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In this supplementary material, we provide the additional information for,

S1 clarification on the code implementation, and discussion on the future work,
societal impact and limitations,

S2 comparison between our proposed TACS and other domain adaptation prob-
lems,

S3 detailed implementation of our proposed framework,

S4 detailed information of involved datasets in our experiments,

S5 additional quantitative and qualitative experimental results.

S1 Code, Future Work, Societal Impact and Limitations

Code Implementation. Our implementation is publicly available at https:
//github.com/ETHRuiGong/TADA.

Future Work. Inspired by [11, 14,20], the integration of our method and the
active learning based methods [11,14,20], identifying the informative instances
to label under TACS setting, serves as a promising future work direction.
Potential Negative Societal Impact and Limitations. Societal Impact:
Our proposed approach provides the potential to adapt the semantic segmenta-
tion model even under the inconsistent taxonomy, saving much cost and effort for
labeling when new data and new requirements come. Thus, there is also a risk for
reduced need of data labelling, leading fewer jobs in this domain and potential
unemployment. Limitations: The main limitation is that the domain adaptation
approach is yet to achieve the performance of fully supervised training.

S2 Comparison with Other Domain Adaptation Problems

In Sec. 2 of the main paper, we compare different domain adaptation problems
with our newly proposed taxonomy adaptive cross-domain semantic segmenta-
tion (TACS) problem. Here we provide more clarification. We firstly clarify the
difference overview between TACS and other domain adaptation problems, and
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then explain the detailed difference between TACS and different domain adap-
tation problems, respectively.

Overview. As discussed in the abstract and Sec. 1 of the main paper, our
TACS tackles the inconsistent taxonomy between the source and target do-
main, motivated by the fact that the target domain task requires a different
taxonomy than the one imposed by the source domain in many real world set-
tings, due to different scenarios, different granularity levels classes, inconsistent
annotation practices, or the strive towards an increasingly fine-grained taxon-
omy [7]. Our TACS includes three typical inconsistent taxonomy types, i.e., i)
open taxonomy, ii) coarse-to-fine taxonomy and iii) implicitly-overlapping tax-
onomy. We then compare our TACS with other domain adaptation problems.
The traditional unsupervised domain adaptation (UDA) [23,24], partial domain
adaptation (PDA) [2] and few-shot/semi-supervised domain adaptation (FS/SS
DA) [10,21,30] all assume the consistent taxonomy (see Fig. 1 of the main paper)
between the source domain and the target domain, while ignoring the inconsis-
tent taxonomy between the source domain and the target domain tackled by
our TACS. The open-set (OS) [12,19]/ universal (US) [29] / zero-shot (ZS) [1]/
class-incremental (CI) [6] domain adaptation problems touch upon the specific
or special case of the open taxonomy setting in our TACS. However, the open
taxonomy setting in our TACS provides a more flexible and practical setting (see
next analysis in TACS vs. OS/US DA and TACS wvs. ZS/CI DA for more de-
tails), compared with OS/US/ZS/CI DA. Besides, the coarse-to-fine taxonomy
and implicitly-overlapping taxonomy settings in our TACS are not touched upon
by above other domain adaptation problems. Thus, our TACS provides a more
general, flexible and practical setting, allowing for different types of inconsistent
taxonomies, e.g., different granularity levels classes, between the source and the
target domain. Next, we compare our TACS with different domain adaptation
problems in more detail, respectively.

TACS wvs. Unsupervised Domain Adaptation (UDA). The traditional
UDA [23,24] only focuses on the image-level domain gap, but ignores the label-
level domain gap (cf. Fig. 1 of the main paper), i.e., assuming the consistent
taxonomy between the source domain and the target domain.

TACS vs. Partial Domain Adaptation (PDA). The implicitly-overlapping
taxonomy in our TACS is totally different from PDA [2]. PDA only assumes
the reduced label space from the source domain to the target domain, e.g.,
{“vehicle”, “bicycle”} — {“bicycle”}, which actually still assumes consistent
taxonomy between the source domain and the target domain (cf. (¢) in Fig. 1 of
the main paper). However, the implicitly-overlapping taxonomy setting in our
TACS touches the problem that, for a certain class in the source domain, one
or more of its sub-classes are merged into other classes in the target domain,
e.g., {“vehicle”, “bicycle”} — {“car”, “cycle”}, which tackles the inconsistent
taxonomy between the source domain and the target domain (cf. (f) in Fig. 1 of
the main paper).

TACS vs. Few-Shot/Semi-Supervised Domain Adaptation (FS/SS DA).
FS/SS DA [10,21,30] aims at improving the domain adaptation performance by
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introducing the few-shot fully labeled target domain samples. However, FS/SS
DA still assumes the consistent taxonomy between the source domain and the
target domain.

TACS vs. Open-Set/Universal Domain Adaptation (OS/US DA). OS/US
DA [12,19,29] aims at recognizing the new unseen classes in the target domain
together as an “unknown” class, which can be seen as a special case of our open
taxonomy setting in our TACS. Differently, the open taxonomy setting in our
TACS aims at recognizing different new unseen classes explicitly and separately.
For example, assuming {“terrain”, “train”} are the new unseen classes in the
target domain, OS/US DA just aims at recognizing the pixels of {“terrain”,
“train” } classes as the “unknown” class pixel together. However, the open tax-
onomy setting in our TACS aims at recognizing the pixels of { “terrain”, “train”}
classes as the “terrain” and “train” classes explicitly and seperately, as the recog-
nition of the seen class. Besides, OS/US DA does not consider the coarse-to-fine
taxonomy and implicitly-overlapping taxonomy setting in our TACS.

TACS wvs. Zero-Shot/Class-Incremental Domain Adaptation (ZS/CI
DA). Similar to the open taxonomy setting of our TACS, ZS/CI DA [1,6] aims at
recognizing the new unseen classes in the target domain explicitly and separately,
which can be seen as a specific case of the open taxonomy setting of our TACS.
However, ZS/CI DA only considers the case where the unseen classes are absent
in the source domain. In contrast, the open taxonomy setting in our TACS
also allows for the unseen classes to exist in the source domain, where they are
unlabelled. Besides, ZS/CI DA does not consider the coarse-to-fine taxonomy
and implicitly-overlapping taxonomy setting in our TACS.

S3 Framework Implementation

In the main paper, we propose the new taxonomy adaptive cross-domain seman-
tic segmentation (TACS) problem, which allows inconsistent taxonomies between
the source domain and the target domain in the domain adaptation for semantic
segmentation. TACS approaches the domain adaptation for semantic segmen-
tation on both of the image level and the label level. In order to address the
TACS problem, a set of pseudo-labelling techniques and the contrastive learning
scheme are developed to reduce both of the label-level and image-level domain
gap (cf. Sec. 3 of the main paper). Our proposed complete approach demon-
strates the strong performance under different TACS settings, open taxonomy,
coarse-to-fine taxonomy and implicitly-overlapping taxonomy (cf. Table 2, Ta-
ble 3 and Table 4 of the main paper). Moreover, our suggested mixed-sampling
and contrastive learning based scheme outperforms the state-of-the-art (SOTA)
methods by a large margin, under traditional unsupervised domain adaptation
(UDA) setting (cf. Table 1 of the main paper). Here we present the implemen-
tation details of our proposed framework.

Batch Size. For the open taxonomy, coarse-to-fine taxonomy and implicitly-
overlapping taxonomy experiments of TACS in Sec. 4 of the main paper, in each
training batch, there are 2 source domain images, 2 unlabeled target domain
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images and 2 few-shot labeled target domain images mixed in the bilateral mixed
sampling module. For the consistent taxonomy experiments of UDA in Sec. 4 of
the main paper, we strictly follow the traditional UDA setting, and the target
domain is completely unlabelled. Therefore, under UDA setting, in each training
batch, there are 2 source domain images and 2 unlabelled target domain images
mixed in the class mixed sampling way [22].

Parameters. The source domain images are resized to 1280x720, and the target
domain images are resized to 1024x512. And the random crop with size 512x512
is then adopted. We adopt the SGD optimizer to train the semantic segmentation
network, whose momentum is set as 0.9 and the weight decay is set to 5x107%.
The learning rate is set as 2.5x1074, with polynomial decay of power 0.9. The
iteration 7" in Sec. 3.5 for starting training the RL module is set as 130000. The
total training iteration is set as 250000.

Contrastive Learning. We adopt the 2048-dim output vector of the final layer
of feature extractor, i.e., , the layer before the classifier, of the Deeplab-v2 frame-
work. The 2048-dim vector is mapped to a 256-dim vector with a projection head,
composed of 1x1 Conv, Batchnorm, ReLLU, 1x1 Conv layers. The 256-dim vector
is then adopted as the pixel-wise feature. For each mini-batch, we use 100 anchor
pixel samples per category. The 100 pixel samples of the same category are taken
as positive samples, while the other pixel samples of different categories are all
taken as negative samples.

Baseline Setup. In the baseline methods setup of Table 2, Table 3 and Table 4
in the main paper, we add the additional supervised loss to train the model in the
supervised way, with the few-shot /partially labeled samples in the target domain.
For the baseline methods which adopt the pseudo-label based training strategy,
such as FDA [28], TAST [9], and DACS [22], the few-shot/partial label on the
target domain samples is combined with the generated pseudo-label to attain
the final pseudo-label. L.e., in the pseudo-label generation process on the few-
shot/partially labeled samples, we adopt the ground-truth label for the labeled
parts, while we adopt the generated pseudo-label for other unlabeled parts.
Compute Resources. The code is implemented with PyTorch [13]. Experi-
ments are conducted on an NVIDIA GeForce RTX 2080 Ti GPU, with 11GB
memory, where it takes 3 days for training the whole 250000 iterations. In the
whole investigation process of our paper, the total compute used is around 390x 3
GPU days.

S4 Datasets Information

As introduced in Sec. 4 of the main paper, there are 4 datasets in total involved
in our experiments, including SYNTHIA [16], GTA5 [15], Synscapes [27] and
Cityscapes [1]. Here we provide more information about the datasets.
SYNTHIA. SYNTHIA is a syntheic image dataset, consisting of photo-realistic
images rendered from a virtual city. We adopt SYNTHIA-RAND-CITYSCAPES
subset, including 9400 densely labeled synthetic images. SYNTHIA is licensed
under a CC BY-NC-SA 3.0 license.
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GTAS5. GTAS5 is a synthetic image dataset, containing 24966 urban scene im-
ages. The images in GTAD dataset are rendered from game engine, and densely
labeled with pixel-level semantic annotation. The scene of GTAS dataset is based
on the city of Los Angeles. We were unable to find the license for the GTA5
dataset. But the code for extracting the GTA5 dataset image from the game
engine is released under the MIT license.

Synscapes. Synscapes is a photo-realistic synthetic dataset, created with physi-
cally based rendering techniques. Synscapes is built for street scene parsing, com-
posed of 25000 densely pixel-level annotated images. Synscapes customizes the li-
cense, i.e., Synscapes grants a non-exclusive, non-transferable, non-sublicensable,
worldwide license to use the dataset for non-commercial purposes.
Cityscapes. Cityscapes is a real street scene image dataset, collected from dif-
ferent European cities. We adopt the training set of Cityscapes during the train-
ing stage, covering 2975 images. And we use the validation set of Cityscapes,
including 500 images, to evaluate the performance of the semantic segmentation
model. Cityscapes customizes the license, i.e., Cityscapes is made freely avail-
able to academic and non-academic entities for non-commercial purposes such as
academic research, teaching, scientific publications, or personal experimentation.
Whether the datasets cover personally identifiable information or of-
fensive content? The SYNTHIA, GTA5 and Synscapes are all synthetic image
datasets, and are rendered from the virtual city or game engine. The personally
identifiable information or offensive content is not found in them. Cityscapes is
a real street scene image dataset, but Cityscapes is for non-commercial use only.
Even though Cityscapes covers the “person” class as one of the semantic annota-
tion classes, the personally identificable information or offensive content is also
not found in Cityscapes. Besides, Citysacpes creators state that, if any people
find themselves or their personal belongings in the data, they will immediately
remove the respective images from their servers after receiving the contact from
the people.

S5 Additional Experimental Results

In Sec. 4 of the main paper, we report the experimental results under the tradi-
tional UDA setting and different TACS settings, i.e., open taxonomy, coarse-to-
fine taxonomy and implicitly-overlapping taxonomy. Here we provide additional
quantitative and qualitative experimental results to further prove the effective-
ness of our proposed approach.

S5.1 TACS: Coarse-to-Fine Taxonomy involving More Classes

In order to prove the effectiveness of our proposed approach when dealing with
the inconsistent taxonomy involving more classes, we provide the experimental
results under the coarse-to-fine taxonomy setting, with more fine-grained classes
in the target domain.
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Table S1: Coarse-to-Fine Taxonomy: GTA5—Cityscapes. The “moving object”
class in the GTADb dataset is fine-grained into 8 classes in the Cityscapes dataset.
The gray columns are the 8 fine-grained classes in the Cityscapes and correspond-

ing mean IoU of these classes.
Method ‘Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike ‘mIoU mloU

Source ‘71.59 20.93 67.54 10.00 15.49 24.15 29.90 19.46 79.83 19.10 74.07 34.95 10.53 67.43 9.98 17.72 7.86 4.75 25.14‘22.30 32.13
TAST | ]‘81.87 35.74 79.58 37.35 25.77 32.26 45.14 39.14 85.34 34.09 85.14 57.58 27.32 81.64 28.01 45.54 26.03 21.58 44.28‘41.50 48.08
Ours ‘95.35 68.30 86.75 41.39 38.95 36.62 43.96 49.49 87.64 45.90 87.43 63.96 28.31 88.41 45.41 59.17 57.34 37.02 57.13‘54.59 58.87

Table S2: Consistent Taxonomy: GTA5—Cityscapes. The mloU is over 19
classes. In the UDA setting, we adopt the class-mixed sampling strategy in DACS
to augment the target domain. The best results are denoted in bold. T is the per-
formance reported in the DACS [22]. * is the peak performance model publicly
provided by the author of DACS [22].

Method ‘R,oml SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike ‘mloL
ADVENT [21] 89.4 33.1 810 26.6 26.8 272 33.5 247 839 367 788 587 30.5 848 385 445 1.7 31.6 324|455
FDA [25] 92,5 53.3 824 265 27.6 364 406 389 823 398 780 626 344 849 341 53.1 169 27.7 46.4 | 50.5
IAST [9] 93.8 57.8 85.1 39.5 26.7 262 43.1 347 849 329 88.0 626 290 87.3 392 496 23.2 347 39.6 | 51.5
DACS [22]" 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 35.78 84.45 45.73 50.19 0.00 27.25 33.96 | 52.14
DACS [22]* 93.25 50.20 87.21 36.75 34.80 38.83 39.80 48.68 87.06 44.06 88.76 65.19 34.38 89.25 51.64 52.71 0.00 28.59 48.42]53.66

Ours (DACSJrUCT)‘QS,OS 55.92 87.91 38.19 38.76 40.44 42.14 54.50 87.53 46.67 87.77 66.26 33.67 90.18 47.54 54.15 0.00 41.24 53.34‘55.75

Setup. We adopt the GTA5 dataset as the source domain, and the Cityscapes
dataset as the target domain. The label space of source domain is composed
of road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, terrain,
vegetation, sky, moving objects. The moving objects class in the source domain
is further divided into 8 classes, including person, rider, car, truck, bus, train,
motorcycle and bicycle in the target domain.

Comparison with the SOTA. In Table S1, we show the quantitative com-
parison between our proposed method, the non-adapted baseline “source” and
other SOTA self-training based method IAST [9]. Same as the “source” base-
line in the Table 2, Table 3 and Table 4 of the main paper, the non-adapted
baseline “source” in Table S1 is trained in the supervised way on the labeled
source domain and the few-shot labeled target domain. It is shown that both of
the adaptation-based methods, IAST and our proposed method, perform better
than the non-adapted baseline method, 48.08%, 58.87% vs. 32.13%. Moreover,
our proposed method outperforms the IAST method by a large margin, 58.87%
vs. 48.08%. It proves the effectiveness of our proposed method when dealing with
the inconsistent taxonomy involving more classes.

S5.2 UDA: Consistent Taxonomy

In Table 1 of the main paper, we show the comparison between our suggested
mixed-sampling and contrastive learning based scheme and other SOTA meth-
ods under traditional UDA setting, SYNTHIA—Cityscapes. It is shown that
our suggested mixed-sampling and contrastive learning based scheme outper-
forms other SOTA methods under traditional UDA setting. Here we provide
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Table S3: More baselines, under Table 2 setting in the main paper.

Method |FSS [30] ASS [26] BUDA [1] DDM [3] MME [18] OpenMatch [17] Ours (BMS) Ours(All)
mloU | 23.76 24.10 33.63 34.27 31.58 31.23 43.44 49.72

additional quantitative experimental results under the traidtional UDA setting,
GTA5—Cityscapes, to further prove the effectiveness of our suggested mixed-
sampling and contrastive learning based scheme for traditional UDA problem.
Setup. We adopt the GTA5 dataset as the source domain, and the Cityscapes
dataset as the target domain. The source domain and the target domain share
the same label space, where there are 19 classes in total: road, sidewalk, building,
wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider,
car, truck, bus, train, motorcycle and bicycle. We strictly follow the traditional
UDA setting, and the target domain is completely unlabelled.

Comparison with the SOTA. In Table S2, we report the quantitative exper-
imental results of our suggested mixed-sampling and contrastive learning based
scheme and other SOTA methods under the traditional UDA setting. It is shown
that our suggested mixed-sampling and contrastive leaning based scheme out-
performs current SOTA methods under the traditional UDA setting, 55.75%
vs. 53.66%. It further verifies the validity of our suggested mixed-sampling and
contrastive learning based scheme for traditional UDA problem.

S5.3 Comparisons to Other Contrastive Learning based Methods

Different from the image-wise [25], semantic distribution-wise [8] and categor-
ical dictionary-wise [5] contrasitve learning, our CT module is the pixel-wise
contrastive learning, and is further rectified by the uncertainty prediction, i.e., ,
UCT. Among [5,8,25], [25] is for image classification, while [5,8] are for semantic
segmentation. Compared to [5, 8] under Table 1 setting of the main paper, our
method outperforms [5, 8], 51.45% vs. 50.2%, 46.0%, proving the advantage of
our uncertainty rectified pixel-wise contrastive learning.

S5.4 Comparisons to Other DA Problems Baselines

Though some works, e.g., , [17, 18], explored open-set or few-shot/semi- DA
problems, most of the methods were designed for image classification, while only
few of them attempt semantic segmentation [1, 3,26, 30]. Thus, we incorporate
the popular and effective fine-tuning [46] and pseudo-label [26] based few-shot
training strategy into the SOTA DA segmentation methods as baselines in Ta-
ble 2-4 of the main paper. To further prove the effectiveness of our proposed
approach for TACS problem, we compare to more baselines in Table S3. [1] is a
zero-shot/ class-incremental DA method. [3] is the semi-supervised DA method.
The dual-level domain mixing in [3] is realized by 1) randomly copying rect-
angular region from the source image to the well-labeled target image and 2)
concatenating them into one mini-batch. DDM [3] suffers from the saturation
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of the mixed sample though the color jitter and Gaussian blur are applied, due
to only few-shot target samples are labeled in TACS setting. Instead, our BMS
copies the class-specific regions from both the source and labeled target image
to the abundant unlabeled target image, preventing the saturation (43.44% vs.
34.27% in Table S3). The semantic-level adaptation (SA) module in [26] is re-
moved under TACS, because the SA module requires the consistent taxonomy
between the source classes and the labeled target classes, while only the incon-
sistent taxonomy target classes are few-shot labeled under TACS. [18] and [17]
are proposed for image classification, thus we modify them for segmentation
by, 1) implementing [18] based on ADVENT [24], 2) since [17] does not touch
DA problem, we combine [17] with the DA method FDA [28] by applying the
core open-set soft-consistency loss in [17] to the images before and after Fourier
transform in [28].

S5.5 Additional Qualitative Results

In Fig. 5 of the main paper, we show the qualitative semantic segmentation
results, w/o adaptation and adapted with our proposed method, under the open
taxonomy, coarse-to-fine taxonomy and implicitly-overlapping taxonomy setting.
Here we further provide more qualitative segmentation results, w/o adaptation,
adapted with other method, and adapted with our proposed method, under
the aforementioned settings. In Fig. S1, under different inconsistent taxonomy
settings, we show the qualitative semantic segmentation results on the target
domain, w/o adaptation, adapted with TAST [9], and adapted with our proposed
method. It is shown that our proposed method outperforms the non-adaptation
baseline and other adaptation-based method TAST [9] qualitatively. It further
proves the effectiveness of our proposed method for the TACS problem.



TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation 9

Open Taxonomy

Coarse-to-Fine Taxonomy

Implicitly-Overlapping Taxonomy

(a) RGB (b) GT (w/o Adaptation (d) IAST (e) Ours

Fig. S1: Qualitative semantic segmentation results on the target domain under
different inconsistent taxonomy settings, open taxonomy, coarse-to-fine taxon-
omy and implicitly-overlapping taxonomy. (a) shows the RGB target domain
image. (b) gives the ground truth semantic segmentation map. (c) is the seman-
tic segmentation result without adaptation. (d) is the semantic segmentation
result adapted by the IAST [9] method. (e) is the semantic segmentation result
adapted by our proposed method. Refer to the red box region for the adaptation
results of the inconsistent taxonomy classes. The target domain label space of
open taxonomy and coarse-to-fine taxonomy setting both have 19 classes, whose
corresponding color in the semantic segmentation map is listed in the top color
grid. The target domain label space of the implicitly-overlapping taxonomy set-
ting has 16 classes, whose corresponding color in the semantic segmentation map
is listed in the low color grid.
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