentations provide crucial
improvement (see first and second rows in Table 3). The first row in Table 3
represents the reported [23] source-only performance without augmentations;
the second row with augmentation, which, e.g., increases the performance from
32.8% to 71.4% in the horse keypoint estimation (column All).

Among the baseline methods, UDA-Animal achieves the best performance in
estimating a horse’s pose and approaches the oracle performance from a model
trained jointly by the annotated source and target domains. Our method achieves
slightly lower performance in the horse set that is close to the oracle level but
slightly outperforms UDA-Animal in the tiger set.

In despite of the promising results in SynAnimal→TigDog, we observe that
UDA-Animal significantly underperforms than RegDA and ours in the Animal-
Pose dataset from Table 4. This is because SynAnimal→AnimalPose is more
challenging than SynAnimal→TigDog by comparing the accuracy of source only
models (32.2% vs. 71.4%). Even though we can still see improvements from
the source only with augmentations, CCSSL and UDA-Animal face more noisy
pseudo-labels during self-training possibly due to their hyper-parameter sensi-
tivity, so that improvements are marginal. On the contrary, RegDA shows no-
ticeable improvement compared to source only. Our method can handle these
challenging settings via heatmap normalization in pseudo-labeling and obtain
the best performance in these experiments in both categories.
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Table 3: PCK@0.05 on SynAnimal→TigDog. Sld: shoulder, Elb: Elbow. Source
only∗ indicates training on only source domain data with strong augmentation

Method
Horse Tiger

Eye Chin Sld Hip Elb Knee Hoof All Eye Chin Sld Hip Elb Knee Hoof All

Source only 49.3 53.5 31.3 53.5 38.7 28.7 18.3 32.8 42.8 32.1 24.2 51.1 32.6 28.1 32.7 33.2

Source only∗ 87.1 91.4 69.4 76.3 70.1 71.3 61.9 71.4 91.1 86.5 46.5 67.9 44.3 53.1 63.2 60.7

Oracle 92.0 95.8 73.6 90.9 84.4 84.2 79.1 84.1 98.5 97.4 75.1 94.7 74.1 76.0 81.6 82.1

CCSSL [29] 89.3 92.6 69.5 78.1 70.0 73.1 65.0 73.1 94.3 91.3 49.5 70.2 53.9 59.1 70.2 66.7

UDA-Animal [23] 86.9 93.7 76.4 81.9 70.6 79.1 72.6 77.5 98.4 87.2 49.4 74.9 49.8 62.0 73.4 67.7

RegDA [17] 89.2 92.3 70.5 77.5 71.5 72.7 63.2 73.2 93.3 92.8 50.3 67.8 50.2 55.4 60.7 61.8

Ours 91.3 92.5 74.0 74.2 75.8 77.0 66.6 76.4 98.5 96.9 56.2 63.7 52.3 62.8 72.8 67.9

Table 4: PCK@0.05 on SynAnimal→AnimalPose. Source only∗ indicates training
on only source domain data with strong augmentation

Method
Dog Sheep

Eye Hoof Knee Elb All Eye Hoof Knee Elb All

Source only 39.8 22.8 16.5 17.4 22.0 42.6 31.0 28.2 21.4 29.3
Source only∗ 26.6 44.0 30.8 25.1 32.2 53.3 63.0 51.5 32.1 49.6

Oracle 88.8 74.9 57.1 51.1 65.1 88.2 84.9 79.9 59.6 76.9

CCSSL [29] 24.7 37.4 25.4 19.6 27.0 44.3 55.4 43.5 28.5 42.8
UDA-Animal [23] 26.2 39.8 31.6 24.7 31.1 48.2 52.9 49.9 29.7 44.9

RegDA [17] 46.8 54.6 32.9 31.2 40.6 62.8 68.5 57.0 42.4 56.9

Ours 56.1 59.2 38.9 32.7 45.4 61.6 77.4 57.7 44.6 60.2

4.4 Generalization to Unseen Domains and Objects

So far, we have focused on accuracy in a given target domain, but we may face
other types of unseen domains during training in real-world applications. Thus,
we compare the generalization capacity of our method with baselines in a domain
generalization setting where we test models on unseen domains and objects.
Domain Generalization on FreiHAND. For hand pose estimation, we test
models adapted on the RHD→H3D setting with the other real-world hand
dataset FreiHAND (FHD). We compare the accuracy on FHD and measure
how well each method generalizes on the unseen domain FHD. As presented in
Table 5, the test performance on FHD is generally poor compared to the source
only and oracle performance, presumably because of the larger domain gap be-
tween H3D and FHD. It is worth noticing the performance of CCSSL is lower
than the source-only, even if it outperforms that in the RHD→H3D setting by
a large margin, revealing its lack of generalization capacity to the unseen do-
main, probably because of the lack of input-level alignment. On the other hand,
RegDA and our method show better ability to generalize while ours achieves the
best performance under most circumstances.
Domain Generalization on Human3.6M. We test the generalization abil-
ity of a model adapted from SURREAL→LSP on Human3.6M. It should be
noted that LSP contains only 2K images which are very small compared to Hu-
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Table 5: Domain generalization experiments on FreiHand (FHD) and Hu-
man3.6M. We report PCK@0.05. Fin: Fingertip. Sld: shoulder, Elb: Elbow.
Source only indicates training only on RHD or SURREAL while Oracle indi-
cates training only on FHD or Human3.6M

Method
FreiHand Human3.6M

MCP PIP DIP Fin All Sld Elb Wrist Hip Knee Ankle All

Source only 34.9 48.7 52.4 48.5 45.8 51.5 65.0 62.9 68.0 68.7 67.4 63.9
Oracle 92.8 90.3 87.7 78.5 87.2 95.3 91.8 86.9 95.6 94.1 93.6 92.9

CCSSL [29] 34.3 46.3 48.4 44.4 42.6 52.7 76.9 63.1 31.6 75.7 72.9 62.2
UDA-Animal [23] 29.6 46.6 50.0 45.3 42.2 54.4 75.3 62.1 21.6 70.4 69.2 58.8

RegDA [17] 37.8 51.8 53.2 47.5 46.9 76.9 80.2 69.7 52.0 80.3 80.0 73.2

Ours 35.6 52.3 55.4 50.6 47.1 77.0 85.9 73.8 47.6 80.7 80.6 74.3

Table 6: Domain generalization
experiments on AnimalPose. We
report PCK@0.05. Source only
indicates training only on Syn-
thetic Animal

Method Horse Dog Cat Sheep Cow All
Source only 52.2 31.0 14.7 37.5 41.8 33.4
CCSSL [29] 59.8 31.1 16.6 46.4 48.9 37.7

UDA-Animal [23] 63.2 32.4 17.6 48.3 53.0 39.8
RegDA [17] 58.4 34.9 17.4 45.1 46.3 39.0

Ours 61.6 40.7 21.6 50.1 53.5 44.0

man3.6M. Thus, this task is challenging since we use small number of real data
for domain generalization. In Table. 5, we show that our method can generalize
better than the baselines and achieves 74.3% of accuracy. Our accuracy on the
generalization task (74.3%) is also comparable to the baselines performances of
SURREAL→Human3.6M (e.g., RegDA: 75.6), by using only 2k images.
Domain Generalization on AnimalPose. Finally, we evaluate the gener-
alization capacity of models adapted from SynAnimal→TigDog and test it on
Animal Pose Dataset. It should be noted that models are only trained on horse
and tiger images from the Synthetic Animal Dataset and tested on unseen ani-
mals (e.g., dog) in Animal Pose Dataset. Based on the results in Table 6, we can
also witness an obvious improvement of our method above all the baselines and
generalize better on unseen animals from unseen domains.
Qualitative Results. We provide additional qualitative results on generaliza-
tion in Figs. 4. In Fig. 4, it is clear that the baselines proposed for animal pose
estimation do not work well. Our method produces more accurate keypoints
compared to baselines. More qualitative results on animal are available in the
appendix.

4.5 Sensitivity Analysis

To further validate the robustness and generalization capacity of our method,
we conducted sensitivity analysis regarding three major hyper-parameters in our
framework, including the confidence thresholding ratio p, occlusion thresholding
value τocc, the momentum η in Mean Teacher on RHD→H3D. Additionally,
we randomly split a separate validation set with the same size as the test set
from the target domain training data to simulate the hyper-parameter tuning
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CCSSL UDA-Animal RegDA Ours Ground-Truth

Fig. 4: Qualitative results of generalization to unseen domains

(a) Thresholding Ratio (b) Occlusion Threshold (c) Teacher Momentum

Fig. 5: Sensitivity analysis on the thresholding, occlusion ratio, and momentum.
Our method shows stable performance over hyper-parameters

process and avoid directly tuning the test accuracy. Based on the results pre-
sented in Fig. 5, we find that our framework works stably under various settings.
Meanwhile, we also find that the performance gradually decreases when we have
a higher thresholding ratio for pseudo-labels, presumably because it brings in
lower confident predictions as pseudo-labels and that deteriorates the unsuper-
vised learning process. Also, we find that a greater teacher momentum is more
likely to limit the framework to learn actively and harm the performance. More
importantly, we can also learn that the validation accuracy in all experiments
is highly correlated with that on the test sets, which also indicates the general-
ization capacity of our method and the reliability to give indicative clues when
tuning hyper-parameters on a separate validation set.

4.6 Ablation Studies

We perform ablation studies in our framework to test their effectiveness and
interaction with the rest of the framework. This also justify our other motivations
regarding the task and the framework. Experiments are conducted under our
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Table 7: Ablation studies on hand & animal pose estimation. Fin: Fingertip. MT:
Mean Teacher, Norm: Heatmap Normalization, Style: Stylization, Occ: Adapt.
Occlusion

Method
RHD→H3D SynAnimal→TigDog

MCP PIP DIP Fin All Eye Chin Sld Hip Elb Knee Hoof All

MT 83.5 81.2 74.6 67.3 76.9 92.8 89.2 57.7 73.5 61.3 58.6 66.1 67.0
MT + Norm 86.1 84.4 77.2 67.2 78.8 91.9 89.9 59.3 62.7 60.8 67.6 64.1 68.1
MT + Style 84.6 82.5 76.6 66.9 77.6 95.0 93.8 57.8 74.7 63.5 67.4 67.4 70.4

MT + Norm + Style 86.6 84.4 78.3 68.1 79.1 95.9 94.7 65.7 68.2 64.9 71.7 72.3 73.4
MT + Norm + Style + Occ 86.7 84.6 78.9 68.1 79.6 95.7 94.7 64.1 69.0 64.5 70.7 69.8 72.4

major benchmarks including RHD→H3D and SynAnimal→TigDog. Additional
ablation studies can be found in the appendix.

Based on Table 7, our framework can benefit from the heatmap normaliza-
tion (denoted by Norm) that stabilizes the drifting effect and enables effective
unsupervised learning from pseudo-labels via output-level domain alignment.
Nevertheless, experiments on animal adaptation tasks show that such alignment
might not be sufficiently helpful. Instead, more improvements are brought by the
style transfer module, which confirms our reasoning that input-level variance is
the major challenge in this task and can be mitigated by input-level alignments.

Adaptive occlusion can also provide extra focus on learning to detect occluded
keypoints, as we can observe from RHD→H3D. However such improvements
are not reflected in SynAnimal→TigDog. Considering the qualitative results in
Figs. 1, we conjecture that it is because the improvements in detecting occluded
keypoints are not verifiable as their annotations are not available in the real
animal dataset and therefore these predictions are not included in the PCK@0.05
evaluation protocol. More ablation studies are available in the appendix.

5 Conclusion

While existing baselines focus on specific scenarios, we propose a unified frame-
work that can be applied to diverse problems of domain adaptive pose estimation
including hand pose, human body, and animal pose estimation. Considering the
challenges from different types of domain shifts, our method addresses both in-
put and output-level discrepancies across domains and enables a more generic
adaptation paradigm. Extensive experiments demonstrate that our method not
only achieves state-of-the-art performance under various domain adaptation sce-
narios but also exhibits excellent generalization capacity to unseen domains and
objects. We hope our work can unify branches from different directions and pro-
vide a solid baseline for following works in this line of research.
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