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Abstract. Open-set Domain Adaptation (OSDA) aims to recognize classes
in the target domain that are seen in the source domain while rejecting
other unseen target-exclusive classes into an unknown class, which ig-
nores the diversity of the latter and is therefore incapable of their inter-
pretation. The recently-proposed Semantic Recovery OSDA (SR-OSDA)
brings in semantic attributes and attacks the challenge via partial align-
ment and visual-semantic projection, marking the first step towards in-
terpretable OSDA. Following that line, in this work, we propose a repre-
sentation learning framework termed Angular Margin Separation (AMS)
that unveils the power of discriminative and robust representation for
both open-set domain adaptation and cross-domain semantic recovery.
Our core idea is to exploit an additive angular margin with regulariza-
tion for both robust feature fine-tuning and discriminative joint feature
alignment, which turns out advantageous to learning an accurate and less
biased visual-semantic projection. Further, we propose a post-training
re-projection that boosts the performance of seen classes interpretation
without deterioration on unseen classes. Verified by extensive experi-
ments, AMS achieves a notable improvement over the existing SR-OSDA
baseline, with an average 7.6% increment in semantic recovery accuracy
of unseen classes in multiple transfer tasks. Our code is available at AMS.

Keywords: open-set domain adaptation · zero-shot learning

1 Introduction

The advent of deep neural network (DNN) [15] and corresponding deep learning
algorithms [17] has enabled computer vision unprecedented development and
wide application in real-world production. However, meanwhile, some common
assumptions adopted by conventional machine learning frameworks, such as the
i.i.d assumption and the closed world assumption, have gradually hindered the
data-driven large-scale deep learning models, bringing two potential challenges
in real-world applications [5,6,49]. First, the distribution of target data faced in
deployment may be quite different from that of the well-labeled source data, and
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it is often too costly and even infeasible to collect adequate annotations for the
new data distribution. Second, the real world is an open world, with new classes
unseen during training possibly emerging at any time, and failure to carefully
handle them could lead to fatal consequences, e.g., for self-driving vehicles.

Under such demands, open-set domain adaptation (OSDA) [31,38,25,3] has
been widely studied, bridging the domain gap between a well-labeled source do-
main and an unlabeled target domain while rejecting all target-exclusive classes
into one unknown class. However, few existing methods pay attention to the
inter-class difference among different unknown classes, and none of them is ca-
pable of their interpretation. Although such deficiencies may not violate the task
of OSDA by definition, they are essentially suboptimal for many real-world sce-
narios, where the unknown classes are diverse and their interpretation could be
important for human intervention and model evolution. To overcome this limi-
tation, semantic recovery domain adaptation (SR-OSDA) [13] has been recently
proposed, which introduces semantic attributes to interpret the unseen novel-
ties. On top of OSDA, SR-OSDA additionally learns a projection from visual
features to their corresponding semantic attributes on seen classes in hope that
it could also be applicable to the unseen classes. Besides, SR-OSDA purposefully
differentiates between target data detected unknown to avoid interpreting them
as one naive unknown class. Nevertheless, SR-OSDA, at its budding phase with
only a prospective yet general objective, still has large room to improve.

Extensive studies have shown the significance of representation learning [1,34,21,9]
for visual tasks, and we argue that the same is true for SR-OSDA. In this pa-
per, we investigate the power of discriminative and robust representation for
both open-set domain adaptation and cross-domain semantic recovery. Specif-
ically, we first exploit an additive angular margin in visual space to fine-tune
the pre-trained model on the source domain to learn representation suitable for
cross-domain novelty detection and seen class recognition. Afterwards, we resort
to additive angular margin again on the visual-semantic joint representation
to facilitate compact alignment of seen classes and discriminative separation of
unseen classes, which proves effective for both seen class recognition and dis-
tinct interpretation of diverse unseen classes. Finally, we propose a post-training
re-projection to efficiently boost semantic recovery for seen classes without de-
terioration on unseen classes. We can summarize our contributions as follows:

– We unveil the power of discriminative and robust representation for SR-
OSDA by exploiting an additive angular margin in both the fine-tuning
phase and the training phase, which proves advantageous to both open-set
domain adaptation and cross-domain semantic recovery.

– We propose a post-training re-projection with minimal cost to further boost
semantic recovery on seen classes in the target domain without deterioration
on unseen classes.

– Verified by extensive experiments, our proposed AMS achieves a notable
improvement over the existing SR-OSDA framework, with an average incre-
ment of 7.6% in semantic recovery accuracy of unseen classes, and various
improvements on other evaluation metrics in multiple transfer tasks.
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2 Related Work

Open-set domain adaptation.Open-set domain adaptation (OSDA) [31,38,25,3,12]
is recognized as a more practical form of domain adaptation [7,42,22,18,19]. Con-
fronted with the domain gap between a well-labeled source domain and an unla-
beled target domain, OSDA not only needs to recognize the classes in the target
domain that are seen in the source domain but also to detect the target-domain-
exclusive classes as an unknown (unseen) class. Despite much progress achieved,
few works consider the intrinsic diversity of the unknown classes, and none can
provide interpretation for them, which in fact could be critical for human in-
tervention or even the evolution of the model. Motivated by such deficiency,
semantic-recovery domain adaptation (SR-OSDA) [13] was recently proposed to
leverage attributes [16] to recover the semantics of unseen classes and thus realize
their interpretation. In this work, we follow the recent SR-OSDA and interpret
target unseen classes by semantic attributes.

Zero-shot learning. Zero-shot learning (ZSL) [45,33] aims to enable the ma-
chine to recognize classes with no training samples via side information [16,43].
ZSL methods are typically taxonomized by two criteria: (i) inductive ZSL vs.
transductive ZSL, and (ii) classical ZSL vs. generalized ZSL (GZSL). Inductive
ZSL only has access to the samples and side information of seen classes for train-
ing, while transductive ZSL [24,40] can further access the unlabeled samples or
side information of the unseen classes. Classical ZSL assumes the sole presence
of unseen classes in testing, while GZSL [4,20,44,41] needs to handle both. Since
SR-OSDA has access to labeled samples and semantic attributes of seen classes
as well as unlabeled samples from unseen classes, and needs to deal with both
in inference, it is more similar to transductive GZSL. However, there are two
distinct differences worth noting: (i) ZSL does not consider domain gap, and (ii)
transductive ZSL typically assumes that the range of unseen classes is known,
and thus often uses the semantic attributes of unseen classes with techniques
like dictionary learning [48] and matrix factorization [46] to enhance classifica-
tion. In contrast, SR-OSDA does not assume the range of unseen classes as prior
knowledge and aims to recover the semantics of any unseen classes as accurately
as possible. Therefore, the semantic attributes of unseen classes are only for
evaluation and cannot be used in any form to proactively enhance performance.

3 Method

3.1 Problem Setup

We use x ∈ X ⊂ Rp, y ∈ Y, and a ∈ A ⊂ Rm to denote samples, labels, and
semantic attributes. Let P , Q be the source and target distribution defined on
X ×Y. In SR-OSDA, the source domain Ds consists of Ns labeled samples with
semantic attribute prototypes {xi

s, y
i
s, a

i
s}

Ns
i=1 with xi

s ∈ Xs ⊂ Rp×Ns , yis ∈ Ys,
and ais ∈ As ⊂ Rm×Ns drawn i.i.d from P . The target domain Dt consists of
Nt unlabeled samples {xi

t}
Nt
i=1 with xi

t drawn i.i.d from Q. Owing to domain
gap, p(xs) ̸= q(xt). The source domain is associated with a set of seen classes
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Fig. 1: Illustration of our proposed AMS. Phase I: Fine-tune the pre-trained feature ex-
tractor f on the seen classes of source domain with additive angular margin and angular
regularization to enable highly discriminative representation of seen classes and leave
out open space for future outliers. Phase II: Seen/Unseen separation: Separate target
samples into seen and unseen classes based on feature distance and have them pseudo-
labeled. Phase III: Train the model on both domains by applying additive angular
margin and angular regularization on joint visual-semantic representation. The extra
K channels in the classifier work under the maximum-response correspondence (MRC)
strategy to differentiate diverse unseen classes. We alternate between Phase II and III
to acquire higher accuracy of pseudo-labels. Phase IV: Learn a regularized linear pro-
jection W on target samples detected from seen classes to corresponding ground-truth
attributes to further boost their semantic recovery. Best viewed in color.

Ys = {1, ..., |Cs|}, which is a subset of classes in target domain Yt = Ys∪{|Cs|+
1, ...|Cs| + |Ct|}. In the m-dimensional semantic space, each class is associated
with one semantic attribute prototype. Therefore, As = {A1, ..., A|Cs|} and At =
As∪{A|Cs|+1, ..., A|Cs|+|Ct|}. Our goal is two-fold: (i) to learn a target prediction
function ht : xt → yt that correctly classifies the |Cs| known classes and rejects
the other classes into an general unseen class, (ii) to learn a visual-semantic
projection ϕt : xt → at that recovers the interpretable semantic attributes of
target data.

3.2 Framework Overview

When designing a method for SR-OSDA, we face two main challenges: seen/unseen
separation, and class differentiation. Primarily, the solving of SR-OSDA largely
relies upon the correct separation of seen and unseen classes. If not, samples from
seen and unseen classes would be forcefully aligned, leading to severe negative
transfer [23]. Besides, diverse seen and unseen classes should be differentiated
so that their recognition and semantic recovery would not be confused. In our
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Algorithm 1 The complete procedure of AMS.

Training Procedure

1: for epoch=1 to T1 do
2: Fine-tune f , gs with Eq. (3).
3: end for
4: for epoch=1 to T2 do
5: Separate target samples from seen and unseen classes with Eq. (4).
6: Pseudo-label target samples from unseen classes with Eq. (8).
7: Train f , g, ϕ with Eq. (10).
8: end for
9: Use h = g ◦ f to classify target samples into seen and unseen classes.
10: Learn W on target samples from seen classes with Eq. (11).

Inference Procedure

1: Use h = g ◦ f to classify target samples into seen and unseen classes.
2: Recovery attributes of seen and unseen target samples with W and ϕ, respectively.

proposed framework AMS (Fig. 1), we leverage a kind of angular-discriminative
and robust representation to tackle both challenges in four phases. In phase I, we
aim to learn discriminative representation of seen classes robust to anomalies,
which is expected to benefit the seen/unseen separation in phase II. In phase III,
we again resort to such representation to potently differentiate diverse seen and
unseen classes. Lastly, in phase IV, we seek to further promote the interpretation
of target seen classes by learning a visual-semantic re-projection. Details on each
of the four phases are presented sequentially in section 3.3-3.6, and the overall
procedure is shown in algorithm 1.

3.3 Discriminative and Robust Fine-tuning

As analyzed in section 3.2, the detection of unseen classes lies the foundation
of SR-OSDA. Distance-based outlier detection [29,2] has proven effective for
detecting visual outliers from unseen classes based on the distance between rep-
resentations. However, representation learned via the classical combination of
CNN and a Softmax layer will make a linear separable partition of the whole
feature space [47], where intra-class distance can be much greater than inter-
class distance. Though such property may well suffice supervised classification,
it can pose a severe threat to the detection of unseen classes. As the entire fea-
ture space is partitioned for the seen classes, data from unseen classes could
be easily classified into a seen class with high confidence. Besides, due to poor
intra-class compactness, features of unseen classes could spread diffusely in the
whole feature space, increasing the false positive rate of seen classes.

To address the above issue, we propose to fine-tune the feature extractor on
source domain with an additive angular margin loss [8] instead of cross-entropy
loss with an ordinary Softmax layer:

LArc
src =

1

Ns

Ns∑
i=1

− log
e
s·cos(θi,yi

s
+m)

e
s·cos(θi,yi

s
+m)

+
∑|Cs|

j=1,j ̸=yi
s
es·cos θi,j

, (1)
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where m is the additive angular margin penalty, s is a re-scaling factor, and

θi,j = arccos
W⊤

j f(xi
s)

∥Wj∥·∥f(xi
s)∥

is the angle between the i-th source feature extracted

by the feature extractor f : X → Rd and the weights of the j-th neuron of
the |Cs|-way classifier gs : Rd → R|Cs|. Note that we fix bj = 0 as in [8]. This
objective guides the model to learn highly angular-discriminative representation
of seen classes on a hypersphere.

However, Eq. (1) still leads to features that are approximately linearly sep-
arable and form a partition of the entire feature space, particularly when m is
relatively small, which is not robust in the presence of anomalies. For instance,
the decision boundary for class one in a binary case is cos(θ1 + m) > cos θ2,
which can be rewritten as cos θ1 · cosm− sin θ1 · sinm > cos θ2. When m is set to
a small value such as 0.05 or 0.1, sinm ≈ 0, and therefore the decision boundary

is approximately linearly separable: (
W⊤

1

∥W1∥·∥f(x)∥ · cosm− W⊤
2

∥W2∥·∥f(x)∥ )f(x) > 0.

Although a larger m brings in more non-linearity, it increases optimization diffi-
culty and causes convergence problems. Thus, m is often set small in practice [8].
Inspired by [47] that regularizes training by distance to class prototypes, we pro-
pose a regularization term for the angle between the learned representation and
corresponding classifier weight to learn intra-class compact and angular discrim-
inative features with non-linear decision boundaries, making room for the future
unseen classes:

Lreg
src =

Ns∑
i=1

− cos θi,yi
s
. (2)

Therefore, the overall objective of our fine-tuning phase is:

min
f,gs

Lsrc = LArc
src + Lreg

src . (3)

3.4 Seen/Unseen Separation

Thanks to the angular regularization above, the decision boundary is less overfit-
ting to seen classes, leaving out an open space, wherein unseen classes are tightly
bounded and stay farther away from all seen classes. Besides, experimental evi-
dence in metric-based few-shot learning shows that optimizing prototype-based
metrics could facilitate class-discriminative features when generalizing to unseen
classes [39,28]. Therefore, the features of unseen classes are expected to have
better clustering properties (see Appendix for experimental evidence). In such
a desirable feature space, we define the probability of a target sample xi

t be-

longing to a seen class as p(yit = c|xi
t) =

e−d(xi
t,µ

c
s)∑

c′ e
−d(xi

t,µ
c′
s )

, where µc
s is the feature

centroid of the c-th known class in the source domain, and d is cosine distance.
The target sample is then pseudo-labeled by ŷit = argmaxc′ p(y

i
t = c′|xi

t) with
confidence pit = maxc′ p(y

i
t = c′|xi

t). Next, we adopt a class-wise threshold to
re-pseudo-label each target sample xi

t to ensure more balanced results:

ŷit =

{
ŷit if pit > p̄

ŷi
t

t

|Cs|+ 1 otherwise
, (4)
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where p̄
ŷi
t

t is the average confidence of target samples pseudo-labeled as class
ŷit, and |Cs| + 1 means a general unseen class. Afterwards, we use K-means to
cluster the detected unknown samples into K clusters, and then use K-means
again with the |Cs|+K centroids as initialization to refine pseudo-labels for one
time. To this end, all target samples are pseudo-labeled by ŷ ∈ {1, ..., |Cs|+K}
with corresponding centroids R = {R1, ..., R|Cs|+K} ⊂ Rd×(|Cs|+K), and are
separated into a seen set Ds

t and unseen set Du
t .

3.5 Alignment and Separation with Angular Margin

With all target samples pseudo-labeled, the focus now becomes aligning source
and target features from the same seen class to boost recognition and separat-
ing the detected target features from unseen classes to avoid negative transfer.
Meanwhile, the diversity of unseen classes should be preserved and their intrin-
sic difference should even be accentuated to facilitate discriminative and diverse
semantic recovery results. To achieve this goal, [13] deployed center loss:

Lc =
1

N1

N1∑
i=1

|Cs|+K∑
c=1

(I[yi=c]d(f(x
i
s/t), Rc)−

I[yi ̸=c]

|Cs|+K − 1
d(f(xi

s/t), Rc)), (5)

where N1 = Ns +Nt, d is cosine distance, I is the indicator function, and yi is
ground-truth label and pseudo-label for source and target samples respectively.
However, we argue that there are mainly two defects: (i) Eq. (5) requires features
of different classes to be far away from each other, but does not demarcate a
margin that specifies how far is enough, which could be less efficient in optimiza-
tion, (ii) Eq. (5) only ensures the discriminativeness of visual representation, and
thus could not guarantee the visual-semantic joint representation, which is more
informative for recognition, is still discriminative enough.

To tackle the above issues, we again resort to additive angular margin loss
with angular prototype regularization in the joint visual-semantic feature space:

LArc =
1

N2

N2∑
i=1

− log
es·cos(θi,yi+m)

es·cos(θi,yi+m) +
∑|Cs|+K

j=1,j ̸=yi
es·cos θi,j

. (6)

Despite with a similar formulation to Eq. (1) at first glance, there are some
substantial differences. First, instead of deploying a (|Cs| + 1)-way classifier,
we use a (|Cs| + K)-way classifier g : Rd → RCs+K for the more discrimi-
native recognition of seen classes and diverse unseen classes. Second, the fea-
tures now become the visual-semantic joint features. For labeled source samples
Fs = {f(xi

s) ⊕ ais, f(x
i
s) ⊕ ãis} for xi

s ∈ Ds, for target samples pseudo-labeled
as seen classes F s

t = {f(xi
t) ⊕ âit, f(x

i
t) ⊕ ãit} for xi

t ∈ Ds
t , and target samples

pseudo-labeled as unseen classes Fu
t = {f(xi

t) ⊕ ãit} for xi
t ∈ Du

t , where a, â
denotes ground-truth, pseudo-labeled attributes, ã denotes attributes predicted
by the visual-semantic projector ϕ : Rd → Rm, and ⊕ denotes feature concate-
nation. Thus, the joint feature set is F = Fs ∪F s

t ∪Fu
t with cardinality N2, and
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θi,j = arccos
W⊤

j fi
∥Wj∥·∥fi∥ . Similarly, the angular prototype regularization forms as:

Lreg =

N2∑
i=1

− cos θi,yi . (7)

It is worth noting that for training classifier g, the pseudo-labeling of tar-
get samples detected from unseen classes is non-trivial. After using K-means
discussed in section 3.4, the target samples detected from unseen classes are
pseudo-labeled as ŷiunseen ∈ {|Cs| + 1, ..., |Cs| + K}, which seems plausible for
training the classifier neurons corresponding to K unseen class clusters. How-
ever, since there is no guarantee that the same unseen cluster label generated by
K-means in different iterations has the same semantic meaning, directly using
such pseudo-labels could lead to inconsistent correspondence between samples
and classifier neurons, increasing the difficulty of optimization. To address such
problem, we propose a straightforward strategy termed maximum-response
correspondence (MRC) to decide the pseudo-label ẙiunseen of each xi

unseen

for training the classifier g:

ẙiunseen =

{
ŷiunseen if current epoch=1

argmaxc∈Cu p(y = c|xi
unseen; θ) otherwise

, (8)

where Cu = {|Cs|+1, ..., |Cs|+K} and θ denotes the parameters of the classifier.
With angular margin and regularization deployed, the learned representation

is naturally more suitable for semantic recovery, since the joint visual-semantic
representation is forced to be intra-class compact and inter-class separated,
which means the input of the visual-semantic projection ϕ, i.e., visual features,
as well as the output, i.e., semantic features, are both learned in a similar man-
ner, savoring a mutual-reinforcing advantage. Hence, we can simply adopt the
same binary cross-entropy objective as [13] but can observe much better results:

min
f,ϕ

LA =
1

Ns +Ns
t

∑
xi∈Ds∪Ds

t

Lbce(â
i, ai), (9)

where Ns, N
s
t denotes the number of source and target samples detected from

seen classes respectively, âi =
∑

j Wijϕ(f(x
j)), and W is the propagator ma-

trix [51,35] based on visual similarity.
Therefore,the objective of our training phase becomes:

min
f,g,ϕ

LAS = λ1Lc + λ2(LArc + Lreg) + λ3LA, (10)

and we alternate between phase II and III in every training epoch to constantly
reinforce model performance.

3.6 Attribute Re-Projection for Seen Classes

For visual-semantic projection, early works in ZSL typically resort to linear pro-
jection with regularization [36,14], while neural network-based projectors [50,26]
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are getting increasingly popular for their non-linearity and learnable representa-
tion. In SR-OSDA, the advantages of a neural-network-based projector trained
end-to-end are conspicuous, as complementary signals back-propagated from
both semantic and visual modalities can directly update the feature, making
it more suitable for projecting to semantic space.

However, we note that in Eq. (9), the better generalizability to unseen classes
of ϕ comes at the sacrifice of seen classes, since the propagated attribute vector
is different from its original prediction. To address this issue, we propose to
deploy an efficient attribute re-projection after training, in which we learn a
regularized linear mapping from the visual representation of target seen classes
to corresponding pseudo attributes:

min
W

L(Wf(Xs
t ), Â

s
t ) +Ω(W ), (11)

where f(Xs
t ) ∈ Rd×Ns

t is the feature matrix of target samples recognized as from
seen classes by g, Âs

t is the corresponding pseudo attribute matrix, W ∈ Rm×d is
the projection matrix, and Ω is a certain regularization. For simplicity, we apply
squared loss for Eq. (11) with a closed-form solution [36]. There are mainly two
merits of such re-projection. First, Xs

t is based on the final classification result,
which is expected to be more accurate. The projection matrix W can now exert
its full power to project f(Xs

t ) to Âs
t as accurately as possible, and thus is

expected to perform better than ϕ on seen classes. Second, unlike a neural-
network-based projector that takes a long training time, W has a closed-form
solution and can be solved instantly. Therefore, after the model is trained and
used to separate target data into seen Xs

t and unseen Xu
t , we use W and ϕ to

recover attributes for Xs
t and Xu

t respectively.

4 Experiments

4.1 Setup

Datasets. We evaluate our method on the two datasets curated by [13] for the
SR-OSDA problem. (1) D2AwA is collected from the shared 17 classes of “real
image” (R) and “painting” (P) domains of the DomainNet [32] dataset and the
AwA2 [45] dataset. Following alphabetic order, the first 10 classes are chosen as
shared seen classes, and the other 7 classes as unseen classes. (2) I2AwA [53]
consists of the 3D2 (I) dataset and the AwA2 dataset. Since the 3D2 dataset
only has 40 classes, it is used as the source domain, while the AwA2 dataset
with 10 more classes serves as the target domain. We use the binary attributes
of AwA2 as semantic description to evaluate our method, and only the ground-
truth attributes of seen categories are available throughout training.

Evaluation metrics. Following the standard evaluation protocols in OSDA
and ZSL, for the open-set recognition aspect, we evaluate the per-class average
accuracy of seen (known) classes OS∗, the accuracy of unseen (unknown) class
recognition OS⋄, and their harmonic mean H1 = 2×OS∗×OS⋄

OS∗+OS⋄ ; for the semantic
recovery aspect, we first determine if a sample is from seen or unseen classes
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Table 1: Open-set domain adaptation accuracy (%) on D2AwA and I2AwA.
tasks A→P A→R P→A P→R R→A R→P I→A

method OS∗ OS⋄ H1 OS∗ OS⋄ H1 OS∗ OS⋄ H1 OS∗ OS⋄ H1 OS∗ OS⋄ H1 OS∗ OS⋄ H1 OS∗ OS⋄ H1

Source-only 63.5 0.0 0.0 86.1 0.0 0.0 92.5 0.0 0.0 86.8 0.0 0.0 96.2 0.0 0.0 68.3 0.0 0.0 76.2 0.0 0.0
OSBP [38]† 49.6 10.8 17.7 74.2 13.6 23.0 76.0 9.1 16.3 63.3 6.9 12.4 90.1 13.7 23.8 55.9 10.6 17.8 67.6 7.5 13.5
STA [25]† 60.1 33.0 42.6 85.5 10.8 19.2 90.2 5.7 10.7 82.8 7.4 13.58 88.5 7.2 13.3 66.9 13.5 22.5 51.5 45.5 48.3
AOD [10]† 50.7 9.5 16.0 78.4 12.7 21.9 80.3 5.1 9.6 79.7 5.3 9.9 92.0 12.8 22.5 61.2 9.6 16.6 75.2 6.3 11.6
BCA [12]† 35.8 86.4 50.6 73.4 87.5 79.8 75.7 91.9 82.9 63.3 85.3 69.5 90.6 92.9 91.7 55.1 77.7 64.5 2.3 53.9 4.3

SR-OSDA [13]† 42.6 83.1 56.3 80.4 76.4 78.3 79.5 96.6 87.2 77.9 88.1 82.7 91.4 93.8 92.6 53.2 85.3 65.6 68.3 70.2 69.2
AMS (ours) 48.1 79.5 59.9 83.4 76.3 79.6 79.3 96.5 87.0 82.4 91.7 86.8 94.7 92.6 93.7 63.0 77.0 69.3 76.3 75.6 75.9

† Cited from [13]. † Reproduced with official codes. † Reproduced by us.
* Emboldened figures: the best balanced performance H1.

Table 2: Semantic recovery accuracy (%) on D2AwA and I2AwA.
tasks A→P A→R P→A P→R R→A R→P I→A

method S U H2 S U H2 S U H2 S U H2 S U H2 S U H2 S U H2

Source-only 67.6 0.0 0.0 87.6 0.0 0.0 91.3 0.0 0.0 85.3 0.0 0.0 94.1 0.0 0.0 71.1 0.0 0.0 77.2 0.3 0.7
ABP* [52]† 68.1 0.0 0.0 87.9 0.0 0.0 91.7 0.0 0.0 83.6 0.0 0.0 94.4 0.0 0.0 70.0 0.0 0.0 79.8 0.0 0.0

TF-VAE* [30]† 70.4 0.0 0.0 88.4 0.0 0.0 85.1 0.0 0.0 79.6 0.0 0.0 96.4 0.0 0.0 72.5 0.0 0.0 62.8 0.0 0.0

ABP [52]† 64.5 6.4 11.7 86.0 5.9 11.1 84.0 24.4 37.8 81.3 12.7 21.9 93.8 16.2 27.6 67.6 7.9 14.1 78.0 13.4 22.9
TF-VAE [30]† 59.7 12.8 21.0 77.9 16.4 27.1 35.1 35.6 35.3 34.8 32.7 33.7 68.5 36.1 47.3 50.7 21.0 29.7 37.7 20.0 26.2

SR-OSDA [13]† 42.7 20.2 27.4 80.3 34.3 48.0 77.5 50.9 61.4 77.7 45.6 57.4 90.0 49.2 63.6 52.9 24.0 32.9 59.4 27.8 37.8
AMS (ours) 48.1 24.8 32.7 83.5 45.9 59.1 79.8 64.0 71.0 82.8 58.1 68.3 94.9 59.1 72.8 63.2 25.2 36.0 74.8 28.3 41.0

† Cited from [13]. † Reproduced by us. * Emboldened figures: the best balanced performance H2.

based on the recognition result, and then make inference based on the matching
of recovered semantic attributes with class semantic attribute prototypes in the
corresponding range (Cs or Cu) by cosine similarity, and evaluate the per-class
average accuracy of seen class recovery S, unseen class recovery U , and their
harmonic mean H2 = 2×S×U

S+U .

Implementation details.We use ResNet-50 [11] pre-trained on ImageNet [37]
as backbone. For fair comparison, we adopt the same network architecture for
feature encoder, attribute projector, and classifier as [13]. If not specified, we set
K to the ground-truth unseen cluster number, as we experimentally notice the
performance is not sensitive to its value in a certain range. We set m = 0.05,
s = 30, λ1 = 0.1, λ2 = 0.1, and λ3 = 1 in all experiments. Since [13] has not
released code at the time of our work, we report our reproduced results in this
paper. Please refer to the Appendix for more details as well as openness analysis,
qualitative study, and parameter analysis.

4.2 Experimental Results

Open-set domain adaptation evaluation. From results in table 1 we can
see that existing pure OSDA methods tend to underperform in all tasks because
they often learn to automatically separate samples into seen and unseen classes
via adversarial learning, which is unstable and could either accept most target
samples into seen classes or reject them into unseen classes, leading to highly im-
balanced performance (high OS∗ or OS⋄, but low H1). Besides, OSDA methods
are not designed to work with semantic information and cannot leverage the com-
plementary information in semantic attributes. In addition, our proposed AMS
notably outperforms the SR-OSDA baseline: our accuracy on seen class (OS∗)
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Table 3: The evolution path of AMS (in P→R). Margin: additive angular mar-
gin. Reg: angular regularization. Multi-unseen: |Cs+K|-way classifier instead of
|Cs +1|-way. MRC: maximum-response correspondence strategy. Re-projection:
regularized linear projection on detected target samples from seen classes.

modules base [13] AMS

fine-tuning margin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fine-tuning reg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
training margin ✓ ✓ ✓ ✓ ✓ ✓ ✓
training reg ✓ ✓ ✓ ✓

training multi-unseen ✓ ✓ ✓ ✓ ✓
training MRC ✓ ✓ ✓

post-training re-projection ✓
OS∗(%) 77.9 77.8 78.3 82.6 83.7 85.7 85.8 81.8 82.4 82.4
OS⋄(%) 88.1 90.3 90.2 90.4 89.5 82.9 81.5 91.4 91.7 91.7
H1(%) 82.7 83.6 83.2 86.3 86.5 84.3 83.6 86.3 86.8 86.8

S(%) 77.7 77.2 77.6 82.6 83.3 84.9 85.3 81.1 81.7 82.8
U(%) 45.6 50.9 50.7 47.3 41.6 47.3 40.5 56.8 58.1 58.1
H2(%) 57.4 61.3 61.3 60.1 55.4 60.7 54.9 66.8 67.9 68.3

is higher in 6 out of 7 tasks with an average improvement of 4.8%, accuracy on
unseen class (OS⋄) is higher or comparable in 4 out of 7 tasks with a notable
improvement of 5.4% in I→A, and harmonic mean H1 is higher or comparable
in all 7 tasks with an average increment of 2.9%, suggesting that we achieve a
balanced improvement on seen and unseen recognition accuracy.

Semantic recovery evaluation. We compare our method with several ZSL
methods as well as the recently-proposed SR-OSDA baseline on the task of se-
mantic recovery in table 2. ABP [52] and TF-VAE [30] are both GZSL methods
that need access to semantic attributes of unseen classes, and therefore violate
the SR-OSDA setting. We also report their results using only semantic attributes
of seen classes as ABP* and TF-VAE*. From table 2 we can have two observa-
tions. Firstly, the semantic recovery capability of semantic-transductive GZSL
methods largely relies upon the prior knowledge of unseen classes, whereas even
when given such prior knowledge they still tend to not behave well because they
cannot cope with domain gap. Secondly, our proposed AMS significantly out-
performs the existing SR-OSDA baseline on all metrics, with a notable average
increment of 6.6%, 7.6%, and 7.4% in S, U , and H2 respectively.

4.3 Ablation Study

Fine-tuning phase. As is shown in table 3, fine-tuning with additive margin
loss notably increases the final OS⋄ and U of unseen classes by 2.2% and 5.3%,
respectively. This result verifies that the model can benefit from the highly dis-
criminative representation that is initially learned on the seen classes in source
domain, even when such properties of representation are no longer purposefully
emphasized during the entire next training phase. Further, when angular regular-
ization is applied in fine-tuning, OS∗ and S of seen classes are further improved
by 0.5% and 0.4% respectively, which verifies that robust representation of seen
classes is beneficial to their recognition and recovery in presence of outliers.
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(a) (b) (c) (d)

Fig. 2: Visualization of representation learned with/without the proposed fine-
tuning phase. Points of bright color are from seen classes in the source domain.
Gray points are from unseen classes in the target domain. Best viewed in color.

Training phase. As is shown in table 3, applying angular margin loss in
training brings salient improvements on all evaluation metrics except for a de-
crease on U . This phenomenon is because to this end the classifier is set to
|Cs + 1|-way, which treats different unseen classes as one class. As a result,
though recognition accuracy on seen classes and the overall unseen class benefits
from the learned discriminative representation, the diverse unseen classes are
forced to be aligned, leading to confused semantic recovery. Besides, if angular
regularization is added at this time, there is a further decrease in U , which is
caused by further pulling different unseen classes closer.

With such observation, we now turn the classifier to |Cs + K|-way to cope
with diverse unseen classes, but still cannot see a notable improvement. This
is caused by the inconsistent correspondence between clusters of unseen classes
and classifier neurons in different training epochs, which hinders the knowledge
learning of unseen classes. Therefore, it is not until the maximum-response cor-
respondence (MRC) mechanism is adopted that the power of multiple unseen
clusters can be truly exerted, bringing notable improvements on all metrics, and
particularly, semantic recovery accuracy U of unseen classes is increased by a
whopping 12.5%.

To this end, we can conclude that in the training phase, for semantic recovery
of unseen classes U , angular regularization is beneficial only when the classifier
has multiple channels for unseen classes, while such classifier should work under
the MRC mechanism.

Post-training re-projection. Results in the last two columns in table 3
verify the effectiveness of learning a re-projection on detected target seen classes
after training, bringing an extra 1.1% increment on seen class recovery S, which
is non-trivial for accuracy averaged over 10 classes with more than 10,000 images
in total. Note that the only difference between the last two columns lies in their
S results, since the re-projection is only learned on target samples recognized as
from seen class after the training phase, and therefore will not have any effect
on unseen classes as they are now completely separated.

4.4 Visual Study of Representation

Visual representation learned in the fine-tuning phase. To better observe
the property of representation learned in fine-tuning phase, we set the dimen-
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(a) (b) (c) (d)

Fig. 3: Visualization of representation and relevant studies of training phase.
(a),(b): Lavender and gray points are from seen and unseen classes in the target
domain respectively. Points in other colors are from different seen classes in the
source domain. (c): Accuracy of pseudo-labels determined by K-means (in task
R→P) during training. (d): Final accuracy of recognition and semantic recovery
using different number of clusters for unseen classes. Best viewed in color.

rabbit (64.3%)

racoon (20.3%)

rhinoceros (38.3%)sheep (52.3%)

squirrel (0.4%)

tiger (83.9%)

zebra (83.5%)

(a)

rabbit (72.2%)

racoon (69.2%)

rhinoceros (38.5%)

sheep (75.3%)

squirrel (2.7%) zebra (85.0%)

tiger (88.7%)

(b)

Fig. 4: Visualization of semantic representation (projected attributes). Round
points in different colors are representations of target samples from different
unseen classes, while triangles are their ground-truth prototypes accompanied
by a typical image. The percentage in parentheses reports accuracy of semantic
recovery. Best viewed in color.

sion of visual features to 2 and plot them in Fig. 2. Fig. 2 (a) and (c) visualize
the representation of seen classes learned with ordinary Softmax and with our
proposed fine-tuning phase in task P→R, respectively. We can see that the for-
mer is linearly separable, making a full partition of the entire feature space. In
contrast, after our fine-tuning, there is an open space left out at the center of
the feature space, and the decision boundary is no longer linear. As the result,
when deployed on the target domain, as is shown in Fig. 2 (b),(c), in the former
case, samples from unseen classes are misclassified into almost all seen classes,
while in the latter case, part of samples from unseen classes are rejected into the
vacant space at the center, and seen classes are less affected.

Visual representation learned in the training phase. Fig. 3 (a),(b)
show the T-SNE [27] visualization of representation learned by the SR-OSDA
framework proposed in [13] and our AMS in task P→R, respectively. We can
observe that feature clusters of both seen and unseen classes are more compact,
and different clusters are better separated in AMS, thanks to the angular margin
and regularization. We also show the accuracy of pseudo-labels determined by
K-means clustering in task R→P in Fig. 3 (c) and can see that AMS achieves a
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better balance between seen and unseen classes, i.e., a higher H1, which under-
pins the better performance of the later cross-domain alignment and recognition.

Semantic representation learned in the training phase. Fig. 4 (a),(b)
show the T-SNE [27] visualization of semantic representation (projected at-
tributes) of unseen classes in task P→R. Compared with [13], our semantic
representation mainly has two merits. First, our semantic representation is more
compactly clustered around corresponding semantic prototypes. For instance,
our representations of zebra and tiger better enclose their prototypes, which
boosts their recovery accuracy by 1.5% and 4.8%. Second, our semantic represen-
tations of different classes are more separated. For example, our representations
of sheep and racoon are farther away from the prototypes of other classes, which
increases their recovery accuracy by 23% and 48.9%. These phenomena verify
the functionality of angular margin and regularization for semantic recovery.

How does the number of clusters affect learning? Fig. 3 (d) shows
the performance of AMS in task P→R when the cluster number K varies from
1 to up to 25. It can be observed that when K is very small, OS⋄ and U are
low since the model nearly completely ignores the intrinsic diversity of unseen
classes. As K grows, OS⋄ and U rise rapidly, resulting in more balanced H1 and
H2. When K surpasses the ground truth, as is to the right of the dashed line in
Fig. 3 (d), performance on all metrics is still stable, even when K reaches more
than three times that of the ground truth. This result verifies the robustness of
AMS and also suggests we choose a relatively large cluster number in real-world
deployment.

5 Conclusion

In this paper, we present a novel framework termed AMS for the practical seman-
tic recovery open-set domain adaptation challenge. At the core of our concep-
tion is the widely acknowledged significance of representation learning for visual
tasks. To learn discriminative visual representation robust to outliers, AMS first
fine-tunes a pre-trained model on the seen classes in the source domain with an
additive angular margin and angular regularization. Grounded by such learned
initial representation, AMS performs cross-domain alignment on seen classes,
separates unseen classes from seen ones, and accentuates the intrinsic diversity
of unseen classes by resorting to additive angular margin and angular regular-
ization again on the joint visual-semantic representation of the target domain.
Further, AMS adopts an efficient post-training re-projection to boost semantic
recovery of target seen classes without hurting that of unseen classes. Exten-
sive quantitative experiments as well as various visual studies verify that AMS
achieves competitive and even state-of-the-art performance.
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