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In this supplementary, we first provide the proof of our variational bound for
the InfoMax-BottleNeck objective, and then showcase additional results to verify
our proposed knowledge factorization. Next, we describe our implementation
details, dataset settings, evaluation metrics, and hyper-parameter settings.

1 Variational Lower bound for IMB

1.1 Lower and Upper bound for Mutual Information

For two random variables X and Y, mutual information (MI) describes the
independence between each other. It can be formulated as the Kullback Leibler
divergence between the joint probability p(x,y) and the product of marginal
distribution p(x)p(y):

I(X,Y) = Dxr[p(x, y)|lp(x)p(y)] (1)
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Lower bound. Since computing p(y|x) directly is intractable, we use a vari-
ational distribution ¢(y|x) to approximate p(y|x). Because the Kullback Leibler
divergence is always positive Dk [p(y|x)||¢(y|x)] > 0, we have a lower bound
for the MI as:
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Note that the entropy term H(Y') > 0 and is sometimes discarded when H(Y)
is a constant.

In this work, we assume ¢(y|x) to be an energy-based function that is pa-
rameterized by a critic function f(x,y):

p X, X,
q(ylx) = %ef( ) where C = E, 4, [ef( y)]. (11)
We substitute ¢(y|x) into Equation [9] and derive an unnormalized lower

bound on MI, which we refer to as Iyga for the Barber and Agakov bound [I]
and Ipa Donsker & Varadhan bound [6]. We write:

Ep ey [log q(y[x)] + H(Y) (12)
Z]Ep(xyy) [f(xv y)] - ]Ep(x) [log C} - IUBA (13)
>Epx,y) [f(%,¥)] =108 Epx) [C] = Ipv  [Jensen’s inequality]. (14)

Upper bound. We then consider the upper bound of mutual information.
Similarly, we use ¢(y) as the variational approximation to the marginal distri-
bution of p(y). Using the non- negativity property of KL divergence again, we
know that Dgr[p(y)|q(y)] = [ dyp(y) log E ; > 0. Therefore we get a tractable

variational upper bound for I(X,Y):
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1.2 Approximate IMB with Variational bounds

For each task, we assume the three random variables X, Y;, T} follow a Markov
chain that X — T; — Y;. Because computing IMB objective directly is in-
tractable, we resort to maximizing a variational lower bound:

L =1I(T;,Y;) + oZ(X, Z) — BL(X,Tj)
> By, o log a(y; t)] + H(Y)
+ a(Ep(sx [log q(z|x)] + H(Z))
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where Dy, denotes the KL divergence between two distributions and ¢(-) de-
notes the variational distributions. The entropy term H(Y) > 0 is canceled
because it is a constant that is irrelevant to the optimization.

2 Additional Experiments

In this section, we provide additional experiments to further verify the utility of
our proposed KF.

2.1 Factor Networks are Interpretable and Robust

We testify if our factorized model embraces better interpretability and robust-
ness by applying adversarial attacks and visualizing its attribution map.
Robustness Setup. We apply adversarial perturbations to MBNv2 and ResNet-
18 to examine their robustness. For each backbone, we use three models that
are trained with different strategies: (1) Baseline without teacher (2) Distilled
from WRN28-2 model and (3) Single-task network factorized from WRN28-2.
We apply Fast Gradient Sign Method (FGSM) [8] and Projected Gradient De-
scent (PGD) [14] with 40 iterations as our attacks. Attacks are conducted with
different magnitude € in L., norm ball.

Attribution Setup. We apply Grad-Cam [I7] to visualize the attribution map
for ResNet-18 trained on Shape3D and MBNv2 trained on CIFAR-10 datasets.
The yellow area highlights the most informative region in the image space. For
each factor network, we visualize the Grad-Cam with respect to the last layer of
its TSN.

Robustness and Attribution Results. Figure [1] illustrates the accuracy un-
der different attacks. For both attacks and two backbones, factor networks (green
dashed plot with star) perform the marginal better than the KD model and the
baselines. Meanwhile, factor networks provide sharp and noiseless explanation for
the input compared with its teacher and KD counterpart, as shown in Figure
and [3 In fact, minimizing Z(X,T}) can be regarded as posing regularization on
task-specific feature t7. It enforces t/ to be compact and sparse, which naturally
gives rise to interpretability to different tasks and robustness to input noise.
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Fig. 1: Adversarial robustness accuracy across backbones and attack. R18 stands
for ResNet-18.
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Fig.2: Grad-Cam visualization for ResNet-18 on Shape3D datasets. Given the
input in (column 1), we compare the attribution obtained from the teacher net-
work and its factorized students on 6 tasks.
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Fig. 3: Grad-Cam visualization for MBNv2 on CIFAR-10. (row 1) Input (row 2)
Baseline MBNv2 (row 3) MBNv2 distilled from ResNet-18 and (row 4) MBNv2
factorized from ResNet-18.
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2.2 Sub-Task Integration

We show here how KF performs when constructing new sub-task prediction
models by integrating factor networks.

Experiment Setup. We construct 5 binary-class classification tasks and 5
trinary-class classification tasks from the CIFAR-10. We deliberately selected
some indistinguishable categories into a group to increase the challenge. The bi-
nary classification problems include cat-dog, deer-horse, automobile-truck, bird-
airplane and automobile-ship. Each binary classification task contains 10,000
images for training (5,000 per class) and 1,000 for testing (500 per class). The
trinary-class classification problems include cat-dog-frog, deer-horse-dog, automobile-
truck-ship, bird-airplane-frog and automobile-ship-airplane. Each trinary-class
problem contains 15,000 images for training (5,000 per class) and 1,500 for test-
ing (500 per class). We compare the classification accuracy for 4 models

— A ResNet-18 trained on full CIFAR-10,

A MobileNetv2 trained on sub-task without teacher,

— A MobileNetv2 trained on sub-task, distilled from full-CIFAR-10 ResNet-18,
Ten factor networks (MobileNetv2 as CKN, MobileNetv2x0.5 as TSN) trained
on full CIFAR-10, factorizied from full-CIFAR-10 ResNet-18.

For the KF experiments, we first factorize 10 factor networks from the teacher
model, with each network corresponding to a single category prediction. Then
we evaluate the combined prediction of the 2 or 3 factor networks based on the
sub-task requirement. We use the soft-target [9] as our knowledge transfer loss
function for both KD and KF, with temperature T' = 10. We set the initial
learning rate to 0.1, momentum to 0.9, and weight-decay to 0.0001. The models’
weights are optimized with SGD for 200 epochs. The learning rate is reduced by
0.1 at the 100-th and 150-th epoch.

Results. Figure [f] provides the test accuracy comparison on 10 CIFAR-10 sub-
tasks when trained with different strategies. For all binary-class and trinary-class
sub-tasks, we observe that KD considerably improves the baseline MBNv2 ac-
curacy by 2%. Meanwhile, KF further boosts the performance by 1%. Ideally, in
order to obtain all binary-class and trinary-class sub-task models of CIFAR-10,
KD needs to train (%)) = 45 binary-class models and (%) = 120 trinary-class
models, while our proposed KF only needs to train 10 models to be compe-
tent for all subtasks. KF significantly reduces training time and model numbers
compared with KD.

2.3 Model Size

Despite that factorizing a large model into multiple small sub-networks may in
theory increase the total number of parameters, we conduct experiments to show
that KF, in practise, achieves better performance even with less parameters.

Experiment Setup. We compare the number of parameters and the test perfor-
mance on CIFAR-10. We compare the baseline MBNv2, ResNet-18, WRN-28-2,
and WRN-28-10 models and their factor networks with WRN-28-10 in terms
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Fig. 4: Test Accuracy on binary-class and trinary-class sub-tasks contrasted on
CIFAR-10 with different training strategies.

of parameter number and accuracy. The experimental setup is the same as the
“Image Classification” section in the main paper.

Results. We show the number of parameters and the test performance on
CIFAR-10 in Table [1] As illustrated, factor network with 1 CKN WRN-28-2
and 1 TSN MBNv2x0.5 improves MBNv2 by 1.22% with slightly less parameter.
Similarly, the factor network with 1 CKN ResNet-18 and 1 TSN MBNv2x0.5
marginally improves WRN-28-10 with only 2/5 model parameters. These re-
sults verify that KF is able to achieve promising test accuracy even with less
parameters.

Table 1: Model Parameter Number and Accuracy on CIFAR-10. KF yields better
classification accuracy with less parameters.

Method |Network |Params(M)|Acc(%)
Baseline| MBNv2 3.50 93.58
KF CKN WRN-28-2 + 1 TSN MBNv2x0.5 3.44 94.80
Baseline| WRN-28-10 36.48 95.32
KF CKN ResNet-18 + 1 TSN MBNv2x0.5 13.66 95.40
Baseline| ResNet-18 11.69 94.45
KF CKN WRN-28-2 + 2 TSN MBNv2x0.5 5.41 95.03

2.4 Visualization for the Multi-task Dense Prediction

We visualize the prediction results for the multi-task dense prediction on NYUDv2
dataset. We compare 3 methods with ground-truth labels

— Multi-Task HRNet-18, without teacher,
— Multi-Task HRNet-18, distilled from Multi-Task HRNet-48,
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— Multi-Task HRNet-18 as CKN and MBNv2 as TSN, factorized from Multi-
Task HRNet-48.

Results. Figure [5| shows the semantic segmentation (row 2-5) and depth esti-
mation (row 6-9) results on NYUDv2 dataset. We observe that factor networks
produce more accurate depth estimation with sharper edges (column 2 and 4)
compared with the distilled students. On top of this, the knowledge factoriza-
tion enables students to better learn the pattern of the minority categories. For
example, the general KD or baseline models fail to classify the “whiteboard”
category, which is a rare class in NYUDv2. However, the segmentation factor
network succeeds in roughly sketching the area of the whiteboard.

Similar results are also visualized for PASCAL-Context in Figure[6] in which
the factor networks produce more accurate prediction results than those of KD.
For example, on the column 2 and 3, the segmentation factor network correctly
predicts the “people” masks whereas the KD fails. Likewise, the normal-task
factor network succeeds to estimate the architectural decoration at the top of
the building roof (column 5).

3 Experiment Details

3.1 Datasets

ImageNet1K. ImageNet [16] is a large-scale image classification dataset. The
publicly released dataset contains 1,280,000 training with image-level images
with 1,000 object categories. In this work, we also deem it as a 11-task dataset
based on the category semantic subtrees. The 11 subtrees summarize 11 super-
classes: (n01466257, chordate), (n01905661, invertebrate), (n02152991,game),
(n01317541, domestic animal, domesticated animal), (n00021939,artifact, arte-
fact), (fallmisc, Misc), (n00019128, natural object), (n09287968, geological
formation, formation), (n00007846,person, individual, someone, somebody, mor-
tal, soul), (n00017222, plant, flora, plant life),(n12992868, fungus). During train-
ing, we apply data augmentation to each sample. We randomly resize and crop
a 224 x 224 patch from the image and horizontally flip it with a probability of
0.5. For each test image, we resize it to 256 x 256 and center-crop a 224 x 224
patch.

CIFAR10. The CIFAR-10 [12] dataset consists of 60,000 32x32 colour images
in 10 classes, with 6,000 images per class. There are 50,000 training images and
10,000 test images. In this work, we deem it as a 10-task dataset, with 10 binary
classification tasks on each category, and also as a 2-task dataset, with a vehicle
super-class (airplane, automobile, ship, truck) and an animal super-class (bird,
cat, deer, dog, frog, horse). Each training sample is randomly cropped to a 32x 32
sample and randomly flipped with a probability of 0.5. We do not apply any data
augmentation on the test set.

dSprites. dSprites [T5] is a dataset of 2D shapes procedurally generated from 6
independent latent factors. These factors are color, shape, scale, rotation, T posi-
tions and y positions of a sprite. The latent factor values are shown in Table
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Fig. 5: Qualitative results on scene parsing and depth estimation on NYUDv2.
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All possible combinations of these latents variable are present exactly once, gen-
erating N = 737,280 total images. We do not apply any data augmentation when
training or testing on dSprites.

Latent factor‘ Value
Color White
Shape square, ellipse, heart
Scale 6 values linearly spaced in [0.5, 1]
Orientation 40 values in [0, 27]
Position X 32 values in [0, 1]
Position Y 32 values in [0, 1]

Table 2: Latent factor values for dSprites Dataset

Shape3D. Shape3D [2] is a dataset of 3D shapes procedurally generated from
6 independent latent factors. These factors are floor colour, wall colour, ob-
ject colour, scale, shape, and orientation. The latent factor values are shown in
Table[3] All possible combinations of these latents are present exactly once, gen-
erating N = 480,000 total images. Each image is of the scale 64 x 64. We do not
apply any data augmentation when training or testing on Shape3D.

Latent factor‘ Value
floor hue | 10 values linearly spaced in [0, 1]
wall hue 10 values linearly spaced in [0, 1]
object hue | 10 values linearly spaced in [0, 1]
scale 8 values linearly spaced in [0, 1]
shape 4 values in [0, 1, 2, 3]

orientation |15 values linearly spaced in [-30, 30]
Table 3: Latent factor values for Shape3D Dataset

NYU-Depth V2. The NYU-Depth V2 (NYUDv2) [I8] dataset comprises video
sequences from a variety of indoor scenes as recorded by both the RGB and
Depth cameras from the Microsoft Kinect. It consist of 795 training and 654
testing images of indoor scenes, with annotations for 40-class semantic segmen-
tation (“Seg.”), depth estimation (“Depth.”), surface normal estimation and
boundary detection. We only include the semantic segmentation and depth esti-
mation tasks in our implementation. Each training sample is horizontally flipped
with a probability of 0.5 and re-scaled by a factor of s € {1.0,1.2,1.5}. Finally,
the training images are resized to 480 x 640. All the test images are also resized
to 480 x 640, without other data augmentations.
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PASCAL-Context. The PASCAL-Context [0] is a split of the larger PASCAL
dataset [5], providing 4,998 training and 5,105 testing images, labeled for 20-
class semantic segmentation (“Seg.”), human parts segmentation (“H.Part.”),
saliency estimation (“Sal.”), surface normal estimation (“Norm.”), and boundary
detection. We only include the first 4 tasks in our work. Each training sample
is horizontally flipped with a probability of 0.5, randomly rotated with a degree
sampled from 0 € [—20°,20°] and re-scaled by a factor of s € [0.75, 1.25]. Finally,
the training images are resized to 512 x 512. All the test images are also resized
to 512 x 512, without other data augmentations.

CUB-200-2011. CUB-200-2011 [I9] is an extended version of the CUB-200
dataset [21], with roughly double the number of images per class and new part
location annotations. The dataset contains 11,788 images of 200 bird species,
including 5,994 training samples. Each training sample is randomly cropped
to 256 x 256 and randomly horizontal flipped with the probability of 0.5 for
augmentation.

Indoor Scene Dataset. The MIT-67 Indoor Scene Recognition Dataset is an
indoor scene imagary classification dataset. It has 15,620 images in total amongst
67 classes including airport, train station, kitchen, and library. We randomly
select 70% for training and the rest for testing. Each training sample is randomly
flipped with a probability of 0.25 horizontal and 0.25 vertical, randomly rotated
with a degree 6 € {90°,180°,270°}, and randomly cropped to 224 x 224.

3.2 Feature Similarity

On dsprites and Shape3D, we utilize a 6-layer CNN as teacher and 3-layer CNNs
for the rest models. On CIFAR10, we report results with a ResNet18 teacher and
ResNet18 students/CKN, alongside with MBNv2x0.5 TSNs. On NYUDv2, we
adopt the ResNet50 teacher, and ResNet18 students or CKA, with MBNv2x0.5
TSNs.

3.3 Common Knowledge Network and Task specific network
Implementation

As mentioned in the main paper, each factor network is composed of two net-
work modules, namely Common Knowledge Network (CKN) and Task Specific
Network (TSN).

TSN. Based on the derivation for the IMB bound, t; is stochastically sam-
pled from a Gaussian distribution parameterized by the TSN. Specifically, the
channel-wise mean and variance of the output feature vector of a TSN is com-
puted. At the same time, t; should be powerful to make the individual task
prediction with another task head H7, :

tj = STJ‘ (X; QST]- ); Ht; = ]E[tj]a O—?J = Va’r[tj]’ (20)
= H (60 ). (o1)
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Final Prediction. Each input data is fed into two networks in parallel and
two feature vectors z and t; from the last layer of CKN and TSN are added as
the full task representation. The final task prediction is made by the full task
representation:

z = Sc(x;0s.);t; = St (x5 QSTJ- ),
Qj ZHj(Z—th;@Hj).

3.4 Implementation Details and Hyper-parameters

Disentanglement Experiments. We optimize the model with the following
hyper-parameter settings:

— We adopt the Adam [I1] method, with initial learning rate set to be le-4,
weight decay to be le-4, and mini-batch size to be 128.

— We train the networks for 20 and 5 epochs on dSprites and 3dshapes re-
spectively. The learning rate is reduced by 0.1 at 10-th and 15-th epoch on
dSprites.

— The network structure is shown in Table [

We use the evaluation code from disentanglement,libﬂ

Layer ‘ Parameter

Input 64 X 64 X ¢
Conv-ReLU| 4 x 4, ¢ = 32, stride= 2
Conv-ReLU| 4 x 4, ¢ = 32, stride= 2
Conv-ReLU| 4 x 4, ¢ = 64, stride= 2
Conv-ReLU |4 x 4, ¢ = 128, stride= 2
Conv-ReLU 4 x 4, ¢ = 256, stride= 2
Conv-ReLU 4 x 4, ¢ = 256, stride= 2
FC c=10

Table 4: 6-layer network architecture for the disentanglement experiment.

Layer ‘ Parameter

Input 64 X 64 X ¢
Conv-ReLLU 4 x4, c = 32, stride= 2
Conv-ReLU 4 x4, c = 32, stride= 2
Conv-ReLU 4 X 4, c = 64, stride= 2
Global Avg-Fool tolx1

FC c=10

Table 5: 3-laye network architecture for the disentanglement experiment.

Image Classification Experiments.

! https://github.com/google-research /disentanglement_lib
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— On CIFAR-10, we adopt SGD to optimize the objectives, with 0.1 initial
learning rate and a momentum term of 0.9. We train the network for 200
epochs and the learning rate is reduced by 0.1 at 100-th and 150-th epoch.

— On ImageNet1K, we adopt SGD to train the model and set the initial learn-
ing rate to 0.1 for ResNet-students and 0.05 for MBNv2, with cosine anneal-
ing policy and batch-size of 256. The networks are trained for 150 epochs.

— The knowledge transfer loss is set to a soft-target loss with temperature T' =
10. We use binary cross-entropy as our supervised loss for all experiments.

The classification implementation is based on the mmclassiﬁcationﬂ framework.
Multi-Task Dense Experiments.

— On ResNet-18 and ResNet-50 backbone, we use the Deeplabv3 [3] as our
decoder. For the HRNet backbone, we concatenate the (upsampled) repre-
sentations that are from all the resolutions to make the final prediction [20].

— We use the Adam [I1I] optimizer to train the model, with initial learning
rate of le-4, weight decay of le-4, and batch-size of 12. The learning rate
is updated using polynomial policy. We train all models for 80 epochs on
NYUDv2 and 100 epochs on PASCAL-Context.

— All network are trained to minimize their cross-entropy loss on semantic
segmentation task or L1 distance on other tasks with respect to the ground-
truth labels. All task weights are set to be 1.

— We distill the knowledge from pretrained teacher network by minimizing the
feature difference between the teacher and students with a dense L1 norm
function.

The multi-task dense prediction is implemented base on the Multi- Task-Learning-
PyT 0rchE| open source repository.

Attribution Experiments. We visualize the Grad-CAM map by using the
pretrained classification model on CIFAR-10 and 3dshapes.

— On the 3dshapes experiments with ResNet-18, we visualize the Grad-CAM
with respect to the output of layer LAYER4.RELU.

— On the CIFAR-10 experiments with MBNv2, we visualize the Grad-CAM
that corresponds to the layer CONV2.BN, which is the last batch-norm layer
of the MBNv2.

The Grad-CAM is implemented base on the Captumﬁ library.
Adversarial Experiments. We apply 2 adversarial attacks to the model trained
on CIFAR-10 to testify their robustness to adversarial samples.

— The attack magnitude € is defined as the relative pixel perturbation level
k/255.

— We transverse all e € {0.0,0.0005,0.001,0.0015, 0.002, 0.003, 0.005, 0.01,0.02
,0.03,0.1,0.3,0.5,1.0} and report the test accuracy.

All attacks are implemented using the open-sourced foolbozﬁ library.

2 https://github.com/open-mmlab/mmclassification

3 https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch
* https://captum.ai

® https://github.com/bethgelab/foolbox
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Transfer Learning Experiments. On both CUB-2011-bird and Indoor Scene
dataset, we use stochastic gradient descent with momentum of 0.9 and learning
rate of 0.1 for 200 epochs for training both from scratch and with distillation.
For applying distillation, we set T' = 20.

3.5 Disentanglement Metrics

In the main paper, we utilize 4 data evaluation metrics to quantify how well
the learned representations disentangle with latent factors. We introduce the
definition of each metrics in detail.

FactorVAE. FactorVAE [I0] metric measures disentanglement as the accuracy
of a majority vote classifier on a different feature vector that predicts the index
of a fixed factor of variation.

Mutual Information Gap. For each ground-truth factor of variation, the Mu-
tual Information Gap (MIG) [] measures the mutual information difference
between the top two latent variables with highest mutual information. In our
implementation, we instead compute the mutual information difference between
two feature dimension with highest MI.
Disenanglement-Completness-Informativeness (DCI). DCI [7] computes
the entropy of the distribution obtained by normalizing the importance of each
dimension of the learned representation for predicting the value of a factor of
variation. We only include the disentanglement score in our evaluations.

SAP. The SAP score [13] is the average difference of the prediction error of the
two most predictive latent dimensions for each factor.
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