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Abstract. Traditional domain adaptive semantic segmentation addresses
the task of adapting a model to a novel target domain under limited or no
additional supervision. While tackling the input domain gap, the stan-
dard domain adaptation settings assume no domain change in the output
space. In semantic prediction tasks, different datasets are often labeled
according to different semantic taxonomies. In many real-world settings,
the target domain task requires a different taxonomy than the one im-
posed by the source domain. We therefore introduce the more general
taxonomy adaptive cross-domain semantic segmentation (TACS) prob-
lem, allowing for inconsistent taxonomies between the two domains. We
further propose an approach that jointly addresses the image-level and
label-level domain adaptation. On the label-level, we employ a bilateral
mixed sampling strategy to augment the target domain, and a relabelling
method to unify and align the label spaces. We address the image-level
domain gap by proposing an uncertainty-rectified contrastive learning
method, leading to more domain-invariant and class-discriminative fea-
tures. We extensively evaluate the effectiveness of our framework under
different TACS settings: open taxonomy, coarse-to-fine taxonomy, and
implicitly-overlapping taxonomy. Our approach outperforms the previ-
ous state-of-the-art by a large margin, while being capable of adapt-
ing to target taxonomies. Our implementation is publicly available at
https://github.com/ETHRuiGong/TADA.

Keywords: Domain Adaptation, Semantic Segmentation, Inconsistent
Taxonomy

1 Introduction

Traditional unsupervised domain adaptation (UDA) approaches for semantic
segmentation [7,15,20,34,35,37] typically focus on the image level domain gap,
which can involve visual style, weather, lighting conditions, etc.. However, these
methods are restricted by the assumption of having consistent taxonomies be-
tween source and target domains, i.e., each source domain class can be unam-
biguously mapped to one target domain class (Fig. 1 (a-c)), which is often not the
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Fig. 1: Consistent vs. inconsistent taxonomy. In (a)-(f), the upper row shows
the source domain classes, and the lower row the target domain classes. Circles
represent classes while an arrow represents a mapping from a source domain
class to a target domain class. (a)-(c) and (d)-(f) are examples of consistent and
inconsistent taxonomies, resp. Different from other domain adaptation problems,
e.g., universal/partial/open-set domain adaptation [2,27,43], that only touch the
consistent taxonomy or special case of open taxonomy, our TACS provides a more
general problem, including the consistent taxonomy and different inconsistent
taxonomies types. More detailed comparisons with other domain adaptation
problems are put in Sec. 2 and Sec. S2 in the supplementary.

case. In many applications, the label spaces of the source and target domains are
inconsistent, due to different scenarios or requirements, inconsistent annotation
practices, or the strive towards an increasingly fine-grained taxonomy [8,19,25].

The aforementioned considerations motivate us to consider the label level do-
main gap problem. Even though recent open/universal/class-incremental domain
adaptation works [18, 27, 43] touched upon the label level domain gap, they 1)
only took image classification as test-bed, and 2) only focused on unseen classes
in the target domain. However, the label level domain gap in practical scenarios
is more complicated than only involving unseen classes. We therefore formulate
and explore the label level domain gap problem in a more general and com-
plete setting. We identify three typical types of label taxonomy inconsistency. i)
Open taxonomy : some classes, e.g., “terrain” in Fig. 1(d), appear in the target
domain, but are unlabeled or unseen in the source domain. ii) Coarse-to-fine tax-
onomy : some classes in the source domain, e.g., “person”, are split into several
sub-classes in the target domain, e.g., “pedestrian” and “rider’ (Fig. 1(e)). iii)
Implicitly-overlapping taxonomy : for a certain class in the source domain, one or
more of its sub-classes are merged into other classes in the target domain. For
example, there exists a taxonomic conflict between {“vehicle”, “bicycle”} in the
source domain and {“car”, “cycle”} in the target domain (Fig. 1(f)).

We therefore introduce a more general and challenging domain adaptation
problem, namely taxonomy adaptive cross-domain semantic segmentation (TACS).
In traditional UDA for semantic segmentation, the goal is to transfer a model
learned on a labelled source domain to an unlabelled target domain, under the
consistent taxonomy assumption. In contrast, TACS allows for inconsistent tax-
onomies between a labeled source domain and a few-shot/partially labeled target
domain, where the inconsistent classes of the target domain are exemplified by
a few labeled samples. Thus TACS approaches domain adaptation on both the
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image and label side, under the few-shot/partially labeled setting. Such task
setting is realistic, but involves practical challenges. On the one hand, TACS al-
lows methods to make full use of the labeled source domain without annotation
costs in the target domain for the consistent classes. On the other hand, for the
inconsistent classes the taxonomy adaptation should only require very limited
supervision in the target domain, i.e., only few samples should be labeled there.

We put forward the first approach for TACS, addressing both the image and
label domain gaps. As to the latter, we aim to remedy the gap using pseudo-
labelling techniques. First, a bilateral mixed sampling strategy is proposed to
augment unlabeled images by mixing them with both labeled source-domain
and target-domain samples. Second, we map inconsistent source domain labels
with a stochastic label mapping strategy, which encourages a more flexible tax-
onomy adaptation during the earlier learning phase. Third, a pseudo-label based
relabeling strategy is proposed to replace the inconsistent classes in the source-
domain according to the model’s predictions, to further enforce taxonomy adap-
tation during the training process. To tackle the image level domain gap, we
introduce an uncertainty-rectified contrastive learning scheme that facilitates
the learning of class-discriminative and domain-invariant features, under the
uncertainty-aware guidance of predicted pseudo-labels. Our complete approach
for TACS demonstrates strong results in different inconsistent taxonomy settings
(i.e., open, coarse-to-fine, and implicitly-overlapping). Moreover, our suggested
mixed-sampling and contrastive-learning scheme outperforms current state-of-
the-art methods by a large margin in the traditional UDA setting.

To summarize, our contributions are three-fold:

– A new problem – taxonomy adaptive cross-domain semantic segmentation
(TACS) – of addressing both image and label domain gaps is proposed. It
opens up a new avenue for more flexible cross-domain semantic segmentation.

– A generic solution for UDA and TACS is proposed, for which the unified
mixed-sampling, pseudo-labeling and uncertainty-rectified contrastive learn-
ing scheme is presented to solve both image and label level domain gaps.

– Extensive experiments are conducted under the traditional UDA and the
new TACS settings, showing the effectiveness of our approach.

2 Related Work

Domain adaptation: The traditional unsupervised domain adaptation (UDA)
[9, 16, 21, 35, 47, 48] considers the case when the source and target domain share
the same label space and where the target domain is unlabeled. However, this set-
ting does not conform with many practical applications. Some recent works have
therefore explored alternative settings. Open-set/universal domain adap-
tation [27, 31, 43] aims at recognizing the new unseen classes in the target do-
main together as the “unknown” class.Class-incremental/zero-shot domain
adaptation [1, 18] are proposed to recognize the new unseen classes explicitly
and separately in the target domain under the source domain free setting and
in the zero-shot segmentation way, resp. These works touch upon the specific
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case of the open taxonomy setting in TACS. However, the above works only
consider the case where the unseen classes are absent in the source domain. In
contrast, the open taxonomy setting in TACS also allows for the unseen classes
to exist in the source domain, where they are unlabelled. Besides, the above
works do not consider the coarse-to-fine and implicitly-overlapping taxonomy
problems, which are covered by the more general TACS formulation. Recent
few-shot/semi-supervised domain adaptation works [24,33,46] aim at im-
proving the domain adaptation performance by introducing few-shot fully la-
beled target domain samples. However, they still assume a consistent taxonomy
between the source and target domain. Moreover, all the aforementioned non-
UDA works, except for [1] and [46], only touch upon the image classification
task. Instead, our TACS aims at semantic segmentation, which is more chal-
lenging and raises particular interest due to its great importance in autonomous
driving [23,34,35,37]. More detailed comparisons between our TACS and differ-
ent domain adaptation problems are put in the supplementary.
Contrastive learning: Recently, contrastive learning [4–6,12,13,36] was proven
to be successful for unsupervised image classification. Benefiting from the strong
representation learning ability, contrastive learning has been applied to differ-
ent applications, including semantic segmentation [38], image translation [28],
object detection [41] and domain adaptation [17]. In [17], contrastive learning is
exploited to minimize the intra-class discrepancy and maximize the inter-class
discrepancy for the domain adaptive image classification task. However, since the
approach is designed for the image classification task, it utilizes the contrastive
learning between the whole feature vectors of the different image samples, which
is not directly applicable to dense prediction tasks, such as semantic segmenta-
tion. Instead, we develop a pseudo-label guided and uncertainty-rectified pixel-
wise contrastive learning, to distinguish between positive and negative pixel sam-
ples to learn more robust and effective cross-domain representations.

3 Method

3.1 Problem Statement

In our taxonomy adaptive cross-domain semantic segmentation (TACS) problem,
we are given the labeled source domain Ds = {(xs

i ,y
s
i )}

ns
i=1, where x

s ∈ RH×W×3

is the RGB color image, and ys is the associated ground truth CS-class semantic
label map, ys ∈ {1, ..., CS}H×W . In the target domain, we are also given a

limited number of labeled samples Dt = {(xt
i,y

t
i)}n

t

i=1, which we refer to as few-
shot or partially labeled target domain samples. We are also given a large set
of unlabeled target domain samples Du = {xu

i }n
u

i=1. The target ground truth yt

follows the CT -class semantic label map. Denoting the source and target image
samples distributions as PS and PT , we have xs ∼ PS , x

t,xu ∼ PT . The source
and target image distributions are different, i.e., PS ̸= PT . The label set space
of Ds and {Dt,Du} are given by Cs = {cs1, cs2, ..., csCS

} and Ct = {ct1, ct2, ..., ctCT
}

resp., and Cs ̸= Ct. The inconsistent taxonomy subsets of Cs, Ct are denoted as
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Cs, Ct, resp. Our goal is to train the model on Ds, Dt and Du, and evaluate on
the target domain data in the label sets space Ct.
Inconsistent Taxonomy. 4 Specifically, we consider three different cases of
inconsistent taxonomy. 1) The open taxonomy considers the case where new
classes, unseen or unlabeled in the source domain, appear in the target domain.
That is, ∃ctj ∈ Ct such that csi ∩ctj = ∅,∀csi ∈ Cs. 2) The coarse-to-fine taxonomy
considers the case where the target domain has a finer taxonomy where source
classes have been split into two or more target classes. That is, ∃csi ∈ Cs, ctj1 ∈
Ct, ctj2 ∈ Ct, j1 ̸= j2 such that ctj1 , c

t
j2

̸= csi and (ctj1∪ctj2) ⊆ csi . 3) The implicitly-
overlapping taxonomy considers the case where a class in the target domain
has a common part with the class in the source domain, but also owns the
private part. That is, ∃csi ∈ Cs, ctj ∈ Ct such that ctj ̸⊆ csi ,c

s
i ∩ ctj ̸= ∅, and

(ctj \ (csi ∩ ctj)) ̸∈ {∅, csq, q = 1, ..., CS}.
Few-shot/Partially Labeled. In TACS, the Dt is only few-shot/partially la-
beled for the inconsistent taxonomy classes, in the class-wise way. More specifi-
cally, for each of the class ctj ∈ Ct, we have nt-shot labeled samples {(xtj

i ,y
tj
i )}nt

i=1,

where only the class ctj is labeled in y
tj
i . When nt ≪ nu, it is called few-shot

labeled. When nt ̸≪ nu, it is named partially-labeled. The sample and corre-
sponding semantic map is written as xtj and ytj .

Technical Challenges. The main technical challenge of TACS is to deal with
both of the label-level and image-level domain gap. On the label level, there are
two main problems: i) The inconsistent taxonomy may induce there is the one-to-
many mapping from the source domain to the target domain classes. If we purely
assign the source class of inconsistent taxonomy to one of the corresponding
target class, it will generate incorrect supervision, degrading the performance of
the model. However, if we instead take the inconsistent source class as unlabeled,
the source domain information is not fully exploited. ii) The complete target
domain label taxonomy is partially inherited from the source domain for the
consistent taxonomy, and partially provided by the few-shot/partially labeled
target domain. The problem of how to unify the consistent and inconsistent
taxonomy classes for the target domain is non-trivial. The naive way is to train
the model on the source domain for the consistent taxonomy classes, and on the
few-shot/partially labeled target domain for the inconsistent taxonomy classes
separately, in the supervised way. However, the few-shot labeled target domain
samples are far fewer than the labeled source domain samples, causing the model
training to be easily dominated by the consistent taxonomy classes, therefore
the inconsistent taxonomy classes are possibly ignored. Meanwhile, most of the
pixels in the few-shot/partially labeled target domain samples are unlabeled
except for the pixels of class ctj , and the arbitrarily incorrect prediction on these
unlabeled parts can bring the negative effect since most of these parts belong to
the consistent taxonomy classes or other inconsistent taxonomy classes. On the

4 With a slight abuse of notation, each class, e.g., csi , is also considered as a set
consisting of its domain of definition. The set operations ∩,∪, \,⊂ thus applies to
the underlying definition of the class.
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Fig. 2: Framework overview. Class A is an inconsistent taxonomy class (e.g.,
“person”) in the source domain, related to class A1 (e.g., “pedestrian”) and A2

(e.g., “rider”) in the target domain. Class B is a consistent taxonomy class. On
the label level, SLM/RL module maps the inconsistent taxonomy class A in the
source domain to the related classes A1, A2 in the target domain. BMS module
unifies label space and augments the few-shot supervision, by randomly select-
ing samples from the source domain and the few-shot/partially labeled target
domain and then mixing them in the unlabeled target domain. On the image
level, CT/UCT module adopts the pseudo-label to distinguish the positive and
negative pixel samples, and then conducts the pixel-wise contrastive learning, to
learn more domain-invariant and class-discriminative features.

image level, the image domain distribution difference between the source and
target domain, PS ̸= PT , still exists in TACS.

3.2 Our Approach to the TACS Problem

Motivation.Motivated by the technical challenge i) of the label level in Sec. 3.1,
the stochastic label mapping (SLM) and pseudo-label based relabeling (RL)
module are proposed to solve the problem of the one-to-many mappings from the
source domain to the target domain classes. Motivated by the technical challenge
ii) of the label level in Sec. 3.1, the bilateral mixed sampling (BMS) module is
proposed to unify the consistent and inconsistent taxonomy classes and augment
the few-shot supervision for the target domain. Motivated by the technical chal-
lenge of the image level in Sec. 3.1, the contrastive learning (CT/UCT) module
is proposed to train the domain-invariant but class-discriminative features.
Training Strategy. The whole framework adopts the pseudo-label based self-
training strategy. Following the self-training structure of [26], there are two com-
ponents of our framework, namely a student network Fθ and a mean-teacher
network Fθ′ , which are both semantic segmentation networks. The student net-
work Fθ is used to backpropagate the gradients and update θ according to the
training loss. The pseudo-labels ỹu = Fθ′(xu) are generated by the mean-teacher
network Fθ′ by feeding the unlabeled target sample xu. The parameters θ′ are
the exponential moving average of the parameters θ during the optimization
process, which is proven to bring more stable training [32,34]. During inference,
the mean-teacher network Fθ′ is used to output the final segmentation map.
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Framework Overview. The framework overview is shown in Fig. 2. The SLM
and RL modules (Sec. 3.3) are used to map inconsistent taxonomy class labels
ys in the source domain to target-domain class labels ỹs. Then in order to unify
the label spaces, the source domain sample (xs, ỹs) and the few-shot/partially
labeled target domain sample (xtj ,ytj ) is cut and mixed with the unlabeled tar-
get domain sample and corresponding pseudo-label (xu, ỹu), to synthesize the
sample (x̂u, ŷu) through the BMS module (Sec. 3.3). In this way, the synthe-
sized sample (x̂u, ŷu) is a cross-domain mixed sample and covers the consistent
taxonomy class from (xs, ỹs) and inconsistent taxonomy class from (xtj ,ytj ).
The CT/UCT module (Sec. 3.4) is further utilized on the (x̂u, ŷu) to train the
domain-invariant and class-discriminative features using pixel-wise contrastive
learning. All the modules are thus employed together in a single framework.
Next, we detail individual components.

3.3 Approach to the Label Level Domain Gap

In order to solve the problem of one-to-many class mappings, the SLM and
RL modules are proposed. In the initial training stage, the model is unable
to distinguish the different inconsistent taxonomy classes reliably. Thus, taking
the coarse-to-fine taxonomy as example, we propose the SLM module, and it
stochastically assigns the source “coarse class” to different corresponding target
“finer classes” to guide the model to predict the uniform distribution over the
“finer classes” on the source domain samples. In this way, in the early training
stage, the prediction of the model on the “finer classes” will be mainly guided
by the few-shot labeled target samples. As the training goes on, with the help
of the few-shot labeled target samples, the teacher network gradually has the
capacity to distinguish the “finer classes”. In the second stage, we then replace
the SLM module with the RL module. It relabels the “coarse-class” pixel in the
source domain with the “finer class” predicted by the teacher network.
Stochastic Label Mapping (SLM). We propose the SLM module, which
maps the source domain classes of inconsistent taxonomy, e.g., “person” in
Fig. 1 (e), to the corresponding target domain classes stochastically, e.g., “pedes-
trian” and “rider” in Fig. 1 (e), in the initial training stage and in each training
iteration. Under the inconsistent taxonomy setting, there might be the one-
to-many class mapping from the source domain classes to the target domain
label space. Without loss of generality and for the convenience of clarifica-
tion, we take the example that the corresponding classes in Ct of csi include q
classes ctp, c

t
p+1, ..., c

t
p+q−1. Then the SLM module can be described as, ỹs(m,n) =

rand(ctp, c
t
p+1, ..., c

t
p+q−1), where the (m,n) is the (row, column) index. The

rand(·) represents the uniformly discrete sampling function. With the obtained
new labels ỹs, we employ the standard cross-entropy loss, Lslm = CE(Fθ(xs), ỹ

s)
to learn the model.
Pseudo-Label based Relabeling (RL). As the training goes on, the model
learns to distinguish the different inconsistent taxonomy classes to some extent.
Instead of adopting SLM strategy at the latter part of the training, we intro-
duce an alternative strategy. To exploit the capabilities learned by the model,
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we perform the pseudo-label based relabeling (RL), which relabels the pixels of
inconsistent taxonomy classes in the source domain with the classes predicted by
the model. Without loss of generality and for the writing convenience, we take
the same example that csi is related to ctp, c

t
p+1, ..., c

t
p+q−1 as in SLM module.

We generate predictions fs = Fθ′(xs) by feeding the source domain sample xs

into the mean-teacher network Fθ′ . Then the prediction fs is used to relabel
the source domain sample xs for the inconsistent taxonomy classes csi , to gener-
ate the complete label ỹs as, ỹs(ms

i ,n
s
i ) = argmaxc f

s(ms
i ,n

s
i ), if maxc f

s(ms
i ,n

s
i ) >

δ, and argmaxc f
s(ms

i ,n
s
i ) ∈ {ctp, ..., ctp+q−1}. (ms

i , n
s
i ) is the index of the pixel

corresponding to csi . The δ represents the threshold to decide whether the pre-
dicted label is used. The pseudo-label based relabeling module loss is written as
Lrl = CE(ỹs,Fθ(x

s)). The SLM module and the RL module are used in the
sequential manner during the training process, i.e., initially SLM and then RL.

Bilateral Mixed Sampling (BMS). In order to unify the consistent and in-
consistent taxonomy classes and augment the few-shot supervision for the target
domain, we propose the bilateral mixed sampling (BMS) module, which cuts and
mixes the source domain and few-shot/partially labeled target domain samples
on the unlabeled target domain. Recently, the mixed sampling based data aug-
mentation approach [11,44,45] is proven to be able to generate the synthetic data
to combine the samples and corresponding labels, thus provides such a potential
to unify the label space. In [34], the cross-domain mixed sampling (DACS) is
shown helpful to UDA of consistent taxonomy.

Similar to DACS for UDA, we adopt the class-mixed sampling strategy for
TACS. Different from DACS, which only focus on the labeled source domain
and the unlabeled target domain, our BMS module conducts the class-mixed
sampling in the bilateral way: 1) from labeled source domain samples xs to
unlabeled target domain samples xu; 2) from few-shot/partially labeled target
domain samples xtj to unlabeled target domain samples xu. The bilateral mixed
sampling mask ms of xs is,

ms(m,n) =

{
1, if ỹs(m,n) = cr

0, otherwise,
(1)

where the sampling class cr is randomly selected from the available classes in
ỹs. Following [34], half of all the available classes in ỹs is randomly selected as
the sampling class in each training iteration. Similar to ms, the bilateral mixed
sampling mask mtj of xtj is defined. Then the augmented target domain sample
and the corresponding pseudo-label x̂u, ŷu are,

x̂u = ms⊙xs+(1−ms)⊙(mtj⊙xtj+(1−mtj )⊙xu), (2)

ŷu = ms⊙ỹs+(1−ms)⊙ (mtj⊙ytj+(1−mtj )⊙ỹu). (3)

where ⊙ denotes element-wise multiplication. On this basis, the pseudo-label
based self-training loss of our BMS module is formulated as, Lbms = CE(x̂u, ŷu).
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3.4 Approach to the Image Level Domain Gap

Besides dealing with the label-level domain gap, we also need to tackle the
image-level domain gap. We propose a pseudo-label based contrastive learn-
ing (CT) module, and further the pseudo-label based uncertainty-rectified con-
trastive learning (UCT) module. They are easy to be plugged into our self-
training pipeline and trained jointly with the BMS, SLM and RL modules.
Contrastive Learning (CT) for Domain Adaptation. The typical strategy
of image-level adaptation is to train the domain-invariant but class-discriminative
features in the cross-domain embedding space [9,10,35]. The pixels of the same
class from different or same domains need to have similar features in the feature
embedding space, while the pixels of different classes needs be distinguishable in
the feature embedding space. This kind of distinction between features can natu-
rally be formulated as a contrastive learning problem, where positive pairs stem
from pixels of the same class, irrespective of their domain. In [38], the pixel-wise
contrastive learning is proven to be helpful for semantic segmentation. However,
it relies on ground truth label, which is unavailable for our unlabeled samples.

In order to exploit contrastive learning to train domain-invariant and class-
discriminative features under cross-domain setting, we propose the pseudo-label
based contrastive learning for domain adaptation. We employ pseudo-labels as
guidance for distinguishing the positive and negative samples. The contrastive
learning is conducted on the augmented target domain image sample x̂u, and
corresponding pseudo-label ŷu in the BMS module. Our main semantic segmen-
tation network Fθ can be decomposed into the encoder Eθ and the decoder Mθ.
The decoder is used to map the embedding space V to the label domain Y. The
encoder Eθ maps the source image domain S and the target image domain T to
the embedding space V, i.e., Eθ : S, T → V. The feature embedding correspond-
ing to the sample x̂u is denoted as v̂u, i.e., v̂u = Eθ(x̂u). Then the pseudo-label
based contrastive learning module loss Lct can be described as,

Lct = −
∑

h

∑
w log

∑
v+∈Pv

Contrast(v, v+), (4)

Contrast(v, v+) = exp(v·v+/τ)
exp(v·v+/τ)+

∑
v−∈Nv

exp(v·v−/τ) , (5)

where v = v̂u(h,w) is the feature vector of v̂u at the position (h,w). The positive
samples in Pv are the feature vectors whose corresponding pixels in ŷu have the
same class label as that of the corresponding pixel of v. The negative samples in
Nv are the feature vectors whose corresponding pixels in ŷu have the different
class label from that of the corresponding pixel of v. Eq. (5) tries to learn similar
features for the pixels of the same class, and learn discriminative features for the
different class pixels, no matter whether pixels are in the same domain or not.
Uncertainty-Rectified Contrastive Learning (UCT) for Domain Adap-
tation. There unavoidably exist incorrect predictions in the pseudo-label ŷu of
the unlabeled part in CT module, resulting in incorrect guidance to the con-
trastive module for the selection of the positive and negative samples. In order
to alleviate the incorrect guidance, we propose the uncertainty-rectified con-
trastive learning (UCT) module based on the CT module. In our UCT module,
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we use the prediction uncertainty of the pseudo-label ŷu to rectify the contrastive
learning, so that the uncertain prediction of ŷu has less effect on the contrastive
learning. The uncertainty estimation map of ŷu is denoted as ûu, and the un-
certainty measurement function is denoted as U(·), i.e., ûu = U(ŷu). We adopt
the maximum prediction probability of x̂u as U(·), formulated as,

ûu = max
c

Fθ′(x̂u). (6)

Then, based on Eq. (5), the uncertainty-rectified CT loss Luct is formulated as,

Luct = −
∑
h

∑
w

ûu(v)ûu(v+) Contrast(v, v+), (7)

where ûu(v), ûu(v+) are the uncertainty estimation value of the pixel corre-
sponding to v, v+, resp.

3.5 Joint Training

With the above proposed BMS, SLM, RL and UCT modules, the total loss
function is derived as,

Ltotal = Lbms + λ1Lslm + λ2Lrl + λ3Luct (8)

where λ1 and λ2 are used to train the SLM and RL module in a sequential
manner. When iteration t < T , λ1 = 1, λ2 = 0. When iteration t ≥ T , λ1 =
0, λ2 = 1. T is the number of iterations to start training the RL module. λ3 is
the hyper-parameter to balance the UCT module loss and other loss, which is
set as 0.01 in our work. Our model is trained end-to-end with the loss in Eq. (8).

4 Experiments

We evaluate the effectiveness of our framework under different scenarios, in-
cluding the consistent and inconsistent taxonomy settings. For the consistent
taxonomy, we follow the traditional UDA setting. For the inconsistent taxon-
omy, we build different benchmarks for TACS, including the open, coarse-to-fine
and implicitly-overlapping taxonomy setting. The DeepLabv2-ResNet101 [3, 14]
is adopted as the segmentation network. The baselines in Table 2-4 adopt the
SOTA few-shot cross-domain semantic segmentation training strategy, i.e., fine-
tuning [46] and pseudo-label [26], to exploit the supervision from the few-shot
labeled target domain. More experimental details are put in the supplementary.

4.1 Experimental Setup

UDA: Consistent Taxonomy. We adopt the UDA setting for the consistent
taxonomy. The target domain is completely unlabeled. SYNTHIA [30] is used
as the source domain, while Cityscapes [8] is treated as the target domain. The
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Table 1: Consistent Taxonomy: SYNTHIA→Cityscapes. The mIoU are over 13
classes and 16 classes, resp. In UDA setting, we adopt the class-mixed sampling
strategy in DACS to augment the target domain. ∗3 classes are not included
when calculating mIoU over 13 classes.
Method Road SW Build Wall∗ Fence∗ Pole∗ TL TS Veg Sky Person Rider Car Bus MC Bike mIoU∗ mIoU

ADVENT [37] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 47.6 40.8
FDA [42] 79.3 35.0 73.2 – – – 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5 –
IAST [23] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 57.0 49.8
DACS [34] 80.56 25.12 81.90 21.46 2.85 37.20 22.67 23.99 83.69 90.77 67.61 38.33 82.92 38.90 28.49 47.58 54.81 48.34

Ours (DACS+CT) 86.32 26.63 82.71 5.78 1.97 33.87 34.60 40.00 83.83 86.73 67.52 36.53 83.46 55.23 25.03 41.46 57.70 49.47
Ours (DACS+UCT) 91.54 60.41 82.52 21.80 1.48 31.66 31.59 27.95 84.71 88.95 66.68 35.78 81.04 42.79 28.49 45.88 59.10 51.45

Table 2: Open Taxonomy: SYNTHIA→Cityscapes. There are 13 classes labeled
in the SYNTHIA dataset, and 6 new classes few-shot labeled in Cityscapes. The
gray columns are the 6 new classes and mean IoU of 6 new classes in Cityscapes.
“M” represents BMS module.
Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU mIoU

Source 29.22 6.58 55.48 4.79 8.71 10.11 4.04 12.93 64.06 5.09 71.90 43.26 11.93 22.43 6.04 6.96 2.42 2.61 16.41 6.19 20.26

ADVENT [37] 75.72 24.62 74.94 0.00 0.17 18.98 11.30 16.01 76.87 21.93 78.91 48.24 14.20 54.97 2.54 18.38 17.58 12.22 20.90 10.20 30.97
FDA [42] 28.87 13.22 67.10 4.63 14.52 18.94 10.99 14.75 51.56 12.48 78.85 56.78 25.81 70.10 14.24 20.85 21.27 19.22 41.14 14.35 30.81
IAST [23] 70.73 29.60 75.49 6.90 0.00 1.36 36.43 25.37 66.17 7.65 83.96 60.72 19.99 82.51 0.00 39.52 0.09 27.42 23.55 2.67 34.60
DACS [34] 66.48 1.42 6.55 10.26 9.47 4.39 0.47 2.09 33.38 3.75 36.45 46.75 18.23 20.90 1.91 2.78 7.18 1.30 5.08 6.16 14.68

Ours (M) 87.59 27.18 80.98 5.99 15.74 7.13 37.09 18.51 83.68 0.08 87.46 65.89 37.45 86.55 24.76 40.58 37.71 37.57 43.44 15.24 43.44
Ours (M+CT) 86.33 32.57 82.62 9.49 12.78 5.10 37.49 39.32 82.00 0.73 88.03 65.70 33.09 78.92 33.55 62.53 41.90 29.83 49.35 17.26 45.86
Ours (M+UCT) 90.84 57.64 80.77 5.79 16.67 8.40 32.82 33.21 83.68 1.68 86.89 63.54 26.57 86.87 33.43 48.65 35.57 31.51 49.29 16.92 45.99
Ours (M+UCT+RL) 92.64 58.66 84.21 20.55 15.04 29.47 35.26 32.41 84.63 4.45 87.91 66.16 34.07 87.52 36.37 57.63 31.21 34.17 52.28 22.85 49.72

nt=2975 89.19 41.08 86.14 37.54 33.68 33.45 32.25 39.99 85.39 31.64 89.51 67.02 35.61 80.49 50.54 49.43 51.70 32.41 47.90 39.76 53.42
Oracle [39] 96.7 75.7 88.3 46.0 41.7 42.6 47.9 62.7 88.8 53.5 90.6 69.1 49.7 91.6 71.0 73.6 45.3 52.0 65.5 50.0 65.9

source domain and target domains share the same label space, where there are
16 classes in total: road, sidewalk, building, wall, fence, pole, traffic light, traffic
sign, vegetation, sky, person, rider, car, bus, motorcycle and bike.

TACS: Open Taxonomy. The SYNTHIA dataset [30] is used as the source
domain, and the Cityscapes dataset [8] is adopted as the target domain. In the
SYNTHIA dataset, the main 13 classes are labeled: road, sidewalk, building,
traffic light, traffic sign, vegetation, sky, person, rider, car, bus, motorcycle and
bike. In the Cityscapes dataset, the 6 classes wall, fence, pole, terrain, truck and
train are few-shot labeled, with 30 image samples per class.

TACS: Coarse-to-Fine Taxonomy. The GTA5 dataset [29] is utilized as the
source domain, and the Cityscapes dataset [8] as the target domain. The label
space of source domain is composed of road, sidewalk, building, wall, fence, pole,
traffic light, traffic sign, vegetation, sky, person, car, truck, bus, train, cycle. The
vegetation class of source domain is further divided into vegetation and terrain
in the target domain, person in source domain is mapped to person and rider
in the target domain, and cycle in the source domain is fine-grained labeled
into bicycle and motorcycle in the target domain. In Cityscapes, each of the
fine-grained 6 classes is 30-shot labeled.

TACS: Implicitly-Overlapping Taxonomy. The Synscapes dataset [40] is
treated as the source domain, while the Cityscapes dataset [8] is seen as the
target domain. The label space of the source domain contains the road, sidewalk,
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Table 3: Coarse-to-Fine Taxonomy: GTA5→Cityscapes. There are 3 classes in
the GTA5 dataset fine-grained into 6 classes in the Cityscapes dataset. The gray
columns are the 6 fine-grained classes in the Cityscapes and corresponding mean
IoU of these classes. “M”: BMS. “*” with SLM module.
Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU mIoU

Source 54.12 16.20 70.08 13.07 19.37 22.56 28.59 20.59 75.87 13.49 74.36 47.91 5.35 36.15 16.08 9.71 1.61 8.77 21.34 28.79 29.22
Source∗ 63.38 20.95 67.65 15.07 18.60 23.03 27.74 18.00 76.03 14.11 75.19 38.36 10.25 49.01 26.32 9.23 2.68 9.93 27.26 29.32 31.20

ADVENT [37] 88.91 38.93 79.18 26.22 22.65 25.45 31.24 25.42 75.22 0.03 78.91 55.76 0.00 77.76 28.22 33.19 0.55 13.02 7.15 25.20 37.25
ADVENT∗ 86.72 34.02 79.22 22.32 23.60 26.92 31.36 24.89 59.86 3.39 75.47 41.83 7.73 69.62 32.71 20.39 0.49 12.06 39.25 27.35 36.41
FDA [42] 90.83 45.07 81.62 28.37 31.04 32.56 34.00 29.80 83.09 6.31 72.61 60.67 10.13 82.71 29.06 51.51 0.11 15.69 45.61 36.92 43.73
FDA ∗ 88.96 39.53 80.23 22.58 29.73 32.78 33.64 26.66 80.06 25.39 73.63 36.78 10.91 77.82 26.35 46.14 1.37 22.80 50.31 37.71 42.40
IAST [23] 83.20 37.84 82.63 36.00 21.59 32.34 43.48 44.69 84.92 36.51 88.77 59.71 28.04 84.34 32.64 38.66 2.52 31.27 35.57 46.00 47.62
IAST∗ 76.62 32.39 83.04 37.52 23.43 28.96 39.11 39.47 81.33 26.02 89.10 56.83 26.41 82.36 18.95 38.16 23.03 21.14 44.22 42.66 45.69
DACS [34] 82.93 29.50 69.67 31.58 24.87 18.17 20.71 17.43 69.69 8.54 64.06 32.17 9.78 76.99 36.40 44.26 0.00 8.64 30.39 26.54 35.57
DACS ∗ 45.03 18.55 24.01 9.80 12.25 10.14 13.08 5.62 46.05 4.23 23.95 14.94 8.64 52.14 36.28 12.43 0.00 8.35 15.08 16.22 18.98

Ours(M) 93.60 60.14 85.64 34.57 25.27 33.67 34.67 41.84 83.03 2.67 86.96 60.15 2.34 87.25 52.06 47.66 0.00 17.81 42.53 34.76 46.94
Ours(M+SLM) 93.33 57.28 86.14 36.66 29.25 36.84 43.25 43.09 85.50 39.17 85.85 63.47 26.95 88.71 52.76 53.06 0.00 41.46 57.13 52.28 53.68
Ours(M+SLM+CT) 93.83 60.53 86.37 30.73 35.05 36.69 41.74 47.82 85.70 38.69 85.75 62.65 36.28 87.89 51.00 52.84 0.00 39.71 59.11 53.69 54.34
Ours(M+SLM+UCT) 94.51 62.40 87.15 29.95 35.96 37.96 44.17 52.17 84.56 34.33 84.80 65.79 37.41 90.03 56.10 52.57 0.00 40.46 59.82 53.73 55.27
Ours(M+SLM+UCT+RL) 93.97 59.71 87.58 29.81 36.26 38.81 45.38 52.53 85.26 35.18 87.28 66.58 38.74 89.74 55.23 54.72 0.00 40.72 60.47 54.49 55.68

nt=2975 93.65 56.25 86.48 27.37 39.02 37.59 43.73 50.49 87.08 49.25 86.38 67.71 43.83 89.40 50.98 47.01 0.09 45.42 63.96 59.54 56.09
Oracle [39] 96.7 75.7 88.3 46.0 41.7 42.6 47.9 62.7 88.8 53.5 90.6 69.1 49.7 91.6 71.0 73.6 45.3 52.0 65.5 63.1 65.9

building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person,
rider and vehicle. The vehicle class in source domain can be seen as the union
of the car, truck, bus, and motorcycle classes. In the target domain, each of 3
classes are few-shot labeled in 15 image samples, including the vehicle, public
transport and cycle. The vehicle class in the target domain is the union of car
and truck, the public transport is the union of bus and train, and cycle is the
union of the bicycle and motorcycle.

4.2 Experimental Results

Comparison with the SOTA. In Table 1, it is shown that our proposed
contrastive-learning based scheme outperforms the previous SOTA methods un-
der the UDA setting, including the adversarial learning based ADVENT [37],
the image translation based FDA [42], the self-training based IAST [23], and
the data augmentation based DACS [34]. It proves the effectiveness of our con-
trastive learning for dealing with the domain gap on the image level. In Table 2,
Table 3, and Table 4, it is shown that our proposed framework improves other
SOTA methods performance by a large margin, under the open, coarse-to-fine
and implicitly-overlapping taxonomy settings. It validates the proposed frame-
work for dealing with both of the image- and label-level domain gap. In Fig. 5,
we show qualitative semantic segmentation results on the target domain.
Ablation Study. The ablation study in Table 2, Table 3, and Table 4 proves
that each module, BMS, SLM, RL, CT/UCT, all contributes to the final perfor-
mance under open, coarse-to-fine, and implicitly-overlapping taxonomy settings.
In different settings, the improvement brought by different modules are differ-
ent. It is mainly because different settings in TACS touch diverse and broad
aspects of inconsistent taxonomy. For example, the open taxonomy setting in-
cludes the new classes which are unseen or unlabeled in the source domain. The
RL module is especially helpful to those unlabeled classes, e.g., “wall” class. The
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Table 4: Implicitly-Overlapping Taxonomy: Synscapes→Cityscapes. There are 3
classes (in gray) in the Cityscapes corresponding to the implicitly-overlapping
taxonomy. “M”: BMS. “*”: with SLM.
Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Vehicle PT Cycle mIoU mIoU

Source 82.74 43.14 70.95 29.04 19.24 33.99 34.47 36.29 81.90 28.67 86.61 55.17 28.25 54.75 1.75 34.99 30.50 45.12
Source∗ 87.95 40.99 74.68 24.35 22.67 32.17 31.86 34.74 81.53 27.52 83.74 55.08 26.68 67.51 11.34 21.56 33.47 45.27

ADVENT [37] 92.84 54.32 82.54 31.40 25.90 37.67 38.92 40.55 85.46 35.95 87.69 58.12 29.75 73.19 2.42 3.23 26.28 48.75
ADVENT∗ 90.02 46.16 80.37 27.90 24.56 35.69 31.48 37.81 83.96 38.81 84.83 54.73 30.69 73.67 16.02 18.80 36.16 48.47
FDA [42] 89.45 44.66 75.82 28.3 27.91 37.89 41.09 49.91 83.78 26.17 83.50 61.24 39.37 65.35 6.32 26.56 32.74 49.21
FDA ∗ 86.86 43.56 75.32 28.01 27.68 38.50 39.50 50.31 83.80 21.69 83.93 63.45 42.32 80.99 10.96 42.64 44.86 51.22
IAST [23] 91.65 54.26 81.82 31.61 28.48 35.33 42.83 46.74 85.67 41.89 89.47 57.51 32.77 75.78 31.13 50.45 52.45 54.84
IAST ∗ 93.00 55.31 83.55 32.80 30.49 38.21 46.04 53.09 86.46 41.91 88.57 60.58 29.17 83.18 39.01 36.76 52.98 56.13
DACS [34] 89.72 61.93 57.59 28.87 26.87 33.42 41.44 41.14 84.57 41.96 86.49 57.94 25.36 59.88 2.13 19.63 27.21 47.43
DACS ∗ 82.27 41.83 13.43 17.67 18.84 23.23 23.93 23.54 56.89 18.20 68.49 44.60 13.75 22.09 2.39 16.75 13.74 30.49

Ours(M) 91.35 59.29 86.81 34.60 32.14 43.9 49.29 55.8 83.51 42.28 90.44 67.98 37.27 83.01 16.89 43.92 47.94 57.40
Ours(M+SLM) 93.66 65.25 81.31 28.81 26.43 44.96 51.70 55.84 87.59 38.47 88.80 67.93 35.10 87.71 35.55 36.29 53.18 57.84
Ours(M+SLM+CT) 95.70 70.24 85.42 29.16 25.78 42.10 49.77 54.14 87.67 42.11 90.10 66.59 36.67 87.55 34.97 40.43 54.32 58.65
Ours(M+SLM+UCT) 92.43 66.46 82.25 32.24 32.47 45.37 52.29 57.15 87.20 36.48 91.85 65.03 37.87 88.53 41.95 38.11 56.20 59.23
Ours(M+SLM+UCT+RL) 92.47 65.40 83.21 33.33 30.87 45.94 49.86 55.86 87.23 39.50 91.30 66.56 39.87 88.75 42.59 39.64 56.99 59.52

nt=2975 94.62 63.90 85.13 28.52 31.03 46.46 53.44 50.16 86.98 41.21 91.00 67.61 35.04 89.98 74.72 52.85 72.52 62.04
Oracle 96.79 76.53 87.75 49.21 41.14 40.64 43.82 60.49 88.01 52.68 89.16 68.68 49.33 91.05 74.69 64.26 76.67 67.14

SLM module is significantly beneficial under the coarse-to-fine taxonomy setting
since each fine class is corresponding to one coarse class unambiguously. The
CT/UCT module contribution difference is mainly related to the image-level
difference, e.g., the style difference of SYNTHIA, GTA, Synscapes. Besides, it
is shown that the UCT module is able to reach higher performance than the
CT module, verifying the help of our uncertainty rectification for contrastive
learning. It is also observed that the combination of SLM and other baseline
methods, e.g., ADVENT, FDA, IAST and DACS, does not necessarily bring the
performance improvement. It is because the model prediction, when using SLM,
is guided by the few-shot labeled target samples, but the baseline methods can-
not effectively extract and exploit few-shot supervision with the previous SOTA
few-shot cross domain semantic segmentation strategy, i.e., fine-tuning [46] and
pseudo-label [26]. Instead, our proposed BMS can augment and utilize the few-
shot supervision effectively, guiding the model prediction when using SLM.

Partially Labeled/Oracle. In Table 2, Table 3, and Table 4, under the open,
coarse-to-fine and implicitly-overlapping taxonomy settings, we report the par-
tially labeled performance where inconsistent taxonomy classes are labeled in all
the available target domain image samples, i.e., nt = 2975. Compared to the
few-shot performance, the partially labeled performance is further improved due
to more labeled samples on the target domain being available. But there is still
gap to the fully supervised oracle performance on the target domain. It shows
that our method serves as a strong baseline, but still provides the potential to
develop stronger algorithms for the TACS problem.

Effect of Few-shot Samples Number. In order to analyze the effect of the
number of few-shot samples in the target domain for the inconsistent taxonomy
adaptation performance, we take the open taxonomy setting as the example,
and show the performance change with different number of few-shot samples in
Fig. 3. It is shown that the inconsistent taxonomy class adaptation performance
is improved, when more few-shot labeled samples are available.
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Fig. 4: Negative samples num-
ber study for contrastive learn-
ing, under M+UCT in Table 2.

Contrastive Learning. In Fig. 4, the performance when varying the number of
negative samples in the contrastive learning is shown. It is observed that the per-
formance increases as more samples are taken. Balancing the performance and
memory, we adopt 100 samples per class. In Fig. 5, we compare the t-SNE visu-
alization [22] of the feature embedding of the model trained with/without UCT,
taking open taxonomy setting as example. It verifies the contrastive learning is
helpful to train the cross-domain invariant and class-discriminative features.

5 Conclusion

We propose the new TACS problem, allowing inconsistent taxonomies between
the source and the target domain in the cross-domain semantic segmentation.
Three typical types of inconsistent taxonomies are identified. To resolve TACS,
the mixed-sampling, pseudo-label and contrastive learning based techniques are
developed. Extensive experiments prove the effectiveness of our approach.
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12. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., et al.: Bootstrap your own latent:
A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)
4

13. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: CVPR (2020) 4

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 10

15. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. In: ICML (2018) 1

16. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial
and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016) 3

17. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network
for unsupervised domain adaptation. In: CVPR (2019) 4

18. Kundu, J.N., Venkatesh, R.M., Venkat, N., Revanur, A., Babu, R.V.: Class-
incremental domain adaptation. In: ECCV (2020) 2, 3

19. Lambert, J., Liu, Z., Sener, O., Hays, J., Koltun, V.: MSeg: A composite dataset
for multi-domain semantic segmentation. In: CVPR (2020) 2

20. Liu, Z., Miao, Z., Pan, X., Zhan, X., Lin, D., Yu, S.X., Gong, B.: Open compound
domain adaptation. In: CVPR (2020) 1



16 R. Gong et al.

21. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep
adaptation networks. In: ICML (2015) 3

22. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. JMLR 9(11) (2008)
14

23. Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsuper-
vised domain adaptation. In: ECCV (2020) 4, 11, 12, 13

24. Motiian, S., Jones, Q., Iranmanesh, S.M., Doretto, G.: Few-shot adversarial domain
adaptation. In: NeurIPS (2017) 4

25. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas
dataset for semantic understanding of street scenes. In: ICCV (2017) 2

26. Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: Classmix: Segmentation-based
data augmentation for semi-supervised learning. In: WACV (2021) 6, 10, 13

27. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: ICCV (2017) 2, 3
28. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired

image-to-image translation. In: ECCV (2020) 4
29. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth

from computer games. In: ECCV (2016) 11
30. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia

dataset: A large collection of synthetic images for semantic segmentation of ur-
ban scenes. In: CVPR (2016) 10, 11

31. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by
backpropagation. In: ECCV (2018) 3

32. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In: NeurIPS
(2017) 6

33. Teshima, T., Sato, I., Sugiyama, M.: Few-shot domain adaptation by causal mech-
anism transfer. In: ICML (2020) 4

34. Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: Dacs: Domain adaptation via
cross-domain mixed sampling. In: WACV (2021) 1, 4, 6, 8, 11, 12, 13

35. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.:
Learning to adapt structured output space for semantic segmentation. In: CVPR
(2018) 1, 3, 4, 9

36. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool,
L.: Scan: Learning to classify images without labels. In: ECCV (2020) 4

37. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy
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