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Abstract. Most existing domain adaptive object detection methods ex-
ploit adversarial feature alignment to adapt the model to a new domain.
Recent advances in adversarial feature alignment strives to reduce the
negative effect of alignment, or negative transfer, that occurs because
the distribution of features varies depending on the category of objects.
However, by analyzing the features of the anchor-free one-stage detector,
in this paper, we find that negative transfer may occur because the fea-
ture distribution varies depending on the regression value for the offset
to the bounding box as well as the category. To obtain domain invariance
by addressing this issue, we align the feature conditioned on the offset
value, considering the modality of the feature distribution. With a very
simple and effective conditioning method, we propose OADA (Offset-
Aware Domain Adaptive object detector) that achieves state-of-the-art
performances in various experimental settings. In addition, by analyzing
through singular value decomposition, we find that our model enhances
both discriminability and transferability.

Keywords: Unsupervised Domain Adaptation, Object Detection, Offset-
Aware

1 Introduction

Deep-learning-based object detection has shown successful results by learning
from a large amount of labeled data. However, if the distribution of test data
is significantly different from that of training data, the model performance is
severely impaired. In practice, this performance degradation can be very fatal
because the domains in which the object detection model should operate can be
very diverse. To address this problem, the most effective way is to re-train the
model with a lot of data from the new environment whenever the environment
changes. However, obtaining a large amount of labeled data is a very expen-
sive process, especially in object detection task which requires annotating the
bounding boxes and the classes of objects in an image. Unsupervised Domain
Adaptation (UDA) provides an efficient solution to this domain-shift problem in
a way that it adapts the model to a new environment by training with unlabeled
datasets from the new environment (target domain) as well as rich datasets from
the original environment (source domain). Based on the theoretical analysis of
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(a) According to the classes.
Orange and blue indicate car
and person respectively.

(b) According to the off-
set to the top side of the
GT bounding box (t).

(c) According to the off-
set to the bottom side of
the GT bounding box (b).

Fig. 1: TSNE visualization of the source domain backbone features of a detector
that is trained only on the source domain. Different colors in (a) refer to different
classes while in (b) and (c), the colors represent the distance from a location of a
feature with high classification confidence to the top and bottom of the ground-
truth bounding box respectively. The redder the color, the greater the distance.

[11], aligning the feature distribution of the source and the target domain in an
adversarial manner is one of the most effective ways in various tasks such as
classification [11,41,1,26] and segmentation [27,43,7,6]. A seminal work [5] is the
first to deal with Domain Adaptive Object Detection (DAOD) aligning backbone
features via an adversarial method, and many follow-up studies have continued
in this line of research. Unlike classification and segmentation tasks classifying an
image and each pixel as one category, object detection is a task of classifying the
categories and regressing the bounding box of each foreground object. Focusing
on this difference, many studies further align local features [32] or instance-level
features corresponding to the foreground rather than the background [14,38].

While one-stage detectors such as FCOS [36] and YOLO [28] are more advan-
tageous for real-world environments because of its efficient structures and high
inference speed, most DAOD studies [5,32,15,9,2,37,44] have been conducted on
two-stage detectors, such as Faster R-CNN [29]. They use proposals generated by
Region Proposal Network (RPN) to obtain instance-level features corresponding
to the objects, making it difficult to extend straightforwardly to one-stage de-
tectors that do not rely on RPN. Recently, several DAOD methods specialized
in one-stage detector have been proposed [14,25]. They prevent negative trans-
fer that can occur when a feature is indiscriminately aligned by focusing on a
foreground object or further aligning a feature according to the category of the
object. However, for FCOS, an one-stage detector that estimates offsets from
each point of the feature map to the four sides of a bounding box, the features
differ in distribution not only by categories but also by offsets. Accordingly,
existing feature alignment may not be sufficient to prevent negative transfer.

Fig. 1 shows the TSNE of features corresponding to foreground objects ob-
tained from the backbone of FCOS trained on the Cityscape dataset [8] consisting
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of 8 classes. In Fig. 1a, different colors refer to different classes. Since instances
of Car (orange) and Person (blue) are dominant, the difference in feature dis-
tribution between the Car and the Person is clearly visible. This phenomenon
fits well with the intention of [3,37,45,40,46] which align the feature distribution
of the source and the target domain in a class-wise manner. Fig. 1b and 1c show
the feature distribution in another perspective, the distance to the boundary of
the GT bounding box. In Fig. 1b, color codes are used to measure the offset,
the distance from the feature point to the top side of the bounding box, in the
log scale: the redder, the larger the offset is, while the bluer, the smaller. It
shows that the distribution of the backbone features varies markedly with off-
sets. Comparing Fig. 1a and 1b, even features in the same category have varying
distribution depending on their offset. Since object detection requires bounding
box regression as well as classification, especially in case of FCOS which predicts
the offsets of (left, top, right, bottom) to the four sides of bounding boxes, the
backbone features are not only clustered by categories but also distributed ac-
cording to the offsets. Paying attention to this analysis, we conditionally align
features of the source and the target domains according to their offsets.

Therefore, in this paper, we propose an Offset-Aware Domain Adaptive ob-
ject detection method (OADA) that aligns the features of the source and the tar-
get domain conditional to the offset values to suppress the negative transfer in an
anchor-free one-stage detector such as FCOS. Specifically, to align instance-level
features and obtain reliable offset values, we use label information for the source
domain and classification confidence for the target domain. And then, we con-
vert continuous offsets into categorical probability vectors and get offset-aware
features by outer-producting that probability vectors and backbone features. We
prevent negative transfer that may occur while aligning the features to have the
same marginal distribution by making the offset-aware features domain-invariant
using a domain discriminator. Essentially, this is equivalent to intentionally form-
ing a discriminator embedding space that is roughly partitioned by the offset.
As a result, we can efficiently align features with a single strong discriminator,
opening up new possibilities for offset-aware feature alignment in a very simple
yet effective manner. Our contributions can be summarized as follows:

– We present a domain adaptation method which is specialized for anchor-free
one-stage detector by analyzing the characteristics of it.

– We prevent negative transfer when aligning instance-level features in domain
adaptive object detection by making domain-invariant offset-aware features
in a highly efficient manner.

– We find that our proposed method enhances both discriminability and trans-
ferability by analyzing through singular value decomposition.

– We show the effectiveness of our proposed method (OADA) through ex-
tensive experiments on three widely used domain adaptation benchmarks,
Cityscapes → Foggy Cityscapes and Sim10k, KITTI → Cityscapes and it
achieves state-of-the-art performance in all benchmarks.
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2 Related Works

2.1 Object Detection

Deep-learning-based object detection can be categorized into anchor-based and
anchor-free methods. Anchor-based detectors define various sizes and ratios of
anchors in advance and utilize them to match the output of the detector with
the ground-truth. On the other hand, anchor-free detectors do not utilize any
anchors but rather directly localize objects employing fully convolutional layers.
Moreover, depending on whether region proposal network (RPN) is used or not,
object detectors can also be classified into two-stage and one-stage detectors.
Faster R-CNN [29] is a representative anchor-based two-stage detector while
SSD [22] and YOLO [28] are anchor-based one-stage detectors. There are some
renowned anchor-free one-stage detectors as well. Cornernet [20] and Centernet
[10] localize objects by predicting the keypoints or the center of an object while
FCOS [36] directly computes the offset from each location on the feature map
to the ground-truth bounding box. Most works of DAOD have been conducted
on Faster R-CNN, a two-stage detector and relatively few works have been done
using an anchor-free one-stage detector. There are several works [3,30,18] that
have been conducted on SSD, a representative one-stage anchor-based detector
and only [14,25] carried out domain adaptation using FCOS, an anchor-free one-
stage detector. Our work focuses on boosting the domain adaptation performance
on FCOS [36] leveraging its anchor-free architecture and fast speed.

2.2 UDA for Object Detection

There are three main approaches of UDA for object detection tasks: adversarial
alignment, image translation, and self-training. Image-translation-based meth-
ods translate the source domain images into another domain using a generative
model [19,9,34,2,30,15] to adapt to the target domain. Self-training-based meth-
ods [31,17,9,18,25] generate pseudo-labels for the target domain images with
the model pre-trained on the source domain and re-train the model with the
pseudo labels. For adversarial alignment methods, [5] is a seminal work that
aligns the feature distribution of the source and the target domain using a do-
main discriminator based on the Faster R-CNN [29]. Since then, there have been
studies to align feature distribution at multiple levels [32,13], studies focusing on
the importance of local features in detection, and studies to align instance-level
features that may correspond to objects [39,44,14]. Recently, there have been at-
tempts [3,37,45,40,46] to align the instance-level features in a class-wise manner,
focusing on the fact that the distribution of instance-level features is clustered
by class. Based on our observation that the feature distribution varies depend-
ing on the offset values in FCOS [36] and the detection task requires not only
classification but also regression, we propose an adversarial alignment scheme
with state-of-the-art performances in various experimental settings by aligning
the features in an offset-aware manner.



UDA for One-stage Object Detector using Offsets to Bounding Box 5

Fig. 2: The overall structure of our framework. FS and FT are the lv-th level
features (lv ∈ {3, .., 7}, lv is omitted for simple notation) of the source image
XS and the target image XT , respectively. The overall feature maps FS and FT

are aligned by the global domain discriminator, Dg. To generate a mask Mobj

corresponding to the objects, the GT labels are used for the source domain and
maximum values of class confidence higher than threshold is used for the target
domain. The GT offsets of the source domain and the predicted offsets of the
target domain are converted into probability vector qu,v, and they produce Gu,v

via the outer-product with Fu,v. We use Dleft
c and Dtop

c to align the conditioned
features Gl

u,v and Gt
u,v according to the left and top offsets, respectively.

3 Method

In this section, we describe our method shown in Fig. 2, which aligns instance-
level features between the two domains in an offset-aware manner in detail. Since
our method investigates domain adaptation of a representative anchor-free one-
stage detector, FCOS [36], a brief introduction about it is given in Sec. 3.1.

3.1 Preliminary: FCOS

FCOS [36] is a representative one-stage detector that predicts object categories
and bounding boxes densely in feature maps without a RPN. FCOS uses five
levels of feature maps (F3 ∼ F7) produced from the backbone network following
FPN [21] to detect various sizes of objects. At each location of the feature map,
it predicts the corresponding object category, the centerness indicating how cen-
tral the current location is to the object, and the distances from the current
location to the left, top, right, and bottom (l, t, r, b) of the nearest ground-truth
bounding box as shown in Fig. 3. With a design that five levels of feature maps
have different resolutions decreasing by a factor of 1/2, the maximum distance
responsible for each feature level is set to (64, 128, 256, 512,∞).
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Fig. 3: FCOS predicts left, top, right, and
bottom (l, t, r, b) distances to the bounding
box from each location of the feature map.

Fig. 4: The probability distribu-
tion of the regression value be-
longing to each of three bins.

FCOS differs from conventional anchor-based or RPN-based object detectors
which regress four values to correct anchors or proposals. We observe that the
features are distributed according not only to object categories but also to off-
sets, the distances to the nearest bounding boxes, and it is more pronounced in
FCOS due to its characteristics of predicting (l, t, r, b) directly using the features.
Focusing on this observation, our proposed method tries to align the features of
the source and the target domains by conditioning the features with the offsets.

3.2 Problem Formulation

Consider the setting where we adapt the object detector to the target domain
using labeled source domain data DS and unlabeled target domain data DT which
share the same label space consisting of C classes. When training a detector, we

only have access to DS = (xS
i , y

S
i , b

S
i )

NS

i=1 and DT = (xT
i )

NT

i=1, where xi is the
input image, and yi ∈ [C]k×1 and bi ∈ Rk×4 are the object categories and the
bounding box coordinates of all the k objects existing in xi. NS and NT are the
numbers of samples in DS and DT .

3.3 Global Alignment

To ensure that the object detector works well on the target domain, we align
the features of both the source and the target domain to have a marginally sim-
ilar distribution through an adversarial aligning method using a global domain
discriminator Dg. Let F

S and FT be the feature maps obtained by feeding the
source domain image xS and the target domain image xT to the backbone, re-
spectively. When the spatial size of a feature map F is H ×W , Dg is trained to
classify the domain of the feature map F pixel-wisely by the binary cross entropy
loss as in (1). The label of the source domain is 1, while that of the target is 0.

Lg(x
S , xT ) = −

H∑
u=1

W∑
v=1

log(Dg(F
S
u,v)) + log(1−Dg(F

T
u,v)). (1)

Using the gradient reversal layer (GRL) proposed in [11], the backbone is adver-
sarially trained to prevent the domain discriminator from correctly distinguishing
the source and the target domains, thereby generating domain-invariant features.
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3.4 Generating Conditional Features to Offset Values

In order to align features in an offset-aware manner, the features and the corre-
sponding offsets can be concatenated and inputted to the domain discriminator.
However, simply concatenating them is not enough to fully utilize the correlation
between features and offset values. Inspired by [24], which considers the correla-
tion between features and categorical predictions, our method does not simply
concatenate but outer-product features and offset values. Unlike classification
which uses a categorical vector, an offset value is a continuous real value. Hence,
the product of the feature and the offset value only has the effect of scaling
the feature. To effectively condition the feature according to the corresponding
offset values, each offset value of (l, t, r, b) is converted into a probability vector
corresponding to Nbin bins using (2). In the equation, znu,v refers to the offset
value for n ∈ {l, t, r, b} at the location (u, v) in the feature map. To convert the
offset zu,v to an Nbin-dimensional probability vector, we calculate the probability
using the distance of the log of the offset value to a predefined value mi for the
i-th bin. Note that we have Nbin bins and m1 < m2 < · · · < mNbin

. Assuming
that the probability of zu,v belonging to the i-th bin is proportional to a normal
distribution with its mean mi and a shared variance σ2, it becomes as follows:

qi(z
n
u,v) =

exp(− (log2(z
n
u,v)−mn

i )
2

2σ2/τ )∑Nbin

j=1 exp(− (log2(z
n
u,v)−mn

j )
2

2σ2/τ )
, i ∈ [Nbin], n ∈ {l, t, r, b}. (2)

Here, τ is a temperature value to make the distribution smooth, and in all of
our experiments, both σ and τ are set to 0.1. In all of our main experiments, Nbin

is set to 3 for each feature level, and mi for each bin is set to (m1,m2,m3) =
(lv − 1

2 , lv + 1
2 , lv + 3

2 ) for lv-th level (lv ∈ {3, ..., 7}) to satisfy m1+m2

2 = lv
and m2+m3

2 = lv + 1 because each feature level is responsible for a different
object scale. Fig. 4 shows the probability of zu,v belonging to each bin when

there are three bins. The obtained probability vector q ≜ [q1, · · · , qNbin
]T ∈

RNbin
+ still maintains the relative distance relationship of the real offset value as

DKL(q(a)||q(b)) < DKL(q(a)||q(c)) if a < b < c.
However, the probability vector is uniformly initialized for all Nbin bins since

the regressed offsets may not be accurate at the beginning of training. During the
first I warm-up iterations, we gradually increase the rate of using the probability
vector qu,v as iteration (iter) progresses utilizing the alpha-blending as follows:

q̃u,v = ((1− α)qu,v + α
1

Nbin
1), where α = max(1− iter

I
, α0). (3)

Here, α0 is the constant value between 0 and 1 that smoothes the probability
vector q̃, and the closer it is to 1, the more uniform q̃ becomes. We show the
effects of α0 in Sec.4.5. In all the experiments, I is set to 6k, the half of the first
learning rate decay point. 1 is a vector consisting of only ones.

Using q̃u,v, we can obtain the features which are conditional to the offset
values by outer-producting them as follows:

gu,v = fu,v ⊗ q̃u,v. (4)
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(a) Cityscapes→Foggy Cityscapes. (b) Sim10k→Cityscapes.

Fig. 5: The difference between the predicted regression value and the GT value
(Red line) and the precision (Blue bar) according to the confidence threshold ρ.

Here, fu,v ∈ RD is a feature vector located at location (u, v) in the feature

map F ∈ RD×HW and q̃u,v ∈ RNbin
+ is the probability vector of the corresponding

offset value obtained from (3). By outer-producting fu,v and q̃u,v, we can get a
new feature, gu,v ∈ RD×Nbin conditioned on the offsets. By flattening gu,v, the
conditioned feature map G ∈ R(D×Nbin)×HW with the same spatial resolution
as F is obtained, which is fed into the domain discriminator Dc.

Outer product is effective in conditioning because it considers the correlation
between features and offsets without loss of information, hence it enables features
to have different characteristics depending on offset values. Consider a case where
Nbin = 3 and (m1,m2,m3) = (3.5, 4.5, 5.5) for F4, and conditionally align to t,
the top offsets. Suppose that feature vector fu1,v1 ∈ RD located at (u1, v1) have a
small top offset prediction, i.e. t = 13 and log2 t = 3.7, resulting in the probability
vector qu1,v1

= (0.98, 0.02, 0.0) via (2). Conditioned feature gu1,v1
obtained by

outer-producting fu1,v1
and qu1,v1 is a 3×D matrix. The first row of gu1,v1 would

be similar to the original feature fu1,v1 , but the elements in the other rows would
be almost zero. On the other hand, gu2,v2 obtained by e.g. qu2,v2 = (0, 0.01, 0.99)
with a large top offset would have the original feature fu2,v2 in the third row but
have almost zero elements in another rows. Therefore, a domain discriminator
is trained to classify the domain of the features in different subspaces according
to the offsets. As a result, the backbone will generate features that are domain
invariant conditioned on offsets to fool the discriminator.

3.5 How to get a confident offset value?

To generate a feature conditioned on the offsets, we need to know which location
in the feature map corresponds to the object and the accurate offset value at that
location. For the labeled source domain, we can easily obtain the ground-truth
value of which location corresponds to the object in each feature map and the
offsets. Since FCOS calculates the object mask corresponding to each category
in the feature map and the distance from each location to the GT bounding box,
we can utilize this mask and the ground-truth offset values, (l∗, t∗, r∗, b∗). On the
other hand, in the unlabeled target domain, we should inevitably use predicted
values. Although classification confidence is the probability of predicting the
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category of an object rather than a regression, by using it, we can simply and
effectively select instance-level features with high objectness and obtain reliable
regression values for those features. Fig. 5 is the analysis of features obtained
by feeding a target domain image into the globally aligned model of Sec. 3.3.
The blue bar represents the ratio corresponding to the actual objects among the
features having a confidence value higher than the threshold value of the x-axis,
and the red line represents the average of the difference between the regression
values and the GT offsets of the features. The higher the confidence threshold,
the higher the probability of the feature’s location belonging to an actual object,
and the closer the regression value is to the GT offset value. In pu,vcls ∈ RC

+, which
is the category classification probability at the (u, v)-th location of the feature
map, maxc∈[C](p

u,v
cls ) (the maximum probability among all classes) can be viewed

as objectness which is the probability that the location corresponds to an object.
Therefore, we generate a mask where maxc∈[C](p

u,v
cls ) is higher than a threshold

ρ, and we weight the activated part with that max probability value as follows:

MT
obj = Imaxc(pcls)>ρ ⊙max

c
(pcls). (5)

Finally, we align the distribution of features G of the source and the target which
is conditioned on the offset by minimizing the following adversarial loss:

Ln
c (x

S , xT ) = −
H,W∑
u,v

log(Dn
c (Ĝ

n,S
u,v )) + log(1−Dn

c (Ĝ
n,T
u,v ))

Ĝn,d = Gn,d ⊙Md
obj , d ∈ {S, T}.

(6)

Here, Ln
c is the adversarial loss conditional to the offset value n ∈ {l, t} using the

discriminator Dn
c . Since the correlation between the regression values for the left

l and the right r and between the top t and the bottom b are strong, conditioning
is performed only for the left and the top. d represents whether the domain is
the source or the target. I is the indicator function and ⊙ is the elementwise
multiplication. Through this, the instance-level features of both domains can be
aligned to have the same distribution conditional to the offset.

3.6 Overall Loss

Using labeled source domain data, the backbone and heads of FCOS are trained
by minimizing object detection loss Ldet consisting of object classification loss
Ldet-cls and bounding box regression loss Ldet-reg, as in [36]:

Ldet(x
S) = Ldet-cls + Ldet-reg. (7)

In addition, we introduce Lg in (1) to ensure that the overall features of both do-
mains have the similar marginal distribution and Lc in (6) to allow the instance-
level features to have the same conditional distribution to offsets, as follows:

Ltotal = Ldet(x
S) + λgLg(x

S , xT ) + λc(Lleft
c (xS , xT ) + Ltop

c (xS , xT )). (8)

where λg and λc are parameters balancing the loss components.
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Table 1: Results of Cityscapes → Foggy Cityscapes. EPM∗ denotes our re-
implementation and GA† is the result of the global alignment of Sec.3.3. Source
Only is trained with only source domain without adaptation and Oracle is
trained with labeled target domain, providing the upper bound of UDA.

Method Detector person rider car truck bus train mbike bicycle mAPr
0.5

Source Only

Faster-RCNN

17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8
DAFaster [5] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
Selective DA [47] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
MAF [13] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
SWDA[32] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
HTCN [2] 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
UMT [9] 34.2 48.8 51.1 30.8 51.9 42.5 33.9 38.2 41.2
MeGA-CDA [37] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8

Oracle 37.2 48.2 52.7 35.2 52.2 48.5 35.3 38.8 43.5

Source Only

FCOS

30.2 27.4 34.2 6.8 18.0 2.7 14.4 29.3 20.4
EPM [14] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
EPM∗ [14] 44.9 44.4 60.6 26.5 45.5 28.9 30.6 37.5 39.9
SSAL [25] 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6

GA† 43.2 40.5 58.2 28.2 43.6 24.2 27.1 35.3 37.5
OADA (Offset-Left) 46.2 45.0 62.2 26.8 49.0 39.2 33.1 39.1 42.6
OADA (Offset-Top) 45.9 46.3 61.8 30.0 48.2 36.0 34.2 39.0 42.7
OADA (Offset-Left & Top) 47.3 45.6 62.8 30.7 48.0 49.4 34.6 39.5 44.8
OADA (Offset-Left & Top + Self-Training) 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4

Oracle 49.6 47.5 67.2 31.3 52.2 42.1 32.9 41.7 45.6

4 Experiments

4.1 Datasets

We conduct experiments on three scenarios: adaptation to adverse weather driv-
ing (Cityscapes to Foggy Cityscapes, i.e. CS → FoggyCS), adaptation from syn-
thetic data to real data (Sim10k to Cityscapes, i.e. Sim10k → CS), and adapta-
tion to a different camera modality (KITTI to Cityscapes, i.e. KITTI → CS).

– Cityscapes [8] consists of clear city images under driving scenarios, summing
to 2,975 and 500 images for training and validation, respectively. There are 8
categories, i.e., person, rider, car, truck, bus, train, motorcycle and bicycle.

– Foggy Cityscapes [33] is a synthetic dataset that is rendered by adding fog to
the Cityscapes images. We use Cityscapes as the source, and Foggy Cityscapes
as the target to simulate domain shift caused by the weather condition.

– Sim10k [16] consists of 10,000 synthesized city images. For the adaptation
scenario from synthetic data to real data, we set Sim10k as the source domain
and Cityscapes as the target domain. Only car class is considered.

– KITTI [12] consisting of 7,481 images is a driving scenario dataset similar to
Cityscapes, but there is a difference in camera modality. For adaptive scenarios
to other camera modalities, we use KITTI as the source and Cityscapes as
the target. Similar to Sim10k to Cityscapes, only car category is used.

4.2 Implementation Details

We use VGG-16 [35] backbone and fully-convolutional head consisting of three
branches of classification, regression and centerness following [36]. For the do-
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Table 2: Results of Sim10k, KITTI → Cityscapes. EPM∗ denotes the results of
our re-implementations. GA† is the result of the global alignment of Sec.3.3.

Sim10k KITTI

Method Detector mAPr
0.5 mAPr

0.5

Source Only

Faster-RCNN

34.3 30.2
DAFaster [47] 38.9 38.5
SWDA [32] 40.1 37.9
MAF [13] 41.1 41.0
HTCN [2] 42.5 -
Selective DA [47] 43.0 42.5
UMT [9] 43.1 -
MeGA-CDA [37] 44.8 43.0

Oracle 69.7 69.7

Source Only

FCOS

40.4 44.2
EPM [14] 49.0 45.0
EPM∗ [14] 51.1 43.7
SSAL[25] 51.8 45.6

GA† 49.7 43.1
OADA (Offset-Left) 55.4 45.6
OADA (Offset-Top) 55.7 45.8
OADA (Offset-Left & Top) 56.6 46.3
OADA (Offset-Left & Top + Self-Training) 59.2 47.8

Oracle 72.7 72.7

main discriminators, Dg and Dc, fully-convolutional layers with the same struc-
ture as the head are used. We initialize the backbone with the Image-Net pre-
trained model and reduce the overall domain gap using only object detection loss
Ldet and global alignment Lg at the beginning of training. Then, we train the
model for 20k iterations with weight decay of 1e-4, initial learning rate of 0.02 for
CS → FoggyCS, 0.01 for Sim10k → CS and 0.005 for KITTI → CS, respectively.
We decay the learning rate at 12k and 18k iteration by the rate of one-tenth.
During training, λg and λc are fixed as 0.01 and 0.1, respectively. We set the
weight for the Gradient Reversal Layer (GRL) to 0.02 for global alignment and
0.2 for our conditional alignment. Also, we set the confidence threshold in (5)
as ρ = 0.3 for CS → FoggyCS and ρ = 0.5 for Sim10k, KITTI → Cityscapes to
reduce the effects of incorrect predictions. We set I to 6k which is the half of
the first learning rate decay point and α0 in (3) to 0.2. Input image is resized to
800 for shorter side, and 1333 or less for longer side following [14,25,36].

4.3 Overall Performance

In Table 1, we compare the performance of our method (OADA) with other
existing methods in CS → FoggyCS setting. When EPM [14] based on FCOS is
trained in the exact same setting as ours, the performance is 3.9%p higher than
what was reported. Conditional alignment on the offsets to the left and the top
side of the bounding box improves performance by 22.2%p and 22.3%p respec-
tively compared to Source Only, by 5.7%p and 6.0%p compared to GA† which is
only globally aligned and by 2.7%p and 2.8%p compared to EPM* that we reim-
plemented. Since Foggy Cityscapes has 8 categories of objects and has various
aspect ratios, when conditioning is performed on both the left and the top off-
sets, the additional performance gain is very larger by 2.1%p or more, achieving
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(a) Singular Values (b) Corresponding Angles

Fig. 6: Measures of discriminability and transferability Fig. 7: Conditioning

the state-of-the-art regardless of the detector architecture. By initializing with
the OADA (Offset-Left & Top) pre-trained model and training once more with
self-training [23], we get a model almost similar to Oracle lagging only by 0.2%p.
Detailed implementation of self-training is explained in the supplementary.

Table 2 shows the adaptation results of Sim10k and KITTI → CS. In Sim10k
→ CS, conditional alignment using left and top offsets improves mAP by 15.0%p
and 15.3%p, respectively, compared to Source-Only and 4.3%p and 4.6%p over
re-implemented EPM*. Likewise, in KITTI→ CS, our methods using left and top
offsets improve the performance by 1.4%p and 1.6%p, respectively, over Source-
Only and 1.9%p and 2.1%p over EPM*. In these two benchmarks, only the car
class is considered, so the gain of OADA (Offset-Left & Top) is not as large
as the multi-category setting, but there are still additional gain of 0.9%p and
0.5%p for Sim10k and KITTI. Our conditional aligning alone already achieves
the state-of-the-art performance but greater performance can be obtained by
employing the self-training as in OADA (Offset-Left & Top + Self-Training).

4.4 Analysis on Discriminability and Transferability

Chen et. al [4] argued that aligning the feature distribution through adversarial
alignment increases the transferability of features, but they did not take the
discriminability into account, the ability to perform tasks well. They measure
the discriminability via singular value decomposition (SVD) of the target domain
feature maps and measure the transferability by estimating the corresponding
angle between the feature spaces of the source and the target domain. Using their
proposed metrics [4,42], we compare the discriminability and transferability of
Ours (OADA) with Source Only, GA of Sec. 3.3, EPM [14] and Oracle models in
CS→Foggy CS. When FS = [fS

1 ...f
S
NS

] and FT = [fT
1 ...fT

NT
] are feature matrix

of the source and the target domain respectively, we apply SVD as follows:

FS = USΣSV
⊤
S , FT = UTΣTV

⊤
T . (9)

Discriminability: Fig. 6a plots the top-20 greatest singular values of FT ob-
tained from the five models. The singular values are sorted in descending order
from left to right on the x-axis. These values are normalized so that the maxi-
mum singular value is 1. It can be seen that Ours (red) has a similar decreasing
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Table 3: mAPr
0.5 according to α0 of (3) and number of bins in CS→Foggy CS.

Model
α0 Nbin

0.0 0.1 0.2 0.5 1.0 1 2 3 4 5

OADA(Offset-Left & Top) 42.6 43.4 44.8 43.3 42.6 42.4 44.2 44.8 44.3 41.4

ratio to the Oracle model (black), while GA and EPM models have significantly
larger one singular value and relatively much smaller other singular values than
the largest one. This means that informative signals corresponding to small sin-
gular values are greatly compromised in GA and EPM, where the entire features
(GA) or the features close to the center of an object (EPM) are being aligned.
On the other hand, Ours has a more gentle decreasing ratio, which shows that
it maintains discriminability compared to other adversarial alignment methods.
Transferability: Transferability between the source and the target domain is
measured through the similarity of each principal component of the two fea-
ture spaces [4]. Fig. 6b shows the cosine similarity of eigenvectors correspond-
ing to the top 20 singular values in FS and FT obtained in descending order.
While SourceOnly and Oracle, which do not perform feature alignment, have
low corresponding angles of principal components between FS and FT , overall
correspondences increase in models that align feature spaces in an adversarial
manner. Particularly, Ours shows higher similarity between the source and the
target domain feature space than GA and EPM. From this observation, it can be
seen that aligning the features in an offset-aware manner is effective in increasing
the transferability without harming the discriminability for object detection.

4.5 Ablation Studies

α0 in (3): Table 3 shows the effect of α0 that smoothes q̃ used for feature
conditioning. When α0 = 0, conditioning is done using only q, which is the
probability vector of an offset, without smoothing after the warm-up period.
Since the softmax in (2) makes q almost one-hot vector in most cases, the values
of certain rows of conditioned feature g are almost zero. This strongly constrains
the dimension of the conditioned features. On the other hand, when α0 = 1, we
outer-product the feature with an uniform vector 1

Nbin
1 without offeset-aware

conditioning throughout training. In this case, the feature dimension given to
the discriminator is the same, but performance is greatly degraded because there
is no conditioning according to the offset. α0 = 0.2, in which relatively strongly
constrained features are used in the discriminator, is most appropriate.
Number of bins: Table 3 also shows ablations results of the number of bins,
Nbin. The reference value mi for the i-th bin is set according to the size of objects
for which the feature of each level is responsible. The detailed values are in the
supplementary. When Nbin = 1, there is no conditioning on offsets and only the
mask Mobj is used, nevertheless it is more effective than GA and EPM. Nbin = 3
is sufficiently effective in offset conditioning, improving mAPr

0.5 by 2.4%p. When
the number of bins is increased excessively, the constraint on the subspace of the
conditioned feature becomes too strong, resulting in performance deterioration.
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Table 4: Comparison of mAPr
0.5 according to the confidence threshold (ρ)

Model Datasets
Confidence Threshold (ρ)
0.0 0.3 0.5 0.7

OADA(Offset-Top)
Cityscapes → Foggy Cityscapes 37.0 42.7 41.7 37.3

Sim10k → Cityscapes 48.5 53.6 55.7 53.6
KITTI → Cityscapes 43.8 44.8 45.8 44.0

Conditioning strategies: We compare various conditioning strategies in Fig.
7. When the feature and offset values are simply concatenated (Concatenate)
and the feature is multiplied by offset values (Multiply), there is a very slight
performance improvement of 0.1%p or performance degradation of -0.8%p com-
pared to the case when only the unconditioned feature is used (Base). In order to
compare the method of conditioning while increasing the dimension of features
to the same as OADA, we also experiment with the case, Multiply&Stack, where
original features, features multiplied by top (left) offsets and features multiplied
by bottom (right) offsets are stacked. In this case, there is a significant perfor-
mance improvement, but it is still far behind our OADA, which means that it
is much more effective to convert the offset value into a probability vector and
outer-product it with the feature for conditioning.
Confidence thresholds: In (5), the confidence threshold, ρ, is used to gener-
ate a mask which activates spatial locations with high objectness and accurate
regression values for the target domain. Table 4 shows ablation results for ρ
when conditioning is performed only on the top offsets. In CS → Foggy CS, the
performance is best when ρ = 0.3 and in Sim10k, KITTI → CS when ρ = 0.5.
We conjecture that it is due to the difference of the domain gap between the
source and the target domain in each scenario. Referring to Fig. 5a, in the case of
CS → Foggy CS, when the confidence is more than 0.3, the precision is already
more than 0.9 and the difference between GT and regression value is less than
5. However, in the case of Sim10k → CS, the confidence must be at least 0.5 to
obtain a similar level of precision and difference as shown in Fig. 5b. This shows
that ρ must be adjusted with respect to the domain gap.

5 Conclusions

In this paper, we propose an Offset-Aware Domain Adaptive object detection
method which conditionally aligns the feature distribution according to the off-
sets. Our method improves both discriminability and transferability by address-
ing negative transfer considering the modality of the feature distribution of an
anchor-free one-stage detector. On various benchmarks, ours also achieves the
state-of-the-art performance by significantly outperforming existing methods.
Acknowledgments This work was supported by the National Research Foun-
dation of Korea (NRF) grant (2021R1A2C3006659) and IITP grant (NO.2021-
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