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Fig. 1: OnDA framework in action. We show images with varying intensity
of rain (from 0 to 200mm). When dealing with such complicated domain shifts,
both pretrained networks and offline adaptations struggle, whereas our online
framework is able to adapt, without forgetting.

Abstract. Unsupervised Domain Adaptation (UDA) aims at reducing
the domain gap between training and testing data and is, in most cases,
carried out in offline manner. However, domain changes may occur con-
tinuously and unpredictably during deployment (e.g. sudden weather
changes). In such conditions, deep neural networks witness dramatic
drops in accuracy and offline adaptation may not be enough to con-
trast it. In this paper, we tackle Online Domain Adaptation (OnDA) for
semantic segmentation. We design a pipeline that is robust to continuous
domain shifts, either gradual or sudden, and we evaluate it in the case
of rainy and foggy scenarios. Our experiments show that our framework
can effectively adapt to new domains during deployment, while not being
affected by catastrophic forgetting of the previous domains.

1 Introduction

The task of semantic segmentation consist of assigning each pixel of an im-
age to a specific class. With the spread of deep learning, Convolutional Neural
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Networks (CNNs) have been established as the state-of-the-art for tackling this
kind of problem [7,54,6]. However, despite training on a large quantity of an-
notated images, the network predictions can often be unreliable when deployed
on new scenarios, because of the domain shift occurring between training and
deployment. For example, the shift can be due to the images being collected in
very different environments (e.g., urban versus rural roads) or lighting conditions
(e.g., day versus night).

Consequently, Unsupervised Domain Adaptation (UDA) arose as a popular
research trend to overcome the domain shift problem. It aims at shrinking the
gap between a labeled set of images – the source domain, over which supervised
training is possible – and an unlabeled one – the target domain, for which ground
truth annotations are not available. This is performed in several ways, such as
transferring the image style across the two [59,49,16], or either conditioning or
normalizing the feature space [14,47]. Techniques for UDA have been extensively
studied in the offline setting, thus assuming to have availability of both the source
and the target domain images in advance, then proceeding by adapting a model,
trained with ground truth supervision on source, to the target. However, such
an assumption is often too strong to hold in the context of an actual application.
We argue that domain shifts are likely to continuously arise during deployment.
Some examples can be related to different cities or weather conditions, or even,
at a lower level, involving different camera positioning and intrinsics.

While some domain shifts come in predictable ways (e.g., day-night cycle),
some others can occur unpredictably – such as weather changes, either in a slow
(e.g., rain, fog) or sudden way (e.g., storms). Leveraging the fact that environ-
mental changes may often happen gradually, we propose an online adaptation
pipeline that exploits progressive adaptation. Inspired by recent progress in Cur-
riculum Learning applied to UDA, we expand the paradigm beyond the adapta-
tion to an intermediate domain by designing a framework able to autonomously
identify domain changes and adapt its self-training policy accordingly. In on-
line settings, we seek to seamlessly find the optimal response to the current
deployment domain while, crucially, we would like to proactively prepare for
future scenarios. We argue that online settings need to break the dichotomy be-
tween Source and Target domain, where the Target has now to be modeled as
a “domain sequence”. Extensive empirical studies will highlight how the good
modeling of the domain sequence is paramount for this purpose. Indeed, most of
the improvements observed in specific target domains are gained “in advance”,
i.e. before the model has ever been exposed to that specific distribution.

To perform online adaptation, we benchmark our model on increasing in-
tensities of rain (25, 50, 75, 100, and 200mm of rain) and fog (750, 375, 150,
and 75m of visibility). We demonstrate that deep learning models aware of do-
main shift intensity and direction can exploit intermediate domains substantially
better. We achieve this by introducing an active teacher-model switching mech-
anism that allows for higher adaptation flexibility, hence reaching farther target
domains, as visible in Figure 1. Additionally, when needed, the switching mecha-
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nism can revert the adaptation process allowing adapting back to source domain
without experiencing catastrophic forgetting. Our main contributions are:

– We introduce an online progressive adaptation benchmark for UDA methods.
– We propose an approach that leverages progressive adaptation to increase

performance on distant domains in an online manner.
– We demonstrate that catastrophic forgetting can be avoided by actively up-

dating the self-training policy during adaptation and using a Replay Buffer.
– We run experiments on various simulated scenarios and, crucially, we show

that models that have been previously exposed to gradual domain adaptation
can acquire the ability to cope with sharp changes as well.

2 Related Work

Online Domain Adaptation is directly connected to many fields of Machine
Learning, such as Transfer Learning and Continuous Learning. We now review
methods that focus on reducing the domain gap, lessening the effect of catas-
trophic forgetting, and continuously adapting to upcoming domains.

Unsupervised Domain Adaptation. Unsupervised Domain Adaptation
(UDA), is a relatively new field that has gained interest due to the rising amount
of data and the limited and expensive resources needed to annotate them. Early
UDA approaches focus on constructing domain invariant feature representations
[14] or transferring the “style” from one domain to another, for instance, by
means of the CycleGAN [59] framework. First attempts [49,16] learned this trans-
fer in an offline manner before training, then translating images during training
itself. More modern approaches [27,12,52] combine the two phases in one in an
end-to-end framework. This strategy has been extended by LTIR [22], in order
to learn texture-invariant features by training on source images augmented with
textures coming from other real images. Often, adversarial learning has been
deployed for UDA aiming at obtaining better alignment of the source and target
distributions, either in features [14,47,9,17] or output [42] spaces. Later works
[10,9] highlight the use of class information in adversarial learning, while Advent
[44] introduces an adversarial approach to perform entropy minimization.

Self-training. Recent trends concerning UDA leverage the idea of producing
pseudo-labels [26] for self-training over the target domain, inspired by the recent
success in semi-supervised tasks [55,36]. Since these labels are noisy, designing ro-
bust strategies to reduce the effect of wrong labels is of paramount importance for
this family of approaches. [61] implements this by means of a confidence-based
thresholding algorithm, [32] extends this approach with an instance adaptive
variant, further improving the quality of the produced pseudo-labels. Neverthe-
less, naive pseudo-labeling can produce unreliable confidence estimates and an
increased bias towards the most common classes. To contrast this [60,18] propose
approaches that balances class predictions, while [62] regularizes the model con-
fidence. On this same track, [58] uses pseudo-labels to minimize the discrepancy
between two classifiers, while [33] aims at inter-domain and intra-domain gap
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minimization, supported by pseudo-labels, and [3] uses shallow features to im-
prove class boundaries. Finally, newer approaches [5,57,56] leverage prototypes,
defined as feature-space class centroids, to produce unbiased pseudo-labels.

Source-free UDA or “model adaptation”, is a topic that was introduced
to assist continual learning [37]. In contrast to traditional unsupervised domain
adaptation, the use of source and target samples happens separately. Therefore,
the learning approach consists of two separate steps, the task learning step using
the source data and the adaptation step using the target. Several approaches
have been explored: [29] tries to solve the lack of source samples by deploying
a generator that produces samples that resemble the source data. In contrast,
[28] freezes the final layers of the network and performs self-training. Similarly
[46] retrains Batch-Normalization layers through entropy minimization. To avoid
forgetting source during adaptation, [30] introduces a feature alignment during
adaptation. Finally, [21] uses the distance between embeddings and test-time
adapting prototypes to compute the predictions. Notably, these latter [30,21]
have been proposed and tested for classification tasks on toy datasets.

Curriculum Learning is a training strategy that focuses on the order in
which information is exploited. As described by [1], machine learning models
can learn much better when information is presented in a meaningful order. [31]
developed a domain encoder to express domain distance. The target domains
were then ordered based on their similarity to the source domain. Adaptation
was then performed from the closest to the furthest from the source domain.
[35] propose using generated foggy images as an intermediate step to adapting
to real weather scenarios.

Continuous UDA. Some works tried to integrate UDA with continual
learning, tackling the problem of “adapting without forgetting”. Several meth-
ods employ Replay Buffers [2,25,24], ACE [50] leverages AdaIN [19] to perform
style transfer while retaining previous knowledge through a task memory. [38]
adapts through Contrastive Learning while constraining the gradient to reduce
forgetting, and [51] uses a generator to produce the necessary data to perform
adversarial training.

Despite the large body of existing literature, as raised by a contemporary
work [39], current datasets and UDA methods fall short of representing and
testing on realistic online scenarios, i.e. with incremental domain-shifts occurring
continuously with the flowing of input images.

3 Online Domain Adaptation

This section introduces our framework for Online Domain Adaptation (OnDA)
specific to face ever-changing environments. While adopting state-of-the-art UDA
strategies for prototypical self-training [56,62,48], we design a novel strategy to
address online settings. We present a student-teacher approach [13] which al-
lows for dynamic teachers orchestration by both actively updating the teacher
according to the domain change and by strategically choosing the best teacher to
employ to train the student model. Furthermore, we propose to exploit feature
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Fig. 2: Overview of our OnDA framework. It comprises Switching Policy,
Domain Change Indicator, Mahalanobis prototypes prediction, and BN freezing.

variance for better prototype predictions, we investigate the impact of Batch-
Norm during adaptation and we assess the importance of a Replay Buffer to
prevent catastrophic forgetting. We present an overview of OnDA in Figure 2.

3.1 Online Prototypical Self-Training

We now introduce the design of a prototypical framework for the online setting.

Replay Buffer. First of all, in order to simulate a realistic deployment,
where storing the full source dataset DS might be infeasible, we sample a subset
DRB ⊆ DS as a Replay Buffer. The buffer is used for training with segmentation
loss during adaptation and prevents the network from forgetting the original
domain. As we will show in Section 4.3, even a small buffer is very helpful in the
mitigation of catastrophic forgetting.

Problem formulation. We define our network as h = g ◦ f , where f is the
feature encoder mapping images into a space of dimensionK and g maps features
into class labels. We denote sample-label pair from the source and Replay Buffer
as (xs, ys) and (xrb, yrb) respectively. We model the target domain DT as a
sequence of Θ sub-domains, such that DT = (DT1

, DT2
, ..., DTΘ

).

Prototypes initialization. In online scenarios target samples appear se-

quentially (x
(1)
t , x

(2)
t , ..., x

(N)
t ) and it is unknown from which DTθ

they have been
sampled. Therefore, target samples can not be used to initialize the class proto-
types before the adaptation process takes place. To address this limitation, we
initialize the prototypes using the source dataset and update them on the fly
using target samples. Letting hstatic = gstatic ◦fstatic be the network fully trained
on DS before adaptation, the prototype initialization ηc ∈ RK for each class c
is given by:

ηc =
1

|Λc
S|

NS∑
i=1

H×W∑
j

(
y(i)s |j = c

)
fstatic

(
x(i)
s

)∣∣∣
j

(1)
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where NS , H, W are the number of source samples, image height and image
width respectively. |Λc

S| denotes the number of pixels that belong to class c from
set S, and |ΛS| =

∑
c |Λc

S|. The variance σ ∈ RK of each dimension k of the
prototype space is then obtained through:

σ2 =
1

|ΛS|

NS∑
i=1

H×W∑
j

fstatic

(
x(i)
s

)2
∣∣∣∣
j

−

 1

|ΛS|

NS∑
i=1

H×W∑
j

fstatic

(
x(i)
s

)∣∣∣
j

2

. (2)

Hence, given a target sample xt, we obtain the prediction ωc
t as the softmax

of the variance-normalized proximity between prototypes η and the momentum
encoder prediction f̃ (xt),

ωc
t =

exp
(
−
∥∥∥(f̃ (xt)− ηc

)
/σ

∥∥∥)∑
c′ exp

(
−
∥∥∥(f̃ (xt)− ηc′

)
/σ

∥∥∥) (3)

where h̃ = g̃ ◦ f̃ is the momentum model of the network h. The momentum
encoder f̃ is used to produce stable predictions compared to using the main
encoder f directly and it is created by exponentially averaging the parameters
of f over time. In Eq. 3, we employ a form of Mahalanobis distance, including the
variances in each dimension of the feature vector. Compared to the Euclidean
distance, this leads to a more accurate measure of the distance and higher overall
metrics (+4.5% mIoU in the hardest target domain).

Prototypes update. During the adaptation, the prototypes are updated
online through target samples pseudo-labeling. Given a batch of N target sam-
ples B, the batch prototypes are defined as follows:

η̂c =
1

|Λc
B|

N∑
i=1

H×W∑
j

(
h̃(x

(i)
t ) = c

)
f̃
(
x
(i)
t

)∣∣∣
j
. (4)

Then for all classes c where |Λc
B| > 0 we update the corresponding prototype us-

ing ηc ←− ληc+(1−λ)η̂c. Prototypes are used to lessen the reliance on the source
label distribution. Naive pseudo-labeling will produce models that are highly bi-
ased towards the most popular and easier classes. In domain adaptation, source
and target label distributions do not necessarily align. Feature distance through
prototypes, on the other hand, removes class biases and produces unbiased pre-
dictions. Finally, the pseudo-label ŷt for a sample xt is computed by rectifying
the model prediction using the prototype softmax output ωt as follows:

ŷt = ξ(p̂t · ωt) (5)

where ξ is a function that transforms soft-labels to one-hot encoded hard labels.
Moreover, instead of directly using the model prediction pt = h(xt), checkpoints
of the h model are used. In particular, we define:

p̂t = δhstatic(xt) + (1− δ)hdynamic(xt) (6)
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Where hdynamic is the last adapted model on the previous deployment domain,
and δ ∈ [0, 1] determines the contribution of each model. In Section 3.3 we will
describe how to guide the adaptation process by dynamically updating δ.

Overconfidence handling. Self-training is a form of entropy minimiza-
tion which means that the network will tend to become overconfident. Pseudo-
labeling with thresholding strategies alone fail since confidence is no longer a
reliable guideline. We utilize loss functions that can withstand overfitting to
noisy labels. For this reason, two key techniques are used: confidence regulariza-
tion and Symmetrical cross-entropy [48]. Given the model prediction pt = h(xt)
we apply a KL divergence regularizer [62]

Lreg = −γ
K∑

k=1

1

K
log pt. (7)

Moreover, to mitigate the impact of noisy labels we employ Symmetrical Cross-
Entropy (SCE). The pseudo-label loss is then described as follows:

Lpseudo = αℓce (pt, ŷt) + βℓce (ŷt, pt) . (8)

Where ℓce is the Cross-Entropy loss, and α and β are two weighting hyper-
parameters. The complete loss function to perform learning using source and
target samples is defined as follows:

Ltotal = Ltask(xrb, yrb) + Lpseudo(xt, ŷt) + Lreg(xt). (9)

Batch normalization switching. Batch Normalization (BN) layers [20]
are employed to normalize features so as to obtain zero-mean and unit standard
deviation distributions by iteratively accumulating statistics after processing any
batch. Given features xi for the i-th element of the batch, the output yi of any
BN layer is computed as yi =

xi−µB

σB
with µB, σB being the exponential moving

average of the mean and variance of features x respectively. During online adap-
tation, our network processes data from two different distributions; the samples
in the Replay Buffer (DRB) and those belonging to the target domain distribu-
tion (DTθ

). This leads to cumulative statistics not being meaningful as an actual
distribution, as already observed in [4,23]. Hence, we investigate two approaches
to batch normalization: i) freezing BN layers when processing samples from DRB

or ii) swapping BN statistics between DRB and DTx
. Both turn out to be ben-

eficial in our online settings, thus we selected i) for simplicity. We provide a
comparison between the BN approaches in the supplementary material.

3.2 Domain Shift Detection

An essential part of online adaptation is being able to detect the domain shifts
and act accordingly. Inspired by the key role of the model confidence as a mean
for measuring and minimizing domain shift [45,43], we use the confidence of
hstatic to identify domain changes as well as the “direction” of such a change.
In online settings, it is indeed crucial to both recognize whether the deployment
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domain is changing and if the transition is leading towards a more distant domain
(forward) or a closer domain (backwards), relatively to the source. Defining zt
as the confidence of hstatic over the t-th batch, expressed as

zt =
1

|ΛB|

N∑
i=1

H×W∑
j

max
c

hstatic

(
x(i)

)∣∣∣
j,c

(10)

we notice clear changes while transitioning between domains (see Figure 2, the
Domain Change Indicator, and Sec. 3 of the supplementary material). There-
fore, the confidence derivative can be leveraged as an indicator of domain changes
and computed using the difference between consecutive values. In order to re-
duce noise and have a robust representation, a shifting window of length n is
used. On each new batch t, confidence values (zt) are appended to the window,
while old ones are removed (zt−n). At any given time we compute the weighted
average confidence of the window as µt =

1
n

∑n
i=0 w[i]zt−i, where w is the dis-

crete Hamming window [34] of length n. The switching indicator function can
then be defined as:

It =

 1, µt − µt−1 > Tcd

−1, µt − µt−1 < −Tcd

0, otherwise
, ∀ t > n+ 1. (11)

When the window has not been filled yet (t ≤ n + 1), we set It = 0. Tcd is a
hyperparameter that controls model sensitivity to domain changes. We then de-
tect domain changes by examining the absolute value |It| > 0 and their direction
studying its sign. In the supplementary material video, we present the behavior
of the Domain Change Indicator for much more challenging scenarios, which led
us to introduce a simple debouncing window to ensure robust switching.

3.3 Prior model Switching techniques

In this section we will focus on the prior predictions p̂ introduced in Eq. 6.
In particular, two models are used to acquire the prior: hstatic and hdynamic.
hstatic is the initial model, before any adaptation, while hdynamic is the model
before the adaptation to the current domain takes place. For example, in an
adaptation sequence over domains DT1 , DT2 , DT3 , during the first adaptation
(DT1) the dynamic and static models coincide. As the switching indicator It
perceives that we are moving to the second domain (DT2

), hdynamic is updated
becoming the model right after the adaptation on DT1

. Similarly, for the third
adaptation (on DT3

), hdynamic will become the model after the adaptation on
DT2 and before DT3 . The choice of which teacher model is going to be used for
the prototypes rectification heavily influence the adaptation capabilities.

In the experimental section, we will show that employing hdynamic (δ = 0)
grants extra flexibility, allowing adaptation to harder (i.e. more distant) do-
mains. On one hand, as a drawback, it performs sub-optimally while “adapting
back” to previous domains and even DS . On the other hand, hstatic (δ = 1)
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intrinsically limits adaptation due to its predictions guiding the self-training to-
wards the original model. Nonetheless, it allows for better adaptation in domains
closer to DS , preventing catastrophic forgetting. We thus identify the need for a
mechanism that allows for an effective switching between the two prior models,
hence making δ function of µt, i.e. δt = Switch(µt, t). We introduce the following
policies, summarized in Figure 3:

– Confidence Switch (CS): Applies simple thresholding on the static model
confidence zt.

δCS
t =

{
1, µt > Tc

0, µt ≤ Tc
, t ≥ 0 (12)

– Soft-Confidence Switch (SCS): Performs a Confidence Switch with a smooth
transition through a weighted average of the models. By moving farther from
the source, i.e. lower confidence, hdynamic is weighted more, while, when com-
ing back to the source, increases hstatic contribution. We define two thresh-
olds Ts, Td with Ts > Td which indicate the µt values where hstatic and
hdynamic will be solely used respectively, and we linearly interpolate between
the two models when µt is in-between the two thresholds. That is:

δSCS
t = max{min{ 1

Ts − Td
µt −

Td

Ts − Td
, 1}, 0} (13)

– Confidence Derivative Switch (CDS): Uses the indicator function previously
described in Section 3.2 to understand if the new domain is farther or closer
from the source and selects hdynamic or hstatic accordingly.

δCDS
t =

1, It > 0
0, It < 0
δCDS
t−1 , It = 0

, t > 0, δCDS
0 = 1 (14)

– Hybrid Switch (HS): Sets two thresholds TcA , TcB with TcA > TcB and acts
based on confidence values µt

δHS
t =

1, µt > TcA

δCDS
t , TcB ≤ µt ≤ TcA

0, µt < TcB

, t ≥ 0 (15)

The Hybrid Switch therefore combines Confidence Switch and Confidence
Derivative Switch: it follows the former for high/low µt, the latter otherwise.

4 Experimental Results

The experiments are carried out on the Cityscapes [11] dataset by generating
realistic synthetic rain [41]. In particular, we generate a new training set (2975
samples) and validation set (500 samples) for each rain intensity. Given a pre-
trained model on the original dataset, the online adaptation process takes place
by training (without labels) on the rain intensities sequentially. After each pass,
the model is validated on all rain intensity validation sets. The experiments
include severe rain conditions and show how gradual adaptation compares to
direct – offline – adaptation.
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Fig. 3: Visualization of the switching policies. The dots show the static
models confidence values over time and their color represents δ values: blue
corresponds to δ = 1, i.e. hstatic, while orange δ = 0, i.e. hdynamic. The Soft-
Confidence Switch performs a linear transition from one prior to the other and
it is represented through a color gradient.
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Fig. 4: Performance comparison and learning process on Increasing
Storm. (a) We plot the mIoU achieved by OnDA using Hybrid Switch (blue),
the offline adaptation (green) and the source model (orange), trained on clear
weather. The offline model is trained using the source domain, and then adapted
to all the rainy domains shown in the x axis at once. In (b), (c) we show for
OnDA, at any given time, mIoU of the model in the currently deployed domain
with bold segments. The dashed lines show mIoU over past or future domains.

4.1 Baseline Scenario: Increasing Storm

As baseline scenario, we use rain intensities of 25, 50, 75, 100 and 200. Adaptation
happens gradually, from low to high intensities, and then backward until clear
weather domain, DS , is reached again. We will refer to this adaptation sequence,
where we move from source to a sequence of targets and eventually return to the
source, as an adaptation cycle. Each domain counts about 9K frames – or 5min
at 30fps. Harder scenarios will be studied in the remainder.

Experiment Parameters. We use DeepLabv2 [8], which is a common base-
line when dealing with domain adaptation on semantic segmentation. The net-
work is although modified to use the ResNet50 [15] feature extractor instead of
the DeepLabv2’s default ResNet101 to make training and inference faster. The
parameters α and β of the SCE are set to 0.1 and 1, respectively, while the
regularizer parameter γ is set to 0.1. To measure the accuracy of any model, we
compute the mIoU metric. Moreover, on the right most column of each table we
report the harmonic mean of the overall adaptation process to ease comparison.
Our source code is available at https://github.com/theo2021/OnDA.

https://github.com/theo2021/OnDA
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(a)

Domain: clear 25mm 50mm 75mm 100mm 200mm h-mean

Source Model 64.5 57.1 48.7 41.5 34.4 18.5 37.3

O
n
li
n
e

(A) BN adaptation 64.5 58.2 51.1 44.8 39.7 27.9 44.3
(B) TENT [46] 64.5 57.1 48.1 41.3 33.6 15.8 35.1
(C) TENT + Replay Buffer 64.5 57.6 50.0 43.8 37.4 20.5 39.7
(D) Online Advent 64.5 58.7 53.5 47.6 43.0 31.1 47.0
(E) OnDA - Static Model 64.5 60.4 57.5 53.5 48.2 37.8 52.0
(F) OnDA - Dynamic Model 64.5 60.4 57.8 54.7 52.7 41.2 54.1
(G) OnDA - Confidence Switch 64.5 60.4 57.5 55.1 51.3 42.1 54.1
(H) OnDA - Confidence Derivative Switch 64.5 60.4 57.1 54.3 52.0 42.4 54.2
(I) OnDA - Soft-Confidence Switch 64.5 60.4 57.4 54.7 52.1 42.3 54.3
(J) OnDA - Hybrid Switch 64.5 60.4 57.3 54.8 52.0 42.2 54.2
(K) OnDA - Hybrid Switch One Pass 64.5 59.5 55.3 52.5 50.3 39.3 52.2

(b)

Domain: 100mm 75mm 50mm 25mm clear h-mean

Source Model 34.4 41.5 48.7 57.1 64.5 37.3

(A) BN adaptation 39.5 45.1 51.2 58.1 64.4 50.1
(B) TENT [46] 28.5 35.7 43.6 52.7 60.5 41.1
(C) TENT + Replay Buffer 37.3 44.1 50.3 57.7 64.3 48.9
(D) Online Advent 43.3 48.5 54.2 58.9 64.3 52.8
(E) OnDA - Static Model 47.1 50.5 52.3 56.4 64.8 53.6
(F) OnDA - Dynamic Model 49.8 50.1 49.9 50.3 53.3 50.6
(G) OnDA - Confidence Switch 48.3 48.8 52.7 56.0 64.6 53.5
(H) OnDA - Confidence Derivative Switch 50.1 52.5 54.4 56.6 64.7 55.2
(I) OnDA - Soft-Confidence Switch 49.3 49.7 50.1 51.8 64.2 52.5
(J) OnDA - Hybrid Switch 49.1 52.2 54.5 57.1 64.8 55.1
(K) OnDA - Hybrid Switch One Pass 50.2 53.8 56.5 60.1 63.2 56.3

(c)

Domain: clear 25mm 50mm 75mm 100mm 200mm h-mean

O
ffl
in
e

Offline 25mm 62.8 60.2 56.6 51.1 45.7 26.4 46.3
Offline 50mm 60.9 59.0 55.9 51.3 46.4 28.9 47.3
Offline 75mm 58.8 57.2 53.6 48.5 43.8 27.2 45.0
Offline 100mm 55.9 54.6 51.1 46.2 41.8 26.7 43.2
Offline 200mm 49.2 50.7 49.7 47.6 45.0 35.9 45.7
Offline All 59.3 58.1 54.4 48.8 43.1 23.7 43.4
Offline All - Advent 50.8 51.7 49.1 45.9 41.9 30.9 43.6

(d)

Domain: clear 25mm 50mm 75mm 100mm 200mm h-mean

S
u
p
er
v
is
ed

Supervised 25mm 63.0 62.4 61.1 58.3 56.7 44.1 56.7
Supervised 50mm 60.4 60.6 60.4 58.2 56.9 47.4 56.9
Supervised 75mm 56.7 58.8 58.6 57.1 56.0 48.4 55.7
Supervised 100mm 56.5 59.0 59.9 58.3 58.0 51.8 57.1
Supervised 200mm 48.9 52.6 54.3 54.5 54.5 51.3 52.6
Supervised All 64.5 64.1 63.7 63.0 62.4 58.2 62.6

Table 1: Domain adaptation main results. Online forward (a), backward
(b), Offline (c) and Supervised (d) models are compared. Adaptation happens
gradually from low (25mm) to high (200mm) intensities (a) and backward (b).

4.2 Results on Increasing Storm

Figure 4, on the left, resumes a direct comparison on the Increasing Storm sce-
nario, between the Source model and those adapted either Offline or Online (with
the Hybrid Switch). We can notice a higher mIoU achieved by our framework
on any domain. Table 1 showcases more in detail all the major experiments per-
formed, comparing Test-Time/Online Adaptation, Supervised and Offline Adap-
tation models in the Increasing Storm scenario. In the Offline experiments, we
employ a modified version of [56] (Stage 1) which is obtained by adopting the
Mahalanobis distance (Eq. 3) and active BN statistics selection 3.1, as these im-
provements result beneficial also in the traditional offline UDA settings. Train-
ing is performed until convergence (10 epochs) with decaying learning rate in
a standard setup for both Offline and Supervised models, i.e. they have access
– in advance – to the complete data, hence prototypes can be initialized using
the target samples. The key comparisons are between adaptations methods, ei-
ther online or offline and how adaptation compares to the fully supervised, ideal
case (oracle). In sum, progressive adaptation sees a significant performance gain
compared to directly adapting to a domain offline, as evident by comparing best
values (in bold) achieved on each domain. We will now discuss in detail the
behavior of the different methods involved in our experiments.

Online Adaptation. The simplest way to perform adaptation, is by ad-
justing the BatchNorm statistics (A) in an online manner. Although simple, it
manages to yields significant improvements over the source model. Adaptation
using TENT [46] (B) results less effective compared to simply updating Batch-
Norm statistics, both in forward (a) and backward (b) adaptation. Introducing
the Replay Buffer (C) partially improves the results, yet not surpassing (A).
Online Advent model (D), which is obtained through the use of the Replay
Buffer, increases performance even further, yet resulting less performant than
self-training approaches. The Static Model (obtained by fixing δt = 1) (E) is ca-
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pable of adapting and reverting to the original domain. Nevertheless, we notice
that performance in adaptation can be further increased using a dynamic prior
(δt = 0) (F) – introduced in Sec. 3.3. Compared to the Static Model (E), the Dy-
namic Model better adapts to the most challenging domains (100 and 200mm),
motivating the need for updating the prior during adaptation. However, the Dy-
namic Model is more prone to forgetting: Table 1 (b), shows performance while
gradually returning to the source domain, i.e. retracing domains in reverse order.
The Dynamic Model (F) achieves the worst performance once returned to source
domain (clear). This issue is solved by switching between the two priors (G-J).
Among the switching policies, the Confidence Derivative (H) and Hybrid (J)
perform the best, increasing adaptation performance substantially (∼ 24%mIoU
on the hardest domain). Furthermore, all policies managed to regain the ini-
tial performance before adaptation – see Table 1 (b). Finally (K) presents the
adaptation capabilities of the Hybrid Switch over a 3 times faster Increasing
Storm (i.e., happening within fewer frames, as shown in Fig. 4 (c)): while the
forward adaptation achieves marginally lower metrics compared to (J), backward
adaptation results more effective on average.

Online vs Offline Adaptation. From Table 1 (c), it is evident that Offline
methods fall short against Online ones (a), proving that it is harder to adapt
to the most challenging domains without intermediate adaptations. We have
some evidence of this among the entries in the table. Indeed, the best Offline
model results on 75 and 100mm domains are achieved by the model adapted on
50mm, suggesting that, sometimes, adapting to an easier domain can be even
preferable compared to direct adaptation to the hardest one. Figure 4 (b, c),
outlines the mIoU scores while adapting in an Online manner, on the Increasing
Storm setting described so far (b) or by shortening each domain to one third
of their length (c). At any time, we also plot the performance for past/future
domains (dashed lines). This allows to denote that adapting to close domains
(e.g. 50mm) already increases performance to the next to come (75mm, as we
can notice from the red dashed line on the left of the bold segment), without
yet observing it. Furthermore, the experiment on shorter domains yields similar
performance demonstrating, the fast adaptation capabilities of the approach.

Adaptation vs Supervised learning. Although adaptation managed to
improve performance, a significant gap between adaptation and supervised learn-
ing still exists. Not surprisingly, supervised models perform quite well when fully
labelled data is provided, but are always constrained to the source domain, while
online adaptation methods can adjust models to new domains on-the-fly.

4.3 Experiments under additional settings

In this section, we extend our evaluation by considering different rainy sequences,
by studying the impact of the Replay Buffer and by generalizing our framework
to different domain changes, such as increasing fog.

Evaluation on different Storms. We now run experiments on different
rainy scenarios to confirm our previous findings. In particular, we evaluate over
three adaptation sequences. In all of them, we use the Hybrid Switch, and we
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Fig. 5: Model performance during adaptation. Experiments on storms A, B
& C. Comparison between starting adaptation from source (Non Pre-Adapted)
and after a full adaptation cycle on the Increasing Storm (Pre-Adapted).

compare two models. The first model is pre-trained on source (clean images),
while the second model has already experienced a full adaptation cycle over the
Increasing Storm (Section 4.1). Results are collected in Figure 5. On top, we
plot histograms describing the three storm intensities, labeled A, B and C and
being respectively an oscillatory storm (to evaluate OnDA capability of going
back and forth in harder domains), a sudden storm (with a more aggressive in-
tensity growth) and a instantaneous storm (starting with the hardest domain
and oscillating significantly). The plots below show the performance of the two
models exposed to the same storm. The last row instead shows the mIoU dif-
ference between the two. Starting from storm A, we can notice how both mod-
els perform similarly and quickly adapt to each domain change. At bootstrap,
the pre-adapted model results better, anyway, the non pre-adapted one quickly
catches up, eventually closing the gap between the two. The same trend occurs
on storm B, although the pre-adapted model results more effective during the
whole “forward” pass. By looking at storm C, instead, we witness an interesting
behavior. Storm C is by far the most challenging in our benchmark due to its
abrupt first intensity. The non pre-adapted model fails to adapt to the 200mm
domain encountered at the very beginning, hinting once again that gradual adap-
tation is preferable. Indeed, the pre-adapted model can instead easily reach the
same performance achieved during the Increasing Storm on just a single pass.
This result proves that after an adaptation cycle, the model is not only able to
reach again the source domain with no catastrophic forgetting, but, crucially,
it also maintains a memory of the previously experienced domains. Hence, it
acquires the ability to cope with more challenging and sudden domain shifts.
Finally, our supplementary material contains qualitative results and refers to a
video, showing OnDA in action on the Increasing Storm scenario.

Ablation Study - Replay Buffer size. We now study the impact of the
Replay Buffer size, so far set to 1000 source samples. Table 2 (a) shows a com-
parison between different Replay Buffer sizes. The model manages to adapt to
hard domains even in the absence of a Replay Buffer (A), this although results
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(a)

clear 25mm 50mm 75mm 100mm 200mm
Buffer F B F B F B F B F B F B

(A) 0 64.5 57.5 60.5 55.0 57.6 53.5 54.0 50.9 50.1 49.1 41.0 -
(B) 100 64.5 63.0 60.3 56.9 56.2 54.1 54.2 51.6 51.5 49.3 42.9 -
(C) 1000 64.5 64.8 60.4 57.1 57.3 54.5 54.8 52.2 52.0 49.1 42.2 -
(D) All 64.5 65.4 61.0 55.9 58.1 54.4 53.5 51.1 51.8 49.2 41.4 -

(b)

Domain (visibility): clear 750m 375m 150m 75m h-mean
F B F B F B F B F B F B

Source 64.9 - 60.9 - 54.7 - 39.8 - 25.2 - 43.5 -
Offline All 62.4 - 62.3 - 59.6 - 46.8 - 31.9 - 49.2 -
OnDA - Hybrid Switch 64.9 65.8 63.3 62.3 60.7 58.8 51.6 49.1 42.1 42.1 55.1 54.1

Table 2: Additional experiments. (a): impact of the Replay Buffer on the
Increasing Storm cycle using the Hybrid Switch. (b): comparison between Offline
and Online adaptation on foggy domains. F: adaptation from clear to the hardest
domain, B: backward adaptation (from the hardest domain back to clear).

to a considerable drop in accuracy in the backward phase (about 10%). With a
buffer of 100 (B) or 1000 images (C) catastrophic forgetting is solved, while (C)
allows for going back to the source with even increased performance. Keeping the
whole dataset in the buffer (D) further increases accuracy once back to source,
yet not improving adaptation.

Additional Case Study - Fog. Finally, we test the proposed framework
on artificially generated fog [41] on the Cityscapes training set. The dataset is
randomly split into 2475 training and 500 validation samples and we adopted
the same experimental set-up presented in the rain scenario. Table 2 (b) shows
a comparison between Source, Offline All and OnDA. Again, our model achieves
+10% mIoU on the hardest domain compared to the one adapted offline, con-
firming that OnDA can be successfully applied to various domain changes.

Limitations. Online training requires significant computational resources,
which heavily hinder deployment in real-time applications. We believe that
lighter backbones [53], efficient training paradigms [40] or selective adaptation
can improve this aspect. From an experimental standpoint, we analyse domain
shifts which only affects the input distribution. A larger body of test scenarios,
with real data and additional gradual domain shifts would be the ideal stage to
assess the performance of OnDA frameworks.

5 Summary & Conclusion

In this paper, we have presented a novel framework for Online Domain Adap-
tation (OnDA). While state-of-the-art offline adaptation and continuous adap-
tation methods can successfully tackle limited domain shift, they fall short on
cases where there is a significant gap between the source and the deployment
domain. In contrast, we have empirically shown that casting adaptation as an
online task and gradually adapting to evolving domains are beneficial for reach-
ing high accuracy on distant domains. We exhaustively evaluated our framework
on simulated weather conditions with increasing intensity and in four different
kinds of storms, highlighting the robustness of our method in comparison to
offline techniques. We believe that our framework will pave the way towards
tackling UDA in online manner in the real world.
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