
Supplementary Materials for “Quasi-Balanced
Self-Training on Noise-Aware Synthesis of

Object Point Clouds for Closing Domain Gap”

Yongwei Chen1,2∗, Zihao Wang1∗, Longkun Zou1, Ke Chen1,3†, and Kui Jia1,3†

1 South China University of Technology
2 DexForce Co. Ltd.

3 Peng Cheng Laboratory
{eecyw,eezihaowang,eelongkunzou}@mail.scut.edu.cn,

{chenk,kuijia}@scut.edu.cn

A Details for Simulating Virtual Active Stereo Based
Depth Sensor

In this section, we give a detailed description for the virtual active stereo based
depth sensor simulation presented in Sec. 3 of our main text. The whole pipeline
can be divided into building a physical simulator of stereo cameras for a photo-
realistic rendering (see Sec. A.1) and a pixel-to-point generation (see Sec. A.2).

A.1 Rendering with Projection of Speckle Patterns

For simulating a typical active stereo based depth sensor, we first set a stereo
camera and a projector, which can actively project pre-defined speckle patterns
in a simulation platform, e.g. the Blender [3] adopted in this paper. Specifically,
the cycle engine in Blender [3] is employed as our rendering engine, which is a
physically-based path tracer and supports artistic control and flexible shading
nodes. Given object models M = {Mi, yi}Ni=1 as input, the output of stereo

image rendering can be {I lefti , Irighti , yi}Ni=1.
Pre-processing for Photorealistic Rendering – During the procedure of
data pre-processing, those mesh-based models M are first scaled to a unit-ball
with an arbitrary rotation along the z-axis, which are fed into the render en-
gine together with the settings of scene illumination and object reflection for a
photorealistic rendering. To this end, we place one area light source on top of
the object model to be rendered, which can thus provide a uniform scene illu-
mination. Moreover, characteristics of object material also affect the reflection
of light received on object surface and are sensitive in optical imaging. In view
of this, the bidirectional scattering distribution function (BSDF) material [2] is
adopted in our generation to model the scattered pattern of light by a surface,

∗Equal contribution
†Corresponding authors



2 Y. Chen et al.

by following the default setting of the BSDF function in [3] to initialize object
models’ material.
Virtual Configuration of A Stereo Camera – Given two identical optical
imaging sensors (i.e. cameras OL and OR in Fig. 2 of our main text) for a stereo
camera, the image planes of two cameras are coplanar. The left camera OL is
first placed near object model M with its optical axis towards the object, while
the right camera OR is set along parallel optical axes as OL, with translation
between two cameras only along the x-axis of the left camera. The simulated
stereo camera fixes a baseline distance b between two cameras OL and OR, which
are set as the simple pinhole camera using the same camera intrinsic parameters,
e.g. focal length f , defined as prior knowledge in our simulation.
Projection of Extra Speckle Texture – Based on the theory about projec-
tion of stereo images [9], disparity of a point in 3D space in stereo images can
be used to measure its depth distance, if correspondence of projected pixels on
I left and Iright can be discovered. However, due to texture-less appearance (e.g.
CAD models in the ModelNet [11]), it could lead to mis-matching corresponding
pixels in stereo images. A typical solution is to actively add pre-defined texture
pattern on the object surface to provide visual appearance, which can thus ben-
efit to discovering pixel correspondence in stereo matching. As a result, we use
spot light in the cycle engine of Blender [3] to implement the projector P (refer
to Fig. 2 of the main text), which is positioned in the middle of cameras OL

and OR and along parallel optical axes of both cameras. Similar to real-world
active stereo based depth sensors, the speckle image, in the form of a binary
mask of white dots, is selected to provide an extra texture appearance on the
object surface during generation. Technically, speckles are linked to the image
texture node in spot light’s nodes group, so that emission of light preserves the
speckle pattern.

A.2 A Pixel-to-Point Generation

For obtaining a point cloud P, depth images are first gained via stereo matching
from the RGB images I left and Iright (i.e. the output of stereo rendering in Sec.
A.1), which can be further projected into 3D space using intrinsic parameters
and extrinsic poses of the camera. To mimic generation of realistic point clouds
from RGB-D videos scanning object in multiple poses in practice, synthetic
point clouds under multiple camera poses are fused together to produce dense
sets, which are then down-sampled to the final point set P.
Stereo Matching – We perform stereo matching [9] on the output I left and
Iright of the image rendering to measure disparity between projection of one
observed 3D point on I left and Iright. (uleft, vleft) ∈ I left and (uright, vright) ∈ Iright

are defined as the 2D coordinates of the projected pixels on two image planes
respectively. As the optical axes of two image planes in the stereo camera are set
to be parallel, for each pixel in the left image, we only need to search along with
the epipolar line to retrieval its corresponding one in the right image. Disparity
d between a pair of matched pixels can be calculated by the following formula:
d = uleft − uright. In practice, we directly leverage block matching algorithm of



Supplementary Materials for QS3 3

Algorithm 1: Quasi-Balanced Self-Training

Input : Warm-up model Φ0, Init model Φinit, Target data Xt

Parameter: Constant ϵ, Iteration I
Output : Model ΦI

1 initialization θ0
2 for i← 1 to I do
3 Pindex, Pvalue = argmaxΦi−1(Xt),maxΦi−1(Xt)
4 Mask = Pindex > θi−1

5 Pindex, Pvalue = Pindex[Mask], Pvalue[Mask]
6 Xt = Xt[Mask]

7 Ŷt = onehot(Pindex)

8 L = sum(Ŷt)
9 for k ← 1 to K do

10 P k
value = Pvalue[Pindex = k]

11 Xk
t , Ŷ

k
t = Xt[Pindex = k], Ŷt[Pindex = k]

12 Lk = sum(Ŷ k
T )

13 µk = 1− Lk / L
14 Lk = ceil(Lk × µk)

15 sid = argsort(P k
value, descending)

16 Xk
t , Ŷ

k
t = Xk

t [sid][: Lk], Ŷ
k
t [sid][: Lk]

17 end
18 θi = θi−1 + ϵ
19 if i=1 then

20 Φi = update(Φinit|Xt, Ŷt)
21 else

22 Φi = update(Φi−1|Xt, Ŷt)
23 end

24 end
25 return ΦI

the OpenCV to compute disparity. Its depth distance z, i.e. the distance between
the 3D point and OL along its optical axis, can be computed with focal length
f and baseline b of the camera as follows [9]: z = (f · b)/d.
Depth Transformation – 2D coordinate (u, v) and depth value z of every
pixel in the depth image is transformed to a point (x, y, z) in 3D space as:xy

z

 = z

1/f 0 0
0 1/f 0
0 0 1

u− cx
v − cy

1

 (1)

where (cx, cy) denotes the principal point. Note that the point cloud P calculated
by Eqn. (1) lies in the camera coordinate system, which demands spatial trans-
formation to the world coordinate system by using the camera pose consisting
of a translation vector and a rotation matrix.
Multi-view Fusion of Point Clouds – As the same object can be observed
by the RGB-D camera at different poses in real-world scanning, realistic point



4 Y. Chen et al.

clouds thus carry richer geometric information under multiple observation angles.
In light of this, multi-view synthetic point clouds are produced by following the
aforementioned modules, which are then fused into a dense point cloud. For a
fair comparison across different sizes of view, we then downsample the dense
point cloud into a sparse one as the final output P of our generation method.

B Algorithm of Quasi-Balanced Self-Training

Algorithm 1 shows the details of the quasi-balanced self-training (cf. Sec. 3.2 in
the main text).

C More Comparative Evaluation

Table 1. Classification accuracy (%) averaged over 3 seeds (±SEM) on the Real2Sim
tasks.

Method D→M D→S

Pointnet++ [7] 58.4 ± 0.8 73.3 ± 0.9
DGCNN [10] 65.3 ± 1.3 76.7 ± 0.3
RSCNN [6] 63.4 ± 2.8 76.4 ± 0.2
SimpleView [5] 69.4 ± 1.3 74.4 ± 0.5

Real2Sim Cross-Validation – To further verify that the proposed Mesh-
to-Point (Mesh2Point) pipeline can physically simulate the non-uniform noises
of real point clouds to mitigate domain gap between synthetic and real point
clouds, we conduct a complementary cross-validation experiment in a Reality-
to-Simulation (Real2Sim) manner to complement Table 1 of the main text, with
four representative point classifiers. In details, all the models are trained on the
real DepthScanNet10 (D), while testing on the testing split of synthetic data (the
proposed SpeckleNet10 (S) vs. the ModelNet10 (M) [8]). Superior performance
in Table 1, i.e. higher accuracies in the D→S column than those in the D→M
column, can demonstrate again the effectiveness of our Mesh2Point to generate
synthetic data approaching statistical distribution of real data owing to physical
simulation of systematic noises in stereo rendering of projected speckle patterns
and matching.

Evaluation on Original ScanNet – We report comparison between the pro-
posed QS3 scheme and other UDA methods on the less challenging ScanNet (S∗)
[4], using the same UDA experiment setting. Results in Table 2 again demon-
strate the superiority of our method to other competiong methods.



Supplementary Materials for QS3 5

Table 2. Evaluation in classification accuracy (%) of point classifiers training on the
SpeckleNet and testing on the ScanNet

Method S→S*

Supervised 78.7 ± 0.8
DGCNN [10] (w/o Adapt) 51.1 ± 1.2

PointDAN [8] 53.5 ± 0.8
DefRec [1] 50.9 ± 0.1
DefRec+PCM [1] 56.1 ± 0.2
GAST w/o SPST [12] 49.3 ± 1.1
GAST [12] 51.9 ± 0.9
QS3 (ours) 57.4 ± 0.2

Fig. 1. Effects on varying number of views in multi-view fusion of synthetic point
clouds on the S→D task.

D More Ablation Studies

Effects on Multi-View Fusion – We also evaluate effects of varying sizes of
single-view synthetic point clouds to be fused on model generalization to real
data, which is visualized in Fig. 1. Generally speaking, the more views, the higher
the classification accuracy. Moreover, fusion with single-view point clouds under
five camera poses is preferred owing to its consistently better performance with
all four methods.
Effects of θ0 and ϵ in the Quasi-Balanced Self-Training – Ablation studies
of our QBST are investigated on two hyper-parameters, i.e. the initial threshold
θ0 and ϵ in Algorithm 1 of the main text, which can be sensitive to UDA classi-
fication performance. Specifically, θ0 on filtering prediction confidence is used to
control the number of selected pseudo-labeled samples for self-training, while ϵ
is the constant step to gradually increase θ during self-training iterations. Fig. 2
illustrates effects of varying θ0 and ϵ on the S→D and M→D tasks. Generally,
regardless of selection of θ0 and ϵ, models training on our synthetic data from
the SpeckleNet10 can consistently outperform those training on the ModelNet10
[8] with a significant margin, which can favor our motivation about the proposed



6 Y. Chen et al.

Fig. 2. Left: Effects of θ0 on the S→D and M→D tasks; Right: Effects of ϵ on the
S→D and M→D tasks in the case of θ0 = 0.8.

QS3 scheme on closing Sim2Real domain gap. Moreover, stable performance of
different values of θ0 and ϵ can be achieved, owing to self-training with more
balanced data distribution. As a result, in our QBST, the optimal value of θ0 is
set as 0.8, while ϵ = 0.005.

E Visualization

We visualize point cloud examples from the generated SpeckleNet10 dataset
using our Mesh2Point and the DepthScanNet10 adapted from the real ScanNet
[4] in Figs. 3 and 4 respectively. Evidently, visual similarity of examples from
both datasets can confirm our motivation of physical simulation of real point
clouds.



Supplementary Materials for QS3 7

Fig. 3. Visualization of synthetic examples from the generated SpeckleNet10.

Fig. 4. Visualization of real examples from the DepthScanNet.



8 Y. Chen et al.

References

1. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adap-
tation on point clouds. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). pp. 123–133 (2021) 5

2. Bartell, F.O., Dereniak, E.L., Wolfe, W.L.: The theory and measurement of bidi-
rectional reflectance distribution function (brdf) and bidirectional transmittance
distribution function (btdf). In: Radiation Scattering in Optical Systems (RSOS).
vol. 257, pp. 154–160. SPIE (1981) 1

3. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam (2018), http://www.blender.
org 1, 2

4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
net: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 5828–5839 (2017) 4, 6

5. Goyal, A., Law, H., Liu, B., Newell, A., Deng, J.: Revisiting point cloud shape
classification with a simple and effective baseline. In: International Conference on
Machine Learning (ICML). pp. 3809–3820. PMLR (2021) 4

6. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network
for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 8895–8904 (2019) 4

7. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in Neural Information Processing
Systems (NeurIPS) 30 (2017) 4

8. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: A multi-scale 3d domain
adaption network for point cloud representation. Advances in Neural Information
Processing Systems (NeurIPS) 32 (2019) 4, 5

9. Szeliski, R.: Computer vision: algorithms and applications. Springer Science &
Business Media (SSBM) (2010) 2, 3

10. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG)
38(5), 1–12 (2019) 4, 5

11. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1912–1920
(2015) 2

12. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised
domain adaptation on object point clouds. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). pp. 6403–6412 (2021) 5

http://www.blender.org
http://www.blender.org

	Supplementary Materials for ``Quasi-Balanced Self-Training on Noise-Aware Synthesis of Object Point Clouds for Closing Domain Gap"

