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1 Dataset example images

In Figure 1 and Figure 2 we show some example samples from SUN RGB-D
dataset, whereas in Figure 3 and Figure 4, samples from RGB-NIR scene dataset
has been shown. For both datasets, some random samples of Task-Relevant (TR)
and and Task-Irrelevant (TI) classes are shown. As DIML dataset has most of
the classes overlapped with SUN RGB-D, we do not show examples for that
dataset here. For the TR classes, source data are discraded after training the
source models and we transfer knowledge from those models to the unlabeled
data of target modality. For the TI classes, we have paired samples from both
modalities. Note that for all the cases, TR and TI classes are completely disjoint.

2 Calculation of pseudo-labels

For these steps, we mainly follow [1, 2]. We first compute the cluster centroids
of all the classes, followed by linearly combining the centroids using the current
learned weight vector. We then take each of the weighted features and label
it according to it’s nearest neighbors from the set of K weighted centroids. In
the next step, we update the pseudo labels by repeating these steps. Below, we
describe mathematically these steps in detail:

1. We first compute the cluster centroids of all the classes k ∈ {1, 2, . . . N}
induced by source j ∈ {1, 2, . . . , n} for the 0-th iteration, by the following
equation:
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Fig. 1. SUN RGB-D TR samples. We show some example images of the four
domains of SUN RGB-D. Both modalities from 4 out of 17 TR classes are shown here.
We discard the RGB source data after training four source models and we do not use
any label information for the target depth data.

Fig. 2. SUN RGB-D TI samples. We show some example images of the TI data
from SUN RGB-D dataset. Six classes, each with paired example of RGB and depth
are shown here. The TR and TI classes are completely disjoint.

2. In the next step, we linearly combine these centroids as well as the target
features extracted from all the source models from last iteration, with the
current learned weight vector ζ as follows:
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Fig. 3. RGB-NIR scene samples. We show some example images of the of RGB-
NIR scene dataset. Both modalities of all 6 TR classes are shown here. We discard the
source data after training the source model and we do not use any label information
for the target data.

Fig. 4. RGB-NIR scene samples We show some example images of the TI data
from RGB-NIR scene dataset. Three classes, each with paired example of RGB and
NIR are shown here. The TR and TI classes are completely disjoint.

3. We take each of the weighted features and label it according to it’s nearest
neighbour from the set of K weighted centroids, i.e., for a particular target
feature, if the nearest neighbour is k-th centroid, we assign class label k for

that particular feature. The assigned pseudo-label ŷ
i(0)
T for the i-th target

feature x̄iT at iteration 0 is calculated as:

ŷ
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4. We update the pseudo-labels in the next iteration by repeating the steps as
follows:
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where, 1{.} is an indicator function operator which takes value 1, when its
argument is true.
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Following the protocol of [1], we take ŷ
(1)
T as the final pseudo-label ŷiT ,

without further reiteration.
Finally the pseudo-label cross entropy loss Lpl is calculated as follows:
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3 More details about datasets

SUN RGB-D[3]: The 17 common scene classes shared among the four domains
are bathroom, classroom, computer room, conference room, corridor, discussion
area, home office, idk, kitchen, lab, living room, office, office kitchen, printer
room, reception room, rest space, study space.

The 28 scene classes used as TI data are basement, bedroom, book store, cafe-
teria, coffee room, dancing room, dinette, dining area, dining room, exhibition,
furniture store, gym, home, study, hotel room, indoor balcony, study space, laun-
dromat, lecture theatre, library, lobby, mail room, music room, office dining, play
room, reception, recreation room, stairs, storage room.
DIML RGB+D[4]: The 6 scene classes used as TR data are bathroom, class-
room, computer room, kitchen, corridor, living room.

The 12 scene classes used as TI data are bedroom, billiard hall, book store,
cafe, church, hospital, laboratory, library, metting room, restaurant, store, ware-
house.
RGB-NIR Scene[5]: The 6 scene classes used as TR data are country, field,
indoor, mountain, street, water.

The 3 scene classes used as TI data are forest, old building, urban.

4 Effect of regularization parameters

For the single source adaptation results, we empirically observe that, (λTI , λd) =
(0.5, 0.5), (0.5, 0.5), (0.1, 0.1), (0.5, 0.5) yields best result for Kinect v1, Kinect v2,
Realsense and Xtion as targets respectively. For the DIML RGB+D datset, the
parameters are set to be (0.5, 0.5), whereas for the RGB-NIR scene dataset, it
is set as (0.01, 0.05). Note that, for all of the cases this hyper-parameters are
chosen to balance the two loss terms. Our method always performs better than
the baseline in the range of values of the hyperparameters we tested and are
close to the best accuracies reported in the paper.
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5 Network architectures

In our experiments, we take the Resnet50 [6] model pretrained on ImageNet
as the backbone architecture for training the source models, the same way as
[2, 7, 8]. Following the architectures used in [1, 9], we replace the last fully
connected (FC) layer with a bottleneck layer containing 256 units, within which
we add a Batch Normalization [10] (BN) layer at the end of the FC layer. A
task specific FC layer with weight normalization [11] is added at the end of the
bottleneck layer.

6 Training source models

For training the source models, we resize all the source images to 224 × 224.
Moreover, to increase model robustness, we use smooth labels instead of one-
hot encodings [12, 13] during this procedure. We set the maximum number of
training epochs to 20 for all of the sources, irrespective of the datasets. We utilize
stochastic gradient descent with a momentum 0.9 and weight decay 10−3. The
learning rates are set to 10−3 for the feature encoders (fk’s) and 10−2 for the
added bottleneck layer. During adaptation and knowledge transfer to the target
modality, a learning scheduler setting similar to [2, 9] θ = θ0(1+10p)−

3
4 is used,

where θ and θ0 represent the current and initial learning rates and p is a real
number between 0 to 1 which captures the training progress. θ0 is set to be
10−3 for the feature encoders (fk’s) and 10−2 for the added bottleneck layers
along with the source mixing weight parameters (ζk’s). The maximum number
of epochs during target adaptation is set to be 15.

7 Knowledge transfer details

During adaptation and knowledge transfer to the target modality, a learning
scheduler setting similar to [2, 9] θ = θ0(1+10p)−

3
4 is used, where θ and θ0 repre-

sents the current and initial learning rates and p is real number between 0 to 1
which captures the training progress. θ0 is set to be 10−3 for the feature encoders
(fk’s) and 10−2 for the added bottleneck layers along with the source mixing
weight parameters (ζk’s). The learning rate decreases exponentially during the
course of training The maximum number of epochs during target adaptation is
set to be 15.

8 Modification of our algorithm in presence of TI
unpaired data

In this section, we explore the scenario of inaccessibility of pairwise cross-modal
data for TI classes. In practical scenario, one might not be able to acquire cross
modal paired data. In this case we show that adversarial matching between two
cross modal distributions works reasonably well. Inspired from [14], we propose
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the following loss function in order to align the two cross modal data distribu-
tions which are unpaired. For this purpose, we incorporate a discriminator D in
our framework.
Our adversarial loss has two components: (1) True Discriminator loss LTD

and (2) Adversarial Discriminator loss LAD. The first loss tries to distinguish
between source and target, while the second loss is a proxy for the generator
part of the well known usual adversarial loss component, which tries to fool the
discriminator in such a way, so that it fails to distinguish between source and
target domain. The generator is irrelevant in our framework since we are not
generating any new samples, rather as a proxy of the generator we use the same
discriminator as an adversary in the second loss. In short, the first loss tries to
correctly classify the source and target samples, while the second loss tries to do
the opposite. Now, we describe the losses mathematically below:
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Note that, LTD is essentially a cross entropy loss computed with source TI
labels as 1 and target TI labels as 0, while LAD is also a cross entropy loss but
computed with target TI labels as 1. So, clearly LAD will try to oppose the loss
LTD, so that the source and target features are indistinguishable. So our overall
adversarial loss Ladv is calculated as follows:

Ladv = LTD + λADLAD (11)

where λAD is a regularization parameter to balance the two adversarial loss
components. In the absence of TI paired data, the overall new objective function
Ltot will be

Ltot = Lma + λadvLadv + λdLd (12)

To show the effectiveness of this loss, we conduct a small experiment in table 1.
We transfer knowledge from the kv2 RGB model to unlabeled kv2 depth data.
Due to time constraint we just run this algorithm with one random seed. λAD is
set to be 10 to give slightly more importance to LAD compare to LTD, since our
ultimate goal is to learn a feature embedding that can not distinguish between
source and target. Clearly we see that our new adversarial loss has an increment
of almost 2.9% when used with Lma. Though this gain is not as high compare to
the case of having paired TI data (see table 8 in main paper), it is still significant
and has great potential. This result is intuitively expected and show that even
if with unpaired TI data, we can reduce the modality gap in the absence of TR
source data. We hypothesize that for the unpaired TI data case, it is possible to
reach a certain extent of the level of performance when using paired TI data, by
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Table 1. Effect of our proposed adversarial loss component. The accuracy
column corresponds to single source adaptation from RGB to depth on kv2 domain
of SUN RGB-D dataset. We show the accuracy gain over using Lma only inside the
parentheses

Lma Ld Ladv (a) accuracy (%)

✓ 31.0
✓ ✓ 33.9 (↑2.9)
✓ ✓ ✓ 34.2 (↑3.2)

using relatively more amount of unpaired data. We will explore it in detail for
the future work.

9 Future work, limitations and potential negative impact

Further studies are required to better understand the effect of amount of TI data
and the diversity present in the data on the knowledge transfer results, which will
require access to larger and more diverse datasets. Another interesting avenue
for future direction is applying these ideas to other modalities like point clouds,
medical imaging, etc.

The work in this paper is a general method for improving knowledge transfer
from a source modality to a target modality with unlabeled data. The impact
of this line of research is to make it easier to train networks for modalities and
tasks where large amounts of data and labeled data are not available. This may
lead to a wider deployment of deep learning for such modalities. For example
in applications like person re-identification, one might have access to the source
models trained on private IR labeled data, which they can use to adapt RGB
unlabeled data using our method, in order to match people across cameras.
Thus, these algorithms can of course be good or bad for society depending on
the particular application in which these ideas are employed, the bias in the
datasets being used etc. This is also in true in general for other source-free DA
methods [1, 2]. Therefore, steps need to be taken to ensure positive and fair
outcomes of this technology.
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