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Abstract. Recent years have witnessed a great development of Con-
volutional Neural Networks in semantic segmentation, where all classes
of training images are simultaneously available. In practice, new images
are usually made available in a consecutive manner, leading to a prob-
lem called Continual Semantic Segmentation (CSS). Typically, CSS faces
the forgetting problem since previous training images are unavailable,
and the semantic shift problem of the background class. Considering
the semantic segmentation as a context-dependent pixel-level classifica-
tion task, we explore CSS from a new perspective of context analysis
in this paper. We observe that the context of old-class pixels in the
new images is much more biased on new classes than that in the old
images, which can sharply aggravate the old-class forgetting and new-
class overfitting. To tackle the obstacle, we propose a biased-context-
rectified CSS framework with a context-rectified image-duplet learning
scheme and a biased-context-insensitive consistency loss. Furthermore,
we propose an adaptive re-weighting class-balanced learning strategy for
the biased class distribution. Our approach outperforms state-of-the-art
methods by a large margin in existing CSS scenarios. Code is available
in https://github.com/sntc129/RBC.

Keywords: Continual Semantic Segmentation, Class-incremental Learn-
ing, Continual Learning, Biased Context

1 Introduction

Semantic segmentation is a classic pixel-level classification problem in the com-
puter vision area, where deep learning approaches have led to marvelous effect
when a large-scale pixel-wise labeled dataset is given [32,51,5,48]. However, in a
more practical scenario, deep neural networks are required to learn a sequence of
tasks with incremental classes and data which is known as the continual learning
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Fig. 1. Illustration of biased context correlation between the old-class and new-class
pixels in the added new images. At step t−1, the context of person-class contains differ-
ent types (e.g. person-horse, person-sofa) while the model learning person-class images
firstly. However, the person context mainly contains person-monitor while the model
learning the added monitor -class images at step t. Thus, a new-class-biased context
for the old-class (person) pixels exists in the added new-class (monitor) images, which
aggravates the old-class forgetting and new-class overfitting problem of the model.

setup. Semantic segmentation under the setting of continual learning is referred
as Continual Semantic Segmentation (CSS) [3,14,39]. The study of CSS aims at
alleviating the forgetting of the network on past tasks and the overfitting on the
current task without past data available.

Currently, there are two main challenges in the study of CSS problem. The
first challenge is the catastrophic forgetting phenomenon in continual learn-
ing [36]. In CSS, the images for past tasks are usually unavailable while the
model learning the current task, and only the pixels belonging to new semantic
classes are labeled. The model tends to forget the ability to distinguish pixels
belonging to old classes due to the shortage of labeled old-class data in the
training stage. The second challenge is CSS-specific and called semantic shift
of background class [3]. In the current task of CSS, only new-class pixels are
labeled as a semantic class and other pixels including old-class pixels are labeled
as background class. This semantic shift of pixel-wise labels causes the ambigu-
ous meaning of old-class pixels during the continual learning process and brings
an obstacle to the correct model prediction. Since the semantic segmentation
is usually considered as a context-dependent pixel-level classification task [10],
we explore CSS from the perspective of context. As shown in Figure 1, we find
out there is another CSS-specific challenge that has not drawn attention. The
context of old-class pixels in the new images is much more biased on new classes
than that in the old images, which can cause the sharp aggravation of old-class
forgetting and new-class overfitting. We call this challenge “biased context” in
CSS.

In the literature, a number of pseudo-labeling-based CSS methods [14,47]
attempt to solve the first two main challenges by labeling the mislabeled pixels
of old classes with the model obtained from the last learning step (as shown in
Figure 2). However, the incrementally updated segmentation model still suffers
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Fig. 2. Pseudo-labeling-based CSS methods. At step t, only the new-class (monitor)
pixels in the added images are labeled and other pixels are all “background class”
pixels. With the old model St−1 from the last step, the mislabeled old-class pixels
(person) can be pseudo-labeled, and then the model St is updated with the old-class
pseudo labels and new-class ground truth labels.

from the biased prediction towards new classes on account of the following two
observations: 1) the new images contain the new-class-biased context for the
old-class pixels, and 2) the number of new-class pixels included in the new task
is much larger than that of old-class pixels, which is commonly termed as an
imbalanced class distribution problem.

Motivated by the observations above, we try to address the CSS from the
following two aspects: 1) building a biased-context-rectified CSS learning scheme
that is less sensitive to the biased context information of old-class pixels in the
incremental images, and 2) developing a class-balance CSS learning strategy for
the imbalanced class distribution at different learning steps. We propose a biased-
context-insensitive consistency loss, which resorts to a consistency constraint on
the context of old classes in an image pair. The duplet of images, consisting of
the original image (containing the new-class pixels) and the corresponding erased
image (erasing the new-class pixels in the original image), rectify the context of
old classes with respect to new classes. Furthermore, we propose an adaptive
class-balance CSS learning strategy to cope with the biased class distribution,
which adaptively assigns higher weights to the old-class pixels.

Overall, the main contributions of this paper are three-fold: (1) We first
consider the biased context in the CSS scenario and propose a biased-context-
rectified CSS framework, which aims to avoid overfitting on new classes while not
forgetting old classes. (2) We design a novel context-rectified image-duplet learn-
ing scheme and a biased-context-insensitive consistency loss that ingeniously rec-
tifies the context of old classes with respect to new classes. To cope with the im-
balanced class distribution, we propose an adaptive re-weighting class-balanced
learning strategy for CSS. (3) Extensive experiments demonstrate the effective-
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ness of our method. Our method outperforms several previous CSS approaches
by a large margin and obtains state-of-the-art performance.

2 Related Work

Continual Learning. The last years have seen great interest in continual learn-
ing (i.e. also called incremental learning or lifelong learning) [7]. Continual learn-
ing is first explored on the image classification task with the catastrophic for-
getting problem. These are three major families of works: 1) architectural meth-
ods, 2) rehearsal methods, and 3) regularization methods. Architectural meth-
ods [29,54,34,33,2,1] adjust the network architecture to maintain the learned
knowledge from old tasks and acquire new information from the current task.
Rehearsal methods [41,19,53,46,31] replay the knowledge of old tasks when learn-
ing the new task, and the old knowledge is memorized by storing previous tasks’
exemplars or the distribution of old tasks data via generative models. Regu-
larization methods [30,9,13] alleviate forgetting by regularization loss terms en-
abling the updated parameters of networks to retain past knowledge. Continual
learning is usually conducted under two scenarios (task-incremental or the class-
incremental learning). The latter is more challenging because the task identity is
unavailable at inference time. Recently, continual learning has been also explored
on several other computer vision tasks, e.g., incremental object detection [25],
incremental video classification [52], incremental instance segmentation [17], con-
tinual semantic segmentation [3,14,47,37,16,49,35,20,56,43,27], incremental do-
main adaptation [28,11,12]. Our work focuses on the CSS problem which can be
considered as the class-incremental learning scenario on semantic segmentation.
Exploring the imbalanced class distribution problem is important for continual
learning (e.g., the methods [19,46] are proposed to address the problem in classic
class-incremental image classification scenario) and our work utilizes an adap-
tive re-weighting class-balanced learning strategy to alleviate this problem in
CSS scenario.

Continual Semantic Segmentation. The forgetting problem in CSS is first
considered in ILT [37] and the more challenging CSS-tailored problem (back-
ground shift) is proposed in MiB [3]. To cope with the problems, some regular-
ization based CSS methods [14,38] utilizes a confidence-based pseudo-labeling
method and a feature-based multi-scale pooling distillation scheme or employs
a prototype consistency constraint at the latent space, and some replay-based
CSS methods [35] utilize an extra memory to replay the data for old classes
by an extra generative adversarial network or web crawling process. Semantic
segmentation is a pixel-wise classification problem [6,42,22,32,48,44,40,24] and
classifying a local pixel with context information is helpful for reducing the local
ambiguities [55,51,45,21,23]. Our work first analyzes the effect of biased con-
text in CSS, and we design several biased-context-rectified continual learning
strategies tailored for CSS problem.
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Fig. 3. Illustration of our biased-context-rectified CSS framework. At step 1, the se-
mantic segmentation model is trained from scratch via the classic cross-entropy loss
lce on D1. At the latter steps (e.g. step t), we first obtain the context-rectified image-
duplet (Dt, Dt) and update the model by our context-rectified image-duplet learning
scheme with the balanced pseudo-labeling loss lbps and the distillation loss lkd and our
biased-context-insensitive consistency loss lctx.

3 Method

3.1 CSS Problem Formulation

In a continual semantic segmentation scenario, a segmentation model learns sev-
eral image segmentation tasks continually, and the image subset in each learning
step contains pixels from one or several new classes [3,14,39]. We suppose the
training image set for the t-th learning step is Dt that consists of a set of pairs
(xi

t,y
i
t), where xi

t ∈ RH×W×3 and yi
t ∈ ỸH×W

t denote the i-th input image of
sizeW×H and the corresponding ground truth segmentation mask, respectively.
New categories Ct are introduced and required to be learnt at the t-th step. yi

t

only contains the labels of Ct and all other labels (e.g., old classes C1:t−1) are
collapsed into the background class C0.

We assume a typical semantic segmentation model S with parameters Θ,
which consists of an encoder-decoder backbone network F extracting a dense
feature map and a convolution head G producing the segmentation score map.
Classically, we utilize S(x) = G · F (x) to represent the output predicted seg-
mentation mask of x, Sw,h,c(x) denotes the prediction score (about the class c)
of the pixel at the location (w, h) of x, and Ŝ(x) = Softmax (S(x)) denotes the
output of the network. Then, St with parameters Θt is updated on Dt at the
t-th step. Our goal is to obtain St which performs well on both previously seen
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classes C1:t−1 and the current classes Ct. CSS task is faced with three dilemmas:
1) St is only updated on Dt without the previously seen data D1:t−1 and suffers
from a significant performance drop on pixels of old classes (i.e., the catastrophic
forgetting problem); 2) some of pixels in xi

t of Dt are mislabeled as C0 but ac-
tually belong to C1:t−1 (i.e., the background shift problem); 3) the context for
the old-class pixels in Dt is biased to new classes, since the new-class pixels are
usually dominant in the added images Dt.

To address the first two issues, pseudo-labeling CSS methods [14,47] are pro-
posed by labeling the mislabeled pixels with the model obtained from the last
step, which is described in Section 3.2. These methods alleviate the forgetting
problem since a few pixels of old classes are introduced during learning the new
images (similar to the replay-based continual learning strategy [41,46,19]), and
reduce the background shift due to correcting the mislabeled “background class”
pixels. However, the updated segmentation model by these methods still suffers
from the biased prediction towards new classes because of the following two
observations: the biased context (shown in Figure 1) and the common imbal-
anced class distribution in the new images. To alleviate the above issues, we
propose a biased-context-rectified CSS framework including a context-rectified
image-duplet learning scheme and a biased-context-insensitive consistency loss
in Section 3.3 and the illustration of our framework is shown in Figure 3 and pro-
pose an adaptive class-balance strategy for tackle the biased class distribution
in Section 3.4.

3.2 Pseudo-Labeling-Based CSS

To alleviate the forgetting and background shift problems, pseudo-labeling-based
methods [14,47] are utilized in CSS. Specifically, at the t-th learning step, we
can access to St−1 from the last step and correct the mislabeled “background
class” pixels with St−1 (as shown in Figure 2). For each (xi

t,y
i
t) in Dt, the

pixels belonging to the new classes Ct have ground-truth labels and some of
the other pixels belonging to the old classes C1:t−1 are mislabeled as C0. The
predictions of the old model for these mislabeled pixels Ŝt−1(x

i
t) are utilized as

clues if they belong to any of the old classes. After that, each xi
t in Dt can have

a refined segmentation label S̃t(x
i
t) by combining the pseudo label Ŝt−1(x

i
t) and

the ground truth yi
t (as shown in Figure 2). Then the model St is updated by

optimizing the following objective function:

Ltotal(Θt) =
1

|Dt|
∑

(x,y)∈Dt

l(x;Θt), (1)

where l(x;Θt) is usually composed of a cross-entropy loss term with pseudo-
labeling and a knowledge distillation term:

l(x;Θt) = lps(x;Θt) + αlkd(x;Θt), (2)

where α is a hyper-parameter balancing the importance of the loss terms. lps(x;Θt)
is utilized to maintain the performance on old classes and reduce the ambiguity
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of old-class pixels labeled as background class at step t:

lps(x;Θt) = − β

WH

W,H∑
w,h

∑
c∈C0:t

S̃w,h,c
t (x) log Ŝw,h,c

t (x), (3)

where β is the ratio of accepted old classes pixels over the total number of such
pixels. lkd(x;Θt) is added to the backbone network F (·) to retain information
of the old classes:

lkd(x;Θt) = ∥Φ(Ft(x)))− Φ(Ft−1(x)))∥2 , (4)

where ∥·∥ and Φ(F (x)) ∈ R(H+W )×C denotes the Euclidean distance and con-
catenation operation, respectively. The concatenation operation function Φ(F (x))
is formulated as follows:

Φ(F (x)) =

[
1

W

W∑
w=1

F :,w,:(x)
∣∣∣∣ 1
H

H∑
h=1

Fh,:,:(x)

]
, (5)

where [·||·] denotes concatenation over the channel axis.

3.3 Biased-context-rectified framework

To alleviate the biased context correlation between the old-class and new-class
pixels in CSS, we propose a biased-context-rectified framework with a context-
rectified image-duplet learning scheme and a biased-context-insensitive consis-
tency loss. Taking the t-th step as an example (shown in Figure 1), the incre-
mentally added images Dt mainly contain the new-class-related context for the
old-class pixels, which leads to the aggravation of the old-class forgetting and
new-class overfitting problems.
Context-rectified Image-Duplet Learning.As for the new-class-related con-
text, we observe that the contextual information of old-class pixels included in
the incremental images is biased to the pixels of new classes (shown in Figure 1).
In order to continually learn a semantic segmentation model that is less sensitive
to the entangled new-class-context, we firstly rectify the biased context between
new classes and old classes in these new images by erasing the new-class pixels
of the original image (shown in Figure 4(a)). At the t-th step, we obtain the cor-
responding erased image xi

t for each new image xi
t in Dt. Then an image-duplet

(xi
t,y

i
t,x

i
t,y

i
t) is constructed from the erased image and the corresponding orig-

inal image. The set of image-duplets with Dt and Dt are denoted as:

(Dt, Dt) =
{
(xi

t,y
i
t,x

i
t,y

i
t)
}|Dt|
i=1

s.t. (xi
t,y

i
t) ∈ Dt, (x

i
t,y

i
t) ∈ Dt,

(6)

With the image-duplets (Dt, Dt) at the t-th step, our method updates the
model St by optimizing the following loss function:

Ltotal(Θt) =
1

|Dt|+|Dt|

∑
(x,x)

[ldup(x,x;Θt) + γlctx(x,x;Θt)], (7)



8 H. Zhao et al.

Original Image

new class GT

Erased Image 

Erased pixels of new class 

(a) original

Erased Image Consistency on Old-Classshared weights

Step t New Classes: {Monitor, Background} Old Classes: {Person}

(b) original

Fig. 4. The illustration of (a): generating the context-rectified image-duplet, (b): a
biased-context-insensitive consistency loss.

where γ is a hyper-parameter balancing the importance of the loss terms. The
first loss term ldup(x,x;Θt) takes the similar form of Equation (2) on the original
image x and the corresponding erased image x:

ldup(x,x;Θt) = l(x;Θt) + l(x;Θt), (8)

Biased-context-insensitive Consistency Loss. To further address the biased
context, the second loss term lctx(x,x;Θt) is introduced and utilized to keep
a biased-context-insensitive consistency between the original image x and the
corresponding erased image x (as shown in Figure 4(b)). For the old-class pixels,
the new-class-related context are included in the original image x and erased in
the corresponding erased image x. For simplicity, we utilize O(x) to represent

the locations {(wj
o, h

j
o)}

O(x)
j=1 of old-class pixels included in the image x, . To

reduce the effect of biased context between the old-class and new-class, the
prediction of the updated model St on the old-class pixels with the new-class-
related context should be consistent with that without the new-class-related
context. Then lctx(x,x;Θt) is formulated as follows:

lctx(x,x;Θt) =
∑

(w,h)∈O(x)

∑
c∈C1:t−1

∥Sw,h,c

t (x)− Sw,h,c

t (x)∥2 , (9)

3.4 Adaptive Class-Balance CSS

As for the imbalanced class distribution problem, we observe that the num-
ber of new-class pixels included in the new images is much larger than that of
pseudo-labeled old-class pixels. This class-imbalance problem usually results in
the updated classifier being biased towards the new classes. To cope with the
problem, we propose to adaptively assign different weights to the pixels of dif-
ferent classes based on the number of pixels. We optimize the biased classifier by
a balanced pseudo-labeling cross-entropy loss lbps(x;Θt) with different weights.
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To address the class-imbalance problem in CSS, the balanced pseudo-labeling
cross-entropy loss is formulated as follows:

lbps(x;Θt) = − β

WH

W,H∑
w,h

∑
c∈C0:t

ηw,h(x)S̃w,h,c

t (x) log Ŝw,h,c

t (x), (10)

where ηw,h(x) denotes the weight of the pixel at the location (w, h) in the image
x. ηw,h(x) depends on the category of the pixel and the number of pixels from
different classes in the image:

ηw,h(x) =

{
0.5 + σ( Nold(x)

Nnew(x) ) (w,h)∈O(x)

1 otherwise,
(11)

where Nold(x), Nnew(x) and σ(·) are the number of pixels belonging to old
classes C1:t−1, the total number of pixels belonging to the new classes Ct and
the sigmoid function respectively. Then ldup(x,x;Θt) in Equation (8) with the
balanced pseudo-labeling is formulated as follows:

ldup(x,x;Θt) = l
′
(x;Θt) + l(x;Θt), (12)

where l
′
(x;Θt) is denoted as follows:

l
′
(x;Θt) = lbps(x;Θt) + αlkd(x;Θt), (13)

4 Experiments

4.1 Datasets

We follow previous CSS works [35,3,14] and utilize the commonly used semantic
segmentation datasets PASCAL VOC 2012 [15] and ADE20k [57] for experi-
ments: VOC contains 10, 582 fully-annotated images for training and 1, 449 for
testing, over 20 foreground object classes. ADE20k is a large-scale dataset that
has 20, 210 training images and 2, 000 testing images in 150 classes. For all
datasets, we resize the images to 512× 512, with a center crop and employ the
random horizontal flip augmentation strategy as the practice in PLOP [14] at
training time.

4.2 Experimental Setup

Continual Semantic Segmentation Setting: MiB [3] introduces two differ-
ent CSS settings (Disjoint and Overlapped). In the Disjoint setting, the incre-
mental new images Dt at t-th step contain pixels belonging to old and current
new classes (C1:t−1 ∪ Ct), each training step contains a unique set of images,
whose pixels belong to classes seen either in the current or in the previous learn-
ing steps. In the Overlapped setting, the new images contains the pixels belonging
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Table 1. CSS results under the Disjoint setting on VOC-19-1, VOC-15-5 and VOC-
15-1 benchmarks. † means the results from [14,38]. Best in bold.

Method
19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)

0-19 20 all 0-15 16-20 all 0-15 16-20 all

FT 5.80 12.30 6.20 1.10 33.60 9.20 0.20 1.80 0.60

PI† [50] 5.40 14.10 5.90 1.30 34.10 9.50 0.00 1.80 0.40

EWC† [26] 23.20 16.00 22.90 26.70 37.70 29.40 0.30 4.30 1.30

RW† [4] 19.40 15.70 19.20 17.90 36.90 22.70 0.80 3.60 1.30

LwF† [30] 53.00 9.10 50.80 58.40 37.40 53.10 0.80 3.60 1.50

LwF-MC† [41] 63.00 13.20 60.50 67.20 41.20 60.70 4.50 7.00 5.20

ILT† [37] 69.10 16.40 66.40 63.20 39.50 57.30 3.70 5.70 4.20

MiB† [3] 69.60 25.60 67.40 71.80 43.30 64.70 46.20 12.90 37.90

SDR† [38] 69.90 37.30 68.40 73.50 47.30 67.20 59.20 12.90 48.10

PLOP† [14] 75.37 38.89 73.64 71.00 42.82 64.29 57.86 13.67 46.48
Ours 76.43 45.79 75.01 75.12 49.71 69.89 61.68 19.52 51.60
Joint 77.40 78.00 77.40 79.10 72.56 77.39 79.10 72.56 77.39

to old, current new and future classes (C1:t−1 ∪Ct ∪Ct+1:T ), each step contains
all the images that have at least one pixel of a novel class, with only the latter
annotated. The Overlapped setting is usually more challenging than the Disjoint
setting.

Evaluation Protocol:We evaluate our method under these two CSS settings on
the commonly used CSS benchmarks (VOC-19-1, VOC-15-5, VOC-15-1, ADE-
100-50, ADE-50-50 and ADE-100-10), where 19-1 means learning 19 then 1 class
(2 learning steps), 15-5 learning 15 then 5 classes (2 steps) and 15-1 learning 15
classes followed by five times 1 class (6 steps). The benchmarks on ADE20k
are 100-50 (2 steps), 50-50 (3 steps) and 100-10 (6 steps). The benchmark with
higher number of steps is usually more challenging. Each method is trained on
the CSS benchmark in several steps. At the last step, we follow [14,38] and report
the traditional mean Intersection over Union (mIoU) for the initial classes C1,
for the incremented classes C2:T , for all classes C1:T (all).

Training Details: We implement our models with Pytorch and use SGD for
optimization. Following [3,14], we use the Deeplab-V3 [5] architecture with a
ResNet-101 [18] pre-trained on ImageNet [8] as the backbone network. As for
our proposed context-rectified image-duplet learning scheme, we train our model
with a batch size of 24 on both Pascal VOC and ADE20k datasets. At the first
CSS step, all the images are the original images since no old model is kept for
pseudo-labeling and the learning rate is set to 0.01 on both VOC and ADE20k
CSS benchmarks. At other CSS steps, the sample duplets are generated by the
old model from the last step (half of the images in each batch are the original
images and half of them are the corresponding new-class-erased images). The
learning rate on VOC/ADE20k is set to 0.001/0.005. The loss weight γ of the
biased-context-insensitive consistency loss term in Equation (7) is set to 0.01
for all datasets. More experimental results are included in the supplementary
materials.
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Table 2. CSS results under the Overlapped setting on VOC-19-1, VOC-15-5 and VOC-
15-1 benchmarks. † means the results from [14,38]. Best in bold.

Method
19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)

0-19 20 all 0-15 16-20 all 0-15 16-20 all

FT 6.80 12.90 7.10 2.10 33.10 9.80 0.20 1.80 0.60

PI† [50] 7.50 14.00 7.80 1.60 33.30 9.50 0.00 1.80 0.50

EWC† [26] 26.90 14.00 26.30 24.30 35.50 27.10 0.30 4.30 1.30

RW† [4] 23.30 14.20 22.90 16.60 34.90 21.20 0.00 5.20 1.30

LwF† [30] 51.20 8.50 49.10 58.90 36.60 53.30 1.00 3.90 1.80

LwF-MC† [41] 64.40 13.30 61.90 58.10 35.00 52.30 6.4 8.40 6.90

ILT† [37] 67.75 10.88 65.05 67.08 39.23 60.45 8.75 7.99 8.56

MiB† [3] 71.43 23.59 69.15 76.37 49.97 70.08 34.22 13.50 29.29

SDR† [38] 69.10 32.60 67.40 75.40 52.60 69.90 44.70 21.80 39.20

PLOP† [14] 75.35 37.35 73.54 75.73 51.71 70.09 65.12 21.11 54.64
Ours 77.26 55.60 76.23 76.59 52.78 70.92 69.54 38.44 62.14
Joint 77.40 78.00 77.40 79.10 72.56 77.39 79.10 72.56 77.39

4.3 Comparison to State-of-the-Art Methods

In this section, we evaluate the CSS performance of our proposed method on
Pascal VOC and ADE20k datasets, against existing state-of-the-art methods,
including PI [50], EWC [26], RW [4], LwF [30], LwF-MC [41], ILT [37], MiB [3]
, SDR [38] and PLOP [14]. In the tables, we also provide the results of the other
two methods: the simple fine-tuning approach which trains the model on the
new images with no additional constraints (denoted by “FT”), and training the
model on all classes off-line (denoted by “Joint”). The former can be regarded
as a lower limit and the latter as an upper limit.

Results on Pascal VOC. Table 1 and Table 2 summarizes the experimental
results for the Disjoint and Overlapped settings of three VOC benchmarks re-
spectively. Under the Disjoint setting, it is observed that the performance of
our method consistently surpasses the other methods at the last learning step
on each evaluated benchmark. On VOC-19-1, we can see that the mIOU of our
method on new classes (20) is 6.90% higher than that of PLOP. On the VOC-15-
1 with a large number of learning steps, our method consistently performs better
than other methods. All of these results indicate the effectiveness of our method
to catastrophic forgetting of past classes and overfitting on the current classes.
Under the Overlapped setting, we can see that the performance of our method
consistently outperforms that of other methods by a sizable margin on all evalu-
ated VOC benchmarks (i.e., 19-1, 15-5 and 15-1). On VOC-19-1, the forgetting
of old classes (1-19) is reduced by 1.91% while performance on new classes is
greatly improved by 18.25%. On the most challenging benchmark VOC-15-1, it
is worth noting that the performance of our method on all the seen classes out-
performs its closest contender PLOP [14] by around 7.50%. All of these results
indicate the effectiveness of our method to catastrophic forgetting of past classes
and overfitting on the current classes.
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Table 3. CSS results under the Overlapped setting on ADE-100-50, ADE50-50 and
ADE-100-10 benchmarks. ∗ means the results from re-production.

Method
100-50 (2 steps) 50-50 (3 steps) 100-10 (6 steps)

0-100 101-150 all 0-50 51-150 all 0-100 101-150 all

FT 0.00 22.50 7.50 13.90 12.00 12.60 0.00 2.50 9.20

ILT† [37] 18.29 14.40 17.00 3.53 12.85 9.70 0.11 3.06 1.09

MiB† [3] 40.52 17.17 32.79 45.57 21.01 29.31 38.21 11.12 29.24
PLOP∗ [14] 41.66 15.42 32.97 47.75 21.60 30.43 39.42 13.63 30.88
Ours 42.90 21.49 35.81 49.59 26.32 34.18 39.01 21.67 33.27

Joint 43.90 27.20 38.30 50.90 32.10 38.30 43.90 27.20 38.30

Table 4. Ablation experimental results on VOC-Overlapped -15-1.

Ablation Method
15-1 (6 steps)

0-15 16-20 all

Ablation I
Baseline 65.12 21.11 54.64
Baseline+double 60.23 11.95 48.73
Baseline+duplet 70.54 31.06 61.14

Ablation II
Baseline+duplet 70.54 31.06 61.14
Baseline+duplet+ctx 69.54 38.44 62.14

Ablation III
Baseline 65.12 21.11 54.64
Baseline+balance 65.35 24.89 55.72

Results on ADE20k.We have also evaluated our method under the Overlapped
setting of ADE-100-50, ADE-50-50 and ADE-100-10 benchmarks and the results
are shown in Table 3. This dataset is very hard because the mIoU of the joint
model is only 38.30%. On these ADE CSS benchmarks, our method improves the
mIoU on new classes by a sizable margin (more than 4.5%) and shows comparable
performance on previous classes with its closest contender PLOP. The overview
on the performance of new classes reveals that our approach is greatly helpful
to avoid the overfitting on new classes while maintaining the performance on
previous classes.

4.4 Ablation Study

In this section, we first carry out ablation experiments to validate the effective-
ness of the context-rectified image-duplet. Then we conduct experiments to val-
idate our biased-context-insensitive consistency loss and adaptive class-balance
strategy. All of the ablation experiments are conducted on the challenging Over-
lapped setting of the benchmark VOC-15-1.
Baseline. Our main baseline is given based on a classical pseudo-labeling-based
CSS method PLOP [14], which utilizes a multi-scale pooling distillation scheme
to preserve the performance on previously seen classes and an entropy-based
pseudo-labeling strategy on the mislabeled background class pixels to reduce
the background shift.
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Fig. 5. Visualization of PLOP and our method at different steps under the Overlapped
setting of VOC-15-1.

Image GT PLOP Ours Image GT PLOP Ours 

Fig. 6. The predictions of PLOP and our method for different images at the last step
under the Overlapped setting of VOC-15-1.

Effect of the context-rectified image-duplet. In order to demonstrate the
effectiveness of the context-rectified image-duplet, we compare the performance
of “Baseline” with our image-duplet including the original image and the corre-
sponding new-class-erased image (denoted by “Baseline+duplet”). The results
are shown in Table 4. We can see that the performance of Baseline+duplet
surpasses that of Baseline. In particular, the mIoU on new classes of Base-
line+duplet outperforms that of Baseline by a large margin (9.95%). Moreover,
we also compare Baseline+duplet with Baseline+double to reduce the influence
of increasing the number of samples. In a minibatch, Baseline+duplet utilizes
the original images and the corresponding erased images. Baseline+double uti-
lizes the original images and the corresponding copied original images. As shown
in Table 4, the performance of Baseline+duplet is higher than Baseline+double,
which demonstrates that directly increasing the number of images can not lead
to performance improvement.

Effect of biased-context-insensitive consistency constraint. We evalu-
ate the performance of “Baseline+duplet” with our biased-context-insensitive
consistency loss (denoted by “Baseline+duplet+ctx”) and Table 4 summarizes
the experimental results on the Overlapped setting of the benchmark VOC-15-1.
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Fig. 7. The mIoU evolution of ours
and Baseline(PLOP) on VOC-15-1.

The mIoU on new classes of Baseline+duplet+ctx
is around 7.38% higher than that of Base-
line+duplet, which demonstrates that the
biased-context-insensitive consistency con-
straint can greatly improve the performance
on new classes and is essential to avoid the
overfitting on new classes. To further vali-
date the effectiveness of our biased-context-
rectified CSS learning framework, we also
compare our method with Baseline and show
the average mIoU curves in Figure 7. It is
observed that Ours achieves better performance than Baseline at every step.
Effect of adaptive class-balance strategy. To demonstrate the effectiveness
of our adaptive class-balance strategy, we evaluate the performance of Baseline
with our adaptive class-balance strategy (Baseline+balance). In Table 4, we
report the experimental results after the last learning step. As for the old classes
(0-15), Baseline+balance achieves better performance than Baseline. Regarding
new classes (16-20), Baseline+balance exceeds Baseline by around 4%.
Effect of biased context. To demonstrate the effect of the biased context,
we visualize the predictions for both PLOP (Baseline) and our method on 15-
1 protocol of the benchmark VOC-Overlapped. As shown in Figure 5, PLOP
is more prone to overfitting on new classes (sheep, sofa, train, TV) than ours
at the latter steps. Besides, we visualize the predictions of ours and PLOP for
different samples at the last step in Figure 6. Ours achieve less forgetting on old
classes (person, dog, bicycle) than PLOP, illustrating that the biased context
aggravates the old-class forgetting and new-class overfitting.

5 Conclusion

In this paper, we first consider the biased context problem in CSS and design a
novel biased-context-rectified CSS framework for it. Firstly, our method utilizes
a context-rectified image-duplet learning scheme and a biased-context-insensitive
consistency loss to rectify the biased context correlation between the old-class
pixels and new-class pixels, which effectively alleviates the old-class forgetting
and new-class overfitting. Secondly, we propose an adaptive re-weighting class-
balanced learning strategy to cope with the dynamiclly changing imbalanced
class distribution in CSS. Lastly, we perform intensive evaluations of our method
and other CSS methods, showing the effectiveness of our method.
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