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This appendix presents more details of the proposed Attentive Temporal
Consistent Network (ATCoN) and is organized as follows: first, we introduce
the detailed implementation of ATCoN with specific hyperparameter settings
supported by hyperparameter sensitivity analysis. Subsequently, we visual-
ize local temporal features learned by various models to justify the proposed
cross-temporal hypothesis. Lastly, we present details of the cross-domain action
recognition benchmarks for evaluating ATCoN.

1 Detailed Implementation of Attentive Temporal
Consistent Network (ATCoN)

In this work, we propose the Attentive Temporal Consistent Network (ATCoN)
to address SFVDA by learning temporal consistency, guaranteed by two novel
consistency objectives: feature consistency and source prediction consistency,
performed across local temporal features. The proposed ATCoN further con-
structs effective overall temporal features by attending to local temporal fea-
tures based on prediction confidence. In this section, we further present the
implementation of ATCoN in detail, whose structure is displayed in Fig. 1. To
obtain video features, we instantiate Temporal Relation Network (TRN) [18]
with ResNet-50 [4] as the model backbone. TRN has been widely adopted in
previous video domain adaptation tasks, such as VUDA [2,15], MSVDA [17],
and PVDA [14], bringing state-of-the-art results, thanks to its ability in extract-
ing accurate temporal features by reasoning over correlations between spatial
representations which coincides with the process of humans recognizing actions.
Following [9], a Batch Normalization [5] and an additional fully connected layer
are inserted while weight normalization [12] is applied to the last fully connected
layer. Code is provided at https://github.com/xuyu0010/ATCoN.

⋆ Equal Contributions

https://orcid.org/0000-0002-4292-7379
https://orcid.org/0000-0002-8075-0439
https://orcid.org/0000-0001-7703-3490
https://orcid.org/0000-0001-8493-0712
https://orcid.org/0000-0003-0977-3600
https://orcid.org/0000-0002-1719-0328
https://github.com/xuyu0010/ATCoN


2 Y. Xu, J. Yang, H. Cao, K. Wu, M. Wu, and Z. Chen

𝐺𝑆,𝑠𝑝 𝐺𝑆,𝑡

…
…

+
Overall 

Temporal Feature 𝐻𝑆
Source 

Prediction

𝐺𝑇,𝑠𝑝 𝐺𝑇,𝑡
LWM

…
…

Feature 
Consistency

+
Overall 

Temporal 
Feature

local src. pred.(k)

local src. pred.(3)

local src. pred.(2)

…
…

Overall Target 
Prediction

Source Prediction Consistency

Initialize Initialize

Source Data
(Private)

Target Data

Local Temporal Features

𝐻𝑆

𝐻𝑆

Transfer

Fixed network layer (during target training)

Trainable network layer (during target training)

Data propagation

Network initialization/transfer

Local Weight ModuleLWM

Fig. 1. Structure of the proposed ATCoN. Dashed shapes indicate fixed network layers
during adaptation. Best viewed in color.

                         
     

  

  

  

  

  

  

       

(a) 𝛼𝑙𝑜𝑐𝑎𝑙: 𝛼𝑜𝑣𝑒𝑟𝑎𝑙 vs Top-1 on U101→H51

     
               

     
     

  

  

  

  

  

  

       

(c) 𝛼𝑙𝑜𝑐𝑎𝑙: 𝛼𝑜𝑣𝑒𝑟𝑎𝑙 vs Top-1 on H51→U101

                         
     

  

  

  

  

  

  

                  

(b) 𝛽𝑓𝑐: 𝛽𝑝𝑐 vs Top-1 on U101→H51

                              

  

  

  

  

  

  

                  

(d) 𝛽𝑓𝑐: 𝛽𝑝𝑐 vs Top-1 on H51→U101

Fig. 2. Top-1 on UCF-HMDBfull with differed hyperparameters.

To train the source model, the TRN is pre-trained on ImageNet [3] and
trained for 100 epochs. All new layers are trained from scratch, with their learn-
ing rates set to be 10 times that of the pretrained-loaded layers. Subsequently,
the spatial and temporal feature extractors of the target model are initialized by
the source model, while the classifier is transferred directly from the source clas-
sifier. The source classifier remains fixed throughout the training of the target
model. The final target model is obtained by a training process with 20 epochs
for the UCF-HMDBfull dataset, 30 epochs for the Daily-DA dataset, and 50
epochs for the Sports-DA dataset. The stochastic gradient descent (SGD) algo-
rithm [1] is used for optimization, with the weight decay set to 0.0001 and the
momentum set to 0.9. The batch size is set to 32 input videos per GPU. With
reference to [9], we set the tradeoff constants of the information maximization
and the cross-entropy loss as βIM = 0.5, βce = 0.2. Hyperparameters αoverall,
βpc, βtc are set to 1.0 directly, while λ = 0.004, αlocal = 9.0, βfc = 0.1 are set
empirically.
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(b) Target local temporal 
features with source-only model

(a) Source local temporal 
features with source-only model

(c) Target local temporal 
features with ATCoN-TC

(d) Target local temporal 
features with CPGA

Fig. 3. t-SNE embeddings of local temporal features with class information. Different
colors represent different classes. Best viewed in color.

To understand the effects of hyperparameter selection, we perform hyperpa-
rameter sensitivity analysis over αlocal and βfc with the ratios αlocal : αoverall

and βfc : βpc being tuned on the UCF-HMDBfull dataset. Fig. 2 shows that
the performances of ATCoN are robust to αlocal, βfc. Despite slight variations
of around 1% on the two tasks of UCF-HMDBfull , ATCoN still achieves the
best results with all the hyperparameter settings. Fig. 2 also confirms that the
selected hyperparameter settings results in the best performances.

2 Visualization of Local Temporal Features

In this work, we introduce the cross-temporal hypothesis, which states that the
local temporal features in effective source-like video representations should not
only be discriminative but also consistent across each other and possess similar
feature distribution patterns. In this section, we justify the cross-temporal hy-
pothesis by visualizing local temporal features learned by the various models via
plotting their t-SNE embeddings [10]. Specifically, we visualize local temporal
features learned by the source-only model on the source data and the target
data, and local temporal features learned by ATCoN-TC and CPGA on the tar-
get data for the H51→U101 task, as presented in Fig. 3. Each column denotes
a method for a specific domain and each row indicates the corresponding three
local temporal features. Note that the ATCoN-TC is leveraged for visualiza-
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tion to rule out any possible effects brought by applying either the Information
Maximization loss or pseudo-labeling.

The results further validate the cross-temporal hypothesis, where the local
temporal features of the source data can be observed to share similar distribu-
tion patterns, whereas the data distribution patterns of target data with the
source model are inconsistent. Meanwhile, even though the local temporal fea-
tures of target data extracted with CPGA seem more clustered than the source
model, their distributions are also inconsistent. This conforms to the poor per-
formance of CPGA in the H51→U101 task and proves that discriminative yet
inconsistent local temporal features would not result in discriminative overall
temporal features. On the contrary, by learning temporal consistency, ATCoN-
TC is able to extract discriminative and relatively consistent local temporal
features, satisfying the cross-temporal hypothesis. Such observation justifies that
learning temporal consistency enables the learning of source-like representations
for target data. Therefore, ATCoN is effective in aligning target data to source
data distribution.

Table 1. Summary of cross-domain action recognition benchmarks statistics.

Statistics UCF-HMDBfull Daily-DA Sports-DA

Video Classes # 12 8 23
Training Video # U101:1,438/H51:840 A11:2,776/H51:560/MIT:4,000/K600:8,959 U101:2,145/S1M:14,754/K600:19,104
Testing Video # U101:571/H51:360 A11:1,289/H51:240/MIT:400/K600:725 U101:851/S1M:1,900/K600:1,961

3 Cross-domain Action Recognition Benchmarks

In this paper, to evaluate our proposed ATCoN, we utilized three cross-domain
action recognition benchmarks. In this section, we provide more details on each
benchmark.

UCF-HMDBfull UCF-HMDBfull [2] contains a total of 3,209 videos from two
public datasets: UCF101 (U101) [13] and HMDB51 (H51) [8], with a total of
2,278 training videos and 931 testing videos as shown in Table 1. This benchmark
covers videos from 12 categories, while each category may correspond to multiple
categories in the UCF101 or HMDB51 dataset [2], as listed in Table 2. While
UCF-HMDBfull is not the first cross-domain action recognition benchmark, it
improves on prior benchmarks in terms of both the number of video classes and
the total number of videos. It is currently one of the most widely used cross-
domain action recognition benchmark.

Daily-DA Though UCF-HMDBfull improves on prior benchmarks, it is still
limited to include only two domains, with videos in both domains collected un-
der normal illumination. More recently, the Daily-DA benchmark is introduced
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Table 2. List of action classes for UCF-HMDBfull .

Class ID UCF101 Class HMDB51 Class

0 RockClimbingIndoor, RopeClimbing climb
1 Fencing fencing
2 GolfSwing golf
3 SoccerPenalty kick ball
4 PullUps pullup
5 Punch, BoxingPunchingBag, BoxingSpeedBag punch
6 PushUps pushup
7 Biking ride bike
8 HorseRiding ride horse
9 Basketball shoot ball
10 Archery shoot bow
11 WalkingWithDog walk

[17] as a more challenging benchmark that includes videos from four domains
and incorporates both normal videos and low-illumination videos. Specifically,
Daily-DA is built from four datasets : the dark dataset ARID (A11) [16], as
well as HMDB51 (H51), Moments-in-Time (MIT) [11], and Kinetics (K600) [7].
Compared with other action recognition datasets such as Moments-in-Time and
Kinetics, ARID is comprised of videos shot under adverse illumination condi-
tions, characterized by low brightness and low contrast. Statistically, videos in
ARID possess much lower RGB mean value and standard deviation (std) [15],
which strongly suggests a larger domain shift between ARID and the other ac-
tion recognition datasets. In total, Daily-DA contains 16,295 training videos and
2,654 testing videos from 8 categories, with each category corresponding to one
or more categories in the original datasets, as listed in Table 1 and Table 3.

Table 3. List of action classes for Daily-DA.

Class ID ARID Class HMDB51 Class
Moments-in-Time

Class
Kinetics Class

0 Drink drink drinking drinking shots
1 Jump jump jumping jumping bicycle, jumping into pool, jumping jacks
2 Pick pick picking picking fruit
3 Pour pour pouring pouring beer
4 Push push pushing pushing car, pushing cart, pushing wheelbarrow, pushing wheelchair
5 Run run running running on treadmill
6 Walk walk walking walking the dog, walking through snow
7 Wave wave waving waving hand

Sports-DA To further verify the efficacy of SFVDA approaches on large-scale
datasets, we adopt the Sports-DA benchmark. The Sports-DA benchmark in-
cludes a total of 36,003 training videos and 4,721 testing videos, collected from
three large-scale datasets: UCF101 (U101) [13], Sports-1M (S1M) [6], and Kinet-
ics (K600) [7], as shown in Table 1. These videos are categorized into 23 action
classes, with each action class corresponding to one or more categories in the
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Table 4. List of action classes for Sports-DA.

Class ID UCF101 Class Sports-1M Class Kinetics Class

0 Archery archery archery
1 Baseball Pitch baseball catching or throwing baseball, hitting baseball
2 Basketball Shooting basketball playing basketball, shooting basketball
3 Biking bicycle riding a bike
4 Bowling bowling bowling
5 Breaststroke breaststroke swimming breast stroke
6 Diving diving springboard diving
7 Fencing fencing fencing (sport)
8 Field Hockey Penalty field hockey playing field hockey
9 Floor Gymnastics floor (gymnastics) gymnastics tumbling
10 Golf Swing golf golf chipping, golf driving, golf putting
11 Horse Race horse racing riding or walking with horse
12 Kayaking kayaking canoeing or kayaking
13 Rock Climbing Indoor rock climbing rock climbing
14 Rope Climbing rope climbing climbing a rope
15 Skate Boarding skateboarding skateboarding
16 Skiing skiing skiing crosscountry, skiing mono
17 Sumo Wrestling sumo wrestling
18 Surfing surfing surfing water
19 Tai Chi t’ai chi ch’uan tai chi
20 Tennis Swing tennis playing tennis
21 Trampoline Jumping trampolining bouncing on trampoline
22 Volleyball Spiking volleyball playing volleyball

original datasets as presented in Table 4. The Sports-DA benchmark is one of
the largest cross-domain action recognition benchmarks introduced.
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