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A Implementation Details

A.1 Default Setting

For GCISG, we set balancing hyperparameter λG and λCI to 1. We set λCI to
0.1 to stabilize training when only causal invariance loss LCI was applied to the
framework for ablation study.

L = LTask(x, y) + λGLG(x) + λCILCI(x). (1)

We adopt all pre-trained model weights of ResNet [8] from the PyTorch
official repository3. For all experiments in this paper, we use SGD optimizer of
momentum 0.9 and weight decay 0.0005, constant learning rate scheduling. Our
implementation is based on PyTorch and PytorchLightning [7].

A.2 Semantic Segmentation

We use DeeplabV3 [1] with ResNet-50 backbone for our semantic segmentation
model which is the same as CSG. It is worth noting that CSG corrected their
semantic segmentation model to DeeplabV3 despite they mentioned DeepLabV2
in their original paper4.

When training, we initialize the backbone model with ImageNet pre-trained
weights, while randomizing parameters of the segmentation head. We apply color
jittering of altering brightness, contrast, saturation, and hue of training images
in range (0.6, 1.4) and use multi-scale training of range (0.75, 1.25).

3 https://pytorch.org/vision/stable/models.html
4 https://github.com/NVlabs/CSG/issues/3

https://pytorch.org/vision/stable/models.html
https://github.com/NVlabs/CSG/issues/3
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Table 1. Effect of freezing Batch Normalization lay-
ers during training. ∗ denotes run by us.

Method BN Unfrozen BN Frozen

CSG 63.2* 64.1
GCISG (ours) 67.5 62.8

Table 2. Effect of RandAug-
ment magnitude factor M .

M w/ LG w/o LG

0 65.7 51.4
3 67.8 58.8
6 67.5 58.6
9 67.2 57.8
12 67.0 56.8

A.3 Object Detection

We use Faster R-CNN [11] for our base object detector and ResNet-101 with
FPN [10] as a backbone for object detection experiments, following similar stud-
ies that also conducted experiments on Sim10k to Cityscapes object detection
task [14,4].

When training, we initialize the backbone model with ImageNet pre-trained
weights, while randomizing parameters of FPN and detection head. We follow
the default hyperparameter settings of Faster R-CNN in PyTorch official imple-
mentation, and additionally apply color jittering of altering brightness, contrast,
saturation, and hue of training images in range (0.6, 1.4).

We re-implement CSG for comparing object detection results, since CSG does
not provide object detection experiments. Unlike original CSG implementation5,
we change poly learning rate scheduler to constant learning rate scheduler, and
drop layer-wise learning rate scaling factor, which we have found that they do
not affect the experiment results, to match hyperparameter settings of CSG with
GCISG.

B Additional Ablation Studies

B.1 Batch Normalization

We conduct a study on the effect of freezing weights of Batch Normalization
(BN) layers in the student network during training. We compare the result with
CSG [2] which also follows a similar architecture. As shown in Table 1, our
method shows a significant performance drop of around 4.7% when BN layers
are frozen during training. In contrast, CSG shows a slight performance gain of
around 0.9% when BN layers are frozen.

B.2 Magnitude of Augmentation

We conduct an ablation study on the effect of augmentation magnitude in syn-
to-real generalization by adjusting the global magnitude control factor M of

5 https://github.com/nvlabs/csg

https://github.com/nvlabs/csg
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Table 3. The average precision (AP) of Sim10k to Cityscapes object detection with
various methods, according to target object size. ∗ denotes run by us.

Method APlarge APmedium APsmall

Baseline∗ 45.2 17.8 3.6
CSG∗ 49.2 21.8 4.5
GCISG (ours) 52.9 23.5 5.0

RandAugment [6]. We also conduct the ablation study on removing guidance
loss to identify the effect of the magnitude of augmentation on the generaliza-
tion while causal invariant learning. In Table 2, we observe that moderate level
(M = 3) of augmentation magnitude can improve generalization performance
regardless of the guidance loss. However, in GCISG, we set global magnitude
control factor M to 6 for a fair comparison with CSG.

B.3 Object Detection Results According to Object Size

In Table 3, we report the object detection results on Sim10k to Cityscapes ac-
cording to target object size range following the object detection evaluation met-
ric of COCO6. We observe that GCISG outperforms other competing methods
consistently on every target object size range.

C Detailed Explanations for Evaluation Metrics

C.1 Match Rate

In section 4, we introduce match rate M to measure the style-invariance of a
classifier C. Let Dval be a validation dataset and A be a photometric image
transformation operator that alters the style of an image. For each validation
data x ∈ Dval, we generate a transformed counterpart A(x). Then the match
rate M(C,Dval,A) is defined by the fraction of consistent prediction over the
total number of validation samples:

M(C,Dval,A) =
|Dcon|
|Dval|

, (2)

where Dcon = {x ∈ Dval : C(x) = C(A(x))}. The photometric transform A is
composed of Gaussian blurring with σ ∈ [0.15, 1.3] and color jittering with pa-
rameter range of [0.6, 1.4] for brightness, contrast, saturation, and hue. Similarly,
RobustNet [5] applied photometric transform consisting of random Gaussian
blurring and color jittering to simulate style shift.

6 https://cocodataset.org/#detection-eval

https://cocodataset.org/#detection-eval
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C.2 CKA similarity

The centered kernel alignment (CKA) similarity is a statistical measure that is
invariant to the linear and orthogonal transformation as well as isotropic scaling.
Thus it can effectively quantify the similarity between the two neural represen-
tations [9]. We introduced CKA similarity to measure the similarity between
our synthetic-training model and real-guidance model in section 4. Remark that
the evaluation of the similarities of neural networks with CKA similarity has
also been proposed in various machine learning tasks such as knowledge distil-
lation [13,15].

Let X ∈ Rn×p1 denote a matrix of activations of p1 neurons for n samples,
and Y ∈ Rn×p2 denote a matrix of activations of p2 neurons for the same n
samples. For kernel k and l, let Kij = k(Xi, Xj) and Lij = l(Yi, Yj). Then
the empirical estimator of a Hilbert-Schmidt Independence Criterion (HSIC) is
defined by following:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH), (3)

where Hn = In − 1
n11

⊤. Then the CKA similarity is defined by following:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
. (4)

Note that the linear kernel k(Xi, Xj) = X⊤
i Xj and RBF kernel k(Xi, Xj) =

exp
(
−∥Xi−Xj∥2

2σ2

)
is widely used for computation of CKA similarity. In the main

paper, we report the CKA similarity with the linear kernel. We implemented
CKA similarity computation from 7.

D Visualization of Attention on VisDA-17

In Fig. 1 and Fig. 2, we present visualized attention maps on validation images
using Grad-CAM [12]. In Fig. 1, we compare attention maps of various pooling
methods that were introduced in this paper. Remark that the model trained
with self-attention pooling better captures the semantic object than other pool-
ing methods. Also, in Fig. 2, we compare attention maps according to training
methods: Oracle on ImageNet (freeze backbone and fine-tuning), baseline (train-
ing without any regularization), and our method GCISG. We observe that even
though the backbone is frozen, the Oracle method cannot capture the semantic
region of an image. The baseline method tends to capture a partial semantic
feature of an image, since the synthetic data contain nuisance style variables
that hinder learning the semantics of natural image data. On the other hand,
our method GCISG can effectively spot the semantic objects in an image.

7 https://github.com/jayroxis/CKA-similarity

https://github.com/jayroxis/CKA-similarity
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Fig. 1. Visualized attention of feature according to pooling methods. From left to
right, columns correspond to NP, GAP, CP, SP, SAP. The red area corresponds to
high score for class.

E Additional Information of Experiment Results

In Table 1 and 6 of main paper, we reported results of other methods referring
to ASG [3], CSG [2] and RobustNet [5].
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Fig. 2. Visualized attention of feature according to train methods. From left to right,
columns correspond to Oracle on ImageNet, Baseline, GCISG. The red area corresponds
to high score for class.
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