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A Binning Strategies

A.1 The ratio of features assigned to each bin

In Sec. 3.4 of the main paper, we setmi of each bin to (m1,m2,m3) = (lv− 1
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2 ) for each lv-th level feature to convert the offset value into a categorical

probability vector. Fig. 1 shows the average of the probabilities that the left l
and top t offset values belong to each bin as the training iteration progresses in
the CS → FoggyCS setting at different feature level. Initially, the probability of
the offset value belonging to each bin begins as a uniform distribution so that
( 13 ,
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3 ,
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3 ), and it gradually converges to the average of q̃, the probability vector of

the offset values, during the warm-up period (I iterations). Since mi is not finely
set to make the the ratio of the offset values corresponding to each bin equal,
in the case of F3 and F4, the ratio belonging to the last bin is somewhat high.
However, setting the value of mi as mentioned in the main paper is sufficiently
effective. This is because it is not important to ensure that the proportion of
features belonging to each bin is equal, but important to similarly match the
distribution between the features of the two domains belonging to the same bin.

A.2 Setting of the mi values according to the number of bins

Table 3 of Sec. 4.5 in the main paper compares the effect of conditioning the
feature more strongly or loosely by changing the number of bins. Table 1 specifies
mi values for each Nbin setting at different feature level. We set mi values so
that more than a certain ratio of features can be assigned to each bin.

B Training Details for the Self-Training

We basically follow the details of the method proposed in Liu et. al [2]. Even
though [2] is a work that tackles semi-supervised object detection, its proposed
method is applicable to unsupervised domain adaptation as well since the main
idea is about how to handle the unlabeled data. It suggests how to train the
object detector with the unlabeled data in a self-training manner using the
unbiased teacher network. Only difference in the setting of ours from [2] is that in
[2], the labeled and the unlabeled data are from the same distribution, but in our
case of unsupervised domain adaptation, the unlabeled data are from different
distribution of the labeled data. The idea of [2] is to utilize the unbiased teacher
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Table 1: mi values set according to Nbin and different feature level.

Nbin = 2 Nbin = 3 Nbin = 4 Nbin = 5

Feature Level (m1,m2) (m1,m2,m3) (m1,m2,m3,m4) (m1,m2,m3,m4,m5)

F3 (3.5, 4.5) (2.5, 3.5, 4.5) (2.5, 3.5, 4.5, 5.5) (2.5, 3.5, 4.5, 5.5, 6.5)
F4 (4.5, 5.5) (3.5, 4.5, 5.5) (3.5, 4.5, 5.5, 6.5) (3.5, 4.5, 5.5, 6.5, 7.5)
F5 (5.5, 6.5) (4.5, 5.5, 6.5) (4.5, 5.5, 6.5, 7.5) (4.5, 5.5, 6.5, 7.5, 8.5)
F6 (6.5, 7.5) (5.5, 6.5, 7.5) (4.5, 5.5, 6.5, 7.5) (4.5, 5.5, 6.5, 7.5, 8.5)
F7 (7.5, 8.5) (6.5, 7.5, 8.5) (5.5, 6.5, 7.5, 8.5) (5.5, 6.5, 7.5, 8.5, 9.5)

network to produce the pseudo labels for the unlabeled data. The teacher object
detector has the same architecture as the student but its parameters are not
optimized by gradient descent but are updated by exponential moving average
of the student network, as suggested in Tarvainen et. al [3]. The parameters of
the teacher detector are updated as follows:

θt = αθt + (1− α)θs (1)

where θt and θs represent the parameters of the teacher and the student network,
respectively. α is the EMA rate which decides the percentage of the parameters of
teacher network in the previous time step to be applied to the updated teacher
parameters. The larger the α, the slower the teacher network progresses. We
empirically find that α = 0.9999 works the best in our setting of unsupervised
domain adaptation. Also, the EMA interval indicates the number of iterations
between EMA updates. EMA interval is set differently for each benchmark, for
CS → FoggyCS, it is set to 10, while for KITTI → CS and Sim10k → CS, it is
set to 5 and 1. The smaller the value, the more frequent the EMA updates are.

In [2], the predictions of the teacher network are used as the pseudo labels
of the target domain to train the student network. [2] feeds weakly augmented
unlabeled data into the teacher network and strongly augmented unlabeled data
are fed into the student, by differentiating inputs to the two networks, resulting in
knowledge gaps between the predictions of the teacher and the student networks.
The student tries to narrow this gap by training unlabeled data with pseudo
labels generated by the teacher network. However, in our case, we find that
applying weak augmentation to the inputs of the teacher network unnecessary
and using the original target inputs is effective. For example, when given a target
image, xT , the teacher object detector, ft, predicts a set of bounding boxes.

BT
t = (ŷTi , b̂

T
i )

k

i=1 = ft(x
T ) (2)

ŷi ∈ RC where 0 ≤ ŷi,c ≤ 1 and b̂i ∈ R4 indicates the classification confidence
and the predicted box coordinates (l, t, r, b), respectively. k is the number of
bounding boxes predicted for a given target domain image, xT , in the teacher
detector . Note that T in the superscript refers to the ‘target domain’ and the t
in the subscript refers to the ‘teacher detector’. Then we threshold the predicted
boxes from the teacher detector using the confidence score. Specifically, we set



Title Suppressed Due to Excessive Length 3

a threshold δ and eliminate bounding boxes with the confidence score less then
or equal to δ. Therefore, B′T

t = {(ŷTi , b̂Ti )|maxc(ŷi,c) > δ} ⊂ BT
t . δ is set as 0.5

empirically in all of our experiments. Finally, we use this thresholded bounding
boxes from the teacher network as the pseudo labels of the target domain to
train the student detector. As mentioned earlier, strongly augmented inputs are
fed into the student detector, where the same strong augmentation strategy as
described in [2] is used. The overall loss function to train the student network,
fs, for both the source and the target domain is as follows:

Lstudent = Ldet(x
S , (yS , bS)) + λselfLdet(A(xT ),B′T

t ) (3)

where A refers to the strong augmentation and λself is the weight on the self-
training loss for the target domain. Here, we use λself = 2 since it shows the
best results. While fs is trained by above loss function, on the other hand, the
teacher network is updated via EMA of (1) as explained earlier.

In all of our self-training experiments, the student and the teacher detec-
tors are initialized by the detector that is pre-trained with our proposed OADA
(Offset-Left & Top), so that the ft is able to produce reasonably correct pseudo
labels from the beginning of the training. We report the performance of the
teacher detector since it shows highly improved performance due to the tempo-
ral ensemble effect. We only applied the proposed method of [2] to our problem,
so there is no contribution in terms of novelty, but we consider this experiment
as an important study result because we applied the proposed method to an
anchor-free one-stage detector, FCOS for the first time. Considering that the
method was originally proposed for Faster R-CNN, a two-stage detector, this
experimental results further prove the applicability of the method to other de-
tector architectures and the unsupervised domain adaptation setting.

C Qualitative Results

Fig.2, 3, and 4 are the qualitative results of the SourceOnly, EPM [1] and OADA
methods in CS → FoggyCS, Sim10k → CS, and KITTI → CS benchmarksets,
respectively. As shown in the figure, OADA is able to detect distant objects in
the center better than baseline methods.
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(a) Based on the left offsets in F3 (b) Based on the top offsets in F3

(c) Based on the left offsets in F4 (d) Based on the top offsets in F4

(e) Based on the left offsets in F5 (f) Based on the top offsets in F5

(g) Based on the left offsets in F6 (h) Based on the top offsets in F6

Fig. 1: The ratio of feature allocated to each bin at different feature level as the
iteration progresses during training.
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Fig. 2: Qualitative results of SourceOnly, EPM [1] and OADA in CS → FoggyCS.
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Fig. 3: Qualitative results of SourceOnly, EPM [1] and OADA in Sim10k → CS.
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Fig. 4: Qualitative results of SourceOnly, EPM [1] and OADA in KITTI → CS.
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