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This document introduces further details on the ECCV 2022 paper - ”Online Domain Adaptation for Semantic Segmen-
tation in Ever-Changing Conditions”. In Section 1, we present results of the OnDA framework on the CityScapes dataset
[2] with qualitative samples and a video sequence, in Section 2 we detail the model implementation and hyperparameters,
while in Section 3 we further describe the working principle behind Domain Shift Detection. Then we provide additional
explanation on some experimental results presented in the paper, in particular we focus on the Standard deviation, Section 4,
and the Calibration Error, Section 5. Finally, in Section 6 we expand our Ablation Study and study the impact of the learning
rate, the effect of the confidence regularization and Batch Normalization.

1. CityScapes qualitative comparison between Source, Offline and Online Adapted Model.
We provide additional, qualitative results concerning our experiments on the Increasing Storm scenario. The whole adap-

tation process is also featured in a video sequence (23.46 minutes).
A shorter version of the video (3 minutes) is also available.

• short version: : https://youtu.be/cany-lUNWY8

• long version: https://youtu.be/igtmgafiurY

1.1. Video Analysis

To reproduce a realistic online adaptation set-up, we employed the Frankfurt CityScapes video sequence. We divided it
in equally sized intervals and then we rendered the rain according the Increasing Storm schema i.e. 0mm (clear), 25mm,
50mm, 75mm, 100mm, 200mm, 100mm, 75mm, 50mm, 25mm, 0mm. We sub-sample the video to 10fps, with a total length
of 23.46 minutes, and the duration of each target domain is 3239 frames, corresponding to around 5.4 minutes (the video
is accelerated 2.5 times, hence every domain is presented in 2.09 minutes). It is worth mentioning that the adopted rain
rendering methodology [6] does not limit to generating rain random particles, as it uses monocular depth prediction [3] and
depth refinement [1] to estimate the rain occlusion in the image. Moreover, other effects are employed to make the sky darker
and thus emulate the corresponding cloud coverage.

The OnDA framework employs the Hybrid Switch with same configuration presented in all the other experiments. The
only differences consisted in a minor update of the two Hybrid Switch thresholds (TcA and TcB ) and in the introduction of a
debouncing window on the switching indicator function, It, as introduced in Section 3.2 of the paper.

In Figure 1 we display video frames and the corresponding segmentation masks collected at regular time intervals so to
cover all the deployment domains. The video sequence does not present ground-truth for a quantitative evaluation, anyway the
qualitative analysis presents a clear pattern and we feel it significant of a real, online adaptation scenario. The Source model
is steadily degraded as the rain intensifies, presenting visible degradation right from the 25mm rain and completely collapsing
in the 100mm and 200mm domains. The Offline model instead has been pre-adapted offline on all the rain intensities (for
this task we used the CityScapes train split). The Offline model is visibly more robust to the easier targets, while struggling
in the 100mm case and collapsing in the 200mm. Finally, the Online model performs similarly or marginally better than the
Offline method in all easy targets, while still being robust to the 100mm and 200mm cases.
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Figure 1. Samples from the Cityscapes Frankfurt video using artificial rain and comparing the Source, Offline and Online Adapted
Model. The Online model gets adapted on-the-fly exploiting the video footage itself. Images start from frame 1677 (1:07) and are captured
every 3239 frames (∼2:09).
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Figure 2. Domain sequence and switching policy – Increasing Storm. We show rain intensity over time (left), confidence and switching
policy behavior (right) when adapting over the Increasing Storm.
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Figure 3. Qualitative comparison of the Source, Offline and Online Models on rainy images. From top to bottom, we report a single
sample from each domain, from clear to 200mm rain intensity.

In Figure 2 we present the rain intensities of the Increasing Storm and the Hybrid Switch mechanism in action over that
sequence. In particular we notice how the static prior, hstatic, is rapidly switched for the dynamic one, hdynamic, during the
50mm domain. This is the consequence of It being negative (as zt is indeed decreasing), since the model is moving further
from the source domain. We notice how the model keeps (and updates) hdynamic until the “backward phase” starts, then as
the confidence of hstatic grows – leading to a positive It – the model prior is switched to hstatic again. More details about the
switching principle are reported in Sec. 3.

1.2. Validation Set Qualitatives

In Figure 3 and 4 we include more qualitative samples taken from the CityScapes validation set. In Figure 5 we present
qualitative samples with fog. In any of these figures, the samples present the comparison between Source, Offline All, Online
(Hybrid Switch), and Ground-Truth (GT).
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Figure 4. Qualitative comparison of the Source, Offline and Online Models on rainy images. From top to bottom, we report a single
sample from each domain, from clear to 200mm rain intensity.
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Figure 5. Qualitative comparison of the Source, Offline and Online Models on foggy images. From top to bottom, we report a single
sample from each domain, from clear to 75m visibility.
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2. Implementation Details
We report in detail all the hyper-parameters used to train the described methods. The supervised models were trained until

convergence (up to 100 epochs) using a learning rate of 2.5e−4 and an exponential decay learning rate with a power of 0.9,
together with a weight decay of 5e−4. For the offline model the same learning policy was used but with an initial learning
rate of 1e−5 and 10 epochs of training. Moreover, for the models using all of the domains (Supervised All & Offline All), a
single epoch was considered as passing through all Domains.

The prototypes update was set to λ = 0.9995 while the momentum model update to 0.999. The thresholds used for the
switches are the following: Tcd = 2e−4, Tc = 0.86, Ts = 0.94, Td = 0.82, TcA = 0.9 and TcB = 0.83. Moreover, the
Online models were trained using SGD with a momentum of 0.9, learning rates of 8e−4 and 1e−4 for the feature extractor
and segmentation head respectively, and using a shifting window of length n = 200. Lastly, the Advent model was trained
using the default settings detailed in [7]. All models performed training with a batch size of 4 and images scaled to 512×1024
resolution.

3. Domain Shift Detection
As discussed in the main paper, when performing online adaptation it becomes crucial to properly detect the domain shifts

and act accordingly. The confidence hstatic by the static model can be a good indicator to detect the transition across domains.
More precisely, the lower the confidence, the farther the current domain is from the source domain. Then, sudden changes of
such a confidence can reflect the transition to a new domain. Moreover, by looking at the sign of such change we can identify
if we are moving towards a domain closer to the source one or, vice-versa, if we are going to a new, farther domain. This
behavior is encoded by the sign of the derivative of hstatic.

Figure 6 presents an intuition of this working principle: the blue curve shows the trend of the static model confidence
hstatic, highlighting sudden changes in correspondence of domain changes. The orange curve plots the derivative µzt − µzt−1

of hstatic: we can notice how this curve has negative peaks when the confidence drastically drops, i.e. when we approach a
new domain farther from the source; on the contrary, we have positive peaks when we switch to a domain closer to the source
one.

Based on this principle, we design some of the switching mechanisms introduced and evaluated in our paper.
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Figure 6. Working principle of the domain switching detector. On the back, in blue, the hstatic confidence is displayed, while with orange
color the derivative µzt − µzt−1 is showed. When switching to more distant domains the value function has negative peeks and a positive
on closer domains.

4. Standard Deviation Analysis
Figure 7 displays the progression of the IoU standard deviation across segmentation classes over time. Interestingly, the

variance decreases after an adaptation cycle. Before starting adaptation (step 0), we do not observe a specific relationship
between the class variance and the domain itself. After a full adaptation cycle, we can notice a correlation between rain
intensity and variance – indeed, once the model is back to the clear domain, the lower variance (and thus more consistent
IoU across all the classes) is achieved on domains closer to the clear one, with the highest variance on 200mm (the farthest
domain). This hints that the adaptation process itself regularizes the performance across classes, creating an interesting
correlation between rain intensity and variance.
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Figure 7. Illustration of the Standard deviation of the IoU over the classes over time. Experiment carried out on the Increasing Storm
baseline scenario.

5. Calibration Error Analysis
Figure 8 shows confidence, mIoU and Expected Calibrtion Error (ECE) [4] of hstatic over the target domains (from clear

to 200mm). Similarly to several other works in Unsupervised Domain Adaption (UDA) and Self-Training, OnDA heavily
bases its working principles on model confidence, in particular, on the confidence of the static model, hstatic. By studying
Figure 8 we can notice how the calibration error remains almost constant for domains closer to the source – despite the steady
performance drop – proving that the model confidence is correspondingly decreased to match the output accuracy.

This equilibrium does not hold for domains farther from source: indeed, despite confidence remains in general high
(∼0.80), the mIoU (and accuracy) dramatically drops, consequently leading to significant increase of the ECE. The analysis
of this trend, on one hand, suggests that the confidence of hstatic for domains closer to the source represents a valid heuristic.
One the other hand, it proves that the static model confidence validity is not universal as its reliability degrades progressively
as we move to further domains. We highlight how our Domain Indicator Function, It uniquely exploits the confidence
derivative (not the absolute value), hence it is not sensitive to model miscalibration as long as the confidence is decreasing
with the target domain distance.

6. Extended Ablation Study
We conclude this document by digging into three further ablation studies, on learning rate, regularization and Batch Norm

respectively.

6.1. Learning Rate

According to [5], adapting the weights of the features extractor forces the network to align their representation to those
required by the prediction head to achieve good predictions. Inspired by these findings, we investigate the effect of different
learning rates applied to the features extractor and the segmentation head separately. Figure 9 shows the behavior of our
model while being adapted on the Increasing Storm scenario, focusing respectively on 50mm (left) and 200mm (right)
domains. Each curve shows the behavior of one of the two modules (features extractor or prediction head) while varying its
learning rate and keeping constant the learning rate for the other module.

Empirically, we found out that setting a higher learning rate for the features extractor (green) allows for better performance,
confirming the findings in [5]. Acting on the learning rate of the prediction head (red) shows negligible impact.

6.2. Regularization

Table 1 collects results for adaptation on the Increasing Storm scenario, both when proceeding forward (F) or backward
(B) across domains. Empirical results show that confidence regularization does not affect performance substantially all-over
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Figure 8. Comparison between Confidence, MIoU and Confidence Error (ECE) on the static (source) model across domains.
Experiments carried out on the Increasing Storm scenario. ECE is computed over 1000 bins.
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Figure 9. Learning rate comparison between feature extractor and segmentation head, on the 50mm and 200mm case. For each
testing the learning rate on the opposite sub-network remained fixed at 1e − 4 and 1e − 5 on the feature extractor and segmentation head
respectively. Adaptations happens gradually from clear to intensities of 25, 50, 75, 100 and 200.

the adaptation process. Nevertheless, by introducing it with a factor 0.1, we are able to increase adaptation performance
on the hardest domains, i.e. 100mm and 200mm. On the contrary, regularization itself results less effective when adapting
backward, leading to slightly lower mIoU when going back to 50mm, 25mm and clear domains.

clear 25mm 50mm 75mm 100mm 200mm h mean
F B F B F B F B B F B F B F B

Regularization factor 0 64.5 65.7 59.7 59.3 54.8 55.1 51.4 50.7 48.7 45.7 38.0 38.0 51.4 50.8
Regularization factor 0.1 64.5 64.8 60.4 57.1 57.3 54.5 54.8 52.2 52.0 49.1 42.2 42.2 54.2 52.4
Regularization factor 0.2 64.5 62.6 59.3 54.2 57.4 52.4 53.9 50.5 50.2 48.4 41.4 41.4 53.4 50.8
Regularization factor 0.3 64.5 60.5 59.9 54.1 56.9 52.2 52.5 50.7 50.2 49.0 41.9 41.9 53.3 50.8

Table 1. Base adaptation cycle results using the Hybrid Switch approach with different confidence regularization factors. Experi-
ments in the Increasing Storm scenario

6.3. Batch Normalization

In Figure 10 we present a comparison between the three Batch-Normalization (BN) policies:

• BN freeze: freezing the BN when processing samples from the Replay Buffer,
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• BN switching: swapping BN statistics between target samples and Replay Buffer,

• Shared BN: sharing BN statistics.

For simplicity we only present two domains: the source, 0mm (clear), and 200mm cases. We underline how these validation
metrics are meaningful only when the model is actually exposed to that domain. We can observe that all of the three options
perform similarly for the source domain (notice frames 20088 to 22320) on the mIoU (clear) plot. However, the Shared BN
falls behind in terms of adaptation flexibility, as shown in the mIoU (200mm) in the frame interval 8928 to 11160.
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Figure 10. Comparison between different Batch Normalisation (BN) policies. The comparison is carried out using the Hybrid Switch
on the Increasing Storm baseline scenario.
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