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Abstract. Video-based Unsupervised Domain Adaptation (VUDA) meth-
ods improve the robustness of video models, enabling them to be ap-
plied to action recognition tasks across different environments. However,
these methods require constant access to source data during the adap-
tation process. Yet in many real-world applications, subjects and scenes
in the source video domain should be irrelevant to those in the target
video domain. With the increasing emphasis on data privacy, such meth-
ods that require source data access would raise serious privacy issues.
Therefore, to cope with such concern, a more practical domain adap-
tation scenario is formulated as the Source-Free Video-based Domain
Adaptation (SFVDA). Though there are a few methods for Source-Free
Domain Adaptation (SFDA) on image data, these methods yield de-
generating performance in SFVDA due to the multi-modality nature of
videos, with the existence of additional temporal features. In this paper,
we propose a novel Attentive Temporal Consistent Network (ATCoN)
to address SFVDA by learning temporal consistency, guaranteed by two
novel consistency objectives, namely feature consistency and source pre-
diction consistency, performed across local temporal features. ATCoN
further constructs effective overall temporal features by attending to
local temporal features based on prediction confidence. Empirical re-
sults demonstrate the state-of-the-art performance of ATCoN across var-
ious cross-domain action recognition benchmarks. Code is provided at
https://github.com/xuyu0010/ATCoN.
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1 Introduction

Video-based tasks such as action recognition have long been investigated con-
sidering their wide applications. Deep neural networks have made remarkable
advances with the introduction of large-scale labeled datasets [14,24]. However,
due to the expense of laborious video data annotation, sufficient labeled train-
ing videos may not be readily available in real-world scenarios. To avoid costly
data annotation, various Video-based Unsupervised Domain Adaptation (VUDA)
methods have been introduced to transfer knowledge from a labeled source video
domain to an unlabeled target video domain by reducing discrepancies between
source and target video domains [2,4,43]. VUDA methods greatly improve the
robustness of video models, enabling them to be applied to action recognition
tasks across different environments [41].

Though current VUDA methods [2,4,40,41] enable the transfer of knowledge
across video domains, they all require access to source video data during the
adaptation process. Yet action information usually contains the private and sen-
sitive information of the actors, including their actions and the relevant scenes.
Meanwhile, in real-world applications, such information in the source domain is
usually irrelevant to those in the target domain and should be protected from the
target domain. Therefore, current VUDA methods would raise serious privacy is-
sues, which is more severe than that raised by image-based domain adaptation.
To cope with the video data privacy issue, a more practical domain adapta-
tion scenario is formulated as the Source-Free Video-based Domain Adaptation
(SFVDA), where only well-trained source video models and unlabeled target
domain data would be provided for adaptation.

With the absence of source data, current VUDA methods that mainly align
target and source domains statistically [22,34] cannot be applied to the SFVDA
problem. Recently, there are a few research efforts [18,21,48] that start explor-
ing Source-Free Domain Adaptation (SFDA) with image data, where SFDA is
tackled by adjusting target features to adapt to the source classifier [20]. The
key idea is to learn discriminative latent target features while aligning source
data distribution embedded within the source classifier. However, aligning videos
without source data is even more challenging thanks to the fact that videos are
characterized by their multi-modality nature, where temporal features are key
components that are excluded in images.

While direct minimization of statistical discrepancy between target and source
domains cannot be achieved due to the lack of source data, domain adaptation
can also be achieved by aligning the embedded semantic information [39,19] via
entropy-based approaches [29,37] such as maximizing mutual information [36]
or neighborhood clustering [30]. These methods improve the discriminability of
the target features which satisfy the cluster assumption [8], while increasing
the source model transferability [45]. However, these methods are insufficient
for aligning semantic information in videos. The reason is that overall temporal
feature of a video can be constructed with a series of local temporal features,
obtained through clips sampled from videos. Each local temporal feature should
be discriminative in the first place. However, if each local temporal feature is in-
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dividually discriminative yet mutually inconsistent, the local temporal features
may not hold similar semantic information. Subsequently, the overall temporal
feature may contain indistinct semantic information, and would not be discrim-
inative. Instead, we hypothesize that for source videos, the extracted local tem-
poral features are not only discriminative, but also consistent across each other
and possess similar feature distribution patterns, which implies similar semantic
information. Such hypothesis is termed as the cross-temporal hypothesis. If the
target data aligns with the source data distribution, we assume that source-like
representations are learned for target data, therefore the cross-temporal hypothe-
sis should be satisfied by the target data representation. To this end, our method
is designed such that the local temporal features are consistent in their feature
representations, which would result in the corresponding overall temporal feature
being effective and discriminative.

Meanwhile, since only the source model with the source classifier is avail-
able for adaptation, the relevance of the target data to source data distribution
is highly correlated to the prediction of target data on the source classifier.
Therefore, to better adapt target temporal features to the source classifier, the
relevance of the corresponding local temporal features towards source data dis-
tribution should also be consistent. Such consistency can be interpreted as the
source prediction consistency of local temporal features with respect to the fixed
source classifier. Further, to improve the discriminability of the video feature,
the overall temporal feature should be built by an attentive combination of local
temporal features. The attentive combination builds upon the confidence of each
local temporal feature towards its relevance to source data distribution.

To this end, we propose an Attentive Temporal Consistent Network
(ATCoN) to address SFVDA uniformly. ATCoN leverages temporal features
effectively by learning temporal consistency via feature consistency and
source prediction consistency for local temporal features in a self-supervised
manner. ATCoN further adapts target data to the source data distribution by
attending to local temporal features with higher confidence over its relevance to-
wards source data distribution, indicated as higher source prediction confidence.

In summary, our contributions are threefold. First, we formulated a practical
and challenging Source-Free Video Domain Adaptation (SFVDA) problem. To
the best of our knowledge, this is the first research that studies source-free trans-
fer for video-based tasks, which aims to address data-privacy issues in VUDA.
Secondly, we analyze the challenges underlying SFVDA and propose ATCoN
to address the challenges uniformly. ATCoN aims to obtain effective and dis-
criminative overall temporal features that satisfies the cross-temporal hypothesis
by learning temporal consistency which is composed of both feature and source
prediction consistency. ATCoN further aligns target data to the source data dis-
tribution without source data access by attending to local temporal features with
high source prediction confidence. Finally, empirical results demonstrate the effi-
cacy of our proposed ATCoN, achieving state-of-the-art performance across the
multiple cross-domain action recognition benchmarks.
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2 Related Work

Unsupervised Domain Adaptation (UDA) and Video-based Unsuper-
vised Domain Adaptation (VUDA). Current UDA and VUDA methods
aim to distill shared knowledge across labeled source domains and unlabeled
target domains. These methods improve the transferability and robustness of
models. Generally, they could be divided into three categories: a) reconstruction-
based methods [7,46], where domain-invariant features are obtained by encoders
trained with data-reconstruction objectives, whose methods are commonly for-
mulated as encoder-decoder networks; b) adversarial-based methods [2,41], where
domain-invariant features are extracted by feature generators while leveraging
domain discriminators, which are trained jointly in an adversarial manner [11],
minimizing adversarial losses [6]; and c) discrepancy-based methods [31,49,44],
which mitigate domain shifts across domains by applying metric learning ap-
proaches, minimizing metrics such as MMD [22] and CORAL [34]. By compar-
ison, VUDA research lags behind UDA research, mainly due to the challenges
brought by aligning temporal features in videos. However, with the introduc-
tion of various cross-domain video datasets such as UCF-HMDBfull [2] and
Sports-DA [43], there has been a significant increase in research interests for
VUDA [4,26,3]. Despite the improvements in video model robustness brought
by VUDA methods, all such methods require access to source data during the
adaptation process. Such requirements could raise serious privacy concerns given
the amount of private information of the relevant subject and scene in videos.
Source-Free Domain Adaptation (SFDA). With the increased importance
of data privacy, there have been a few recent research efforts that investigate
SFDA with images, which enable image models to be adapted to the target do-
main without access to source data. Among them, 3C-GAN [18] and SDDA [17]
seek to produce novel target-style data that are similar to the source domain. Do-
main invariant features are then obtained by aligning the novel target-style data
with the original target data via adversarial-based domain adaptation methods.
Similarly, CPGA [28] tackles SFDA by generating avatar feature prototypes for
each class, which are trained with the target features in an adversarial manner.
Meanwhile, SHOT [21,20] exploits knowledge of source feature distribution by
freezing the source classifier and matches target features to the source classi-
fier by leveraging information maximization and pseudo-labeling. More recently,
BAIT [47] extends MCD [31] to SFDA. Despite the advances made in the re-
search of SFDA for images, SFVDA has not been tackled. Due to the amount of
private data in videos, SFVDA is even more critical, yet is also more challeng-
ing given that temporal features must also be aligned. We propose to engage in
SFVDA by utilizing temporal features via learning temporal consistency while
attending to local temporal features with high confidence.

3 Proposed Method

In the scenario of Source-Free Video Domain Adaptation (SFVDA), we are only
given a source video model that consists of the spatial feature extractorGS,sp, the
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temporal feature extractor GS,t and the classifier HS , and an unlabeled target
domain DT = {ViT }nT

i=1 with nT i.i.d. videos, characterized by a probability
distribution of pT . The source model is generated by training its parameters θS,sp,
θS,t, and θH with the labeled source domain DS = {(ViS , yiS)}nS

i=1 containing nS

videos. We assume that both the labeled source domain videos and the unlabeled
target domain videos share the same C classes, yet DS is inaccessible when
adapting the source model to DT .

Owing to the absence of the source domain during adaptation, SFVDA is
more challenging while current VUDA methods cannot be applied. SFVDA
should be tackled by adapting target video features to the source classifier, which
contains information regarding source data distribution. The core is to extract
source-like representations that satisfy the cross-temporal hypothesis, character-
ized by the consistency across local temporal features. We propose ATCoN, a
novel network to transfer source models to the target domain by leveraging tem-
poral features constructed attentively through learning temporal consistency in
a self-supervised manner. We start with an introduction to the generation of the
source model, followed by a thorough illustration of ATCoN.

3.1 Source Model Generation

A key prior for the transferred model to obtain effective temporal features is that
the generated source model could extract precise temporal features. While con-
ventional 3D-CNN-based extractors (e.g., 3D-ResNet [9] or I3D [1]) have been
adopted in action recognition due to their performances, they extract spatio-
temporal features jointly while temporal features are obtained implicitly by
temporal pooling. In contrast, the Temporal Relation Network (TRN) [50] is
adopted for SFVDA, thanks to its ability in obtaining more precise tempo-
ral features through reasoning over correlations between spatial representations,
which corresponds with how humans would recognize actions.

Formally, an input source video with k frames can be expressed as ViS =

{f (1)
iS , f

(2)
iS , ..., f

(k)
iS }, where f (j)

iS is the spatial representation of the j−th frame in
the i−th source video obtained from the source spatial feature extractor GS,sp.
GS,sp is formulated as a 2D-CNN (e.g., ResNet [10]). The temporal feature of
ViS is subsequently obtained from the source temporal feature extractor GS,t,
constructed by a combination of multiple local temporal features. Each local
temporal feature is built upon clips with r temporal-ordered sampled frames

where r ∈ [2, k]. Formally, a local temporal feature for ViS , lt
(r)
iS , is defined by:

lt
(r)
iS =

∑
m
g
(r)
S ((V

(r)
iS )m), (1)

where (V
(r)
iS )m = {f (a)

iS , f
(b)
iS , ...}m is the m−th clip with r temporal-ordered

frames. a and b are the frame indices, which may not be consecutive as the clip
with temporal-ordered frames could be extracted with nonconsecutive frames,
but should be both in the range of [1, k] with b > a. The local temporal feature

lt
(r)
iS is computed by fusing the time ordered frame-level spatial features through

the integration function g
(r)
S , implemented as a Multi-Layer Perceptron (MLP).
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Fig. 1. Structure of the proposed ATCoN. ATCoN adopts the same network architec-
ture for its spatial and temporal feature extractors as the source model, initialized by
the source feature extractors. ATCoN extracts overall temporal features by learning
temporal consistency over its local temporal features which includes both feature con-
sistency and source prediction consistency. The local weight module (LWM) attends to
more confident local temporal features. The overall target prediction is obtained by
applying the fixed source classifier over the overall temporal feature. Dashed shapes
indicates fixed network layers during adaptation.

GS,t is therefore a set of all integration functions g
(r)
S , namely GS,t = {∀rg(r)S }.

The final overall temporal feature tiS is a simple mean aggregation applied across

all local temporal features, defined as: tiS = 1
k−1

∑
r lt

(r)
iS . The source prediction

is further computed by applying a source classifier HS over tiS . The source
model is trained with the standard cross-entropy loss as the objective function,
formulated as:

LS,ce = − 1

nS

∑nS

i=1
yiS log σ(HS(tiS)), (2)

where σ is the softmax function whose c-th element is defined as σc(x) =

exp(xc) /
∑C

c=1 exp(xc). Inspired by [21], for the source model to be more dis-
criminative and transferrable for better target data alignment, we further adopt
the label smoothing technique [35] such that extracted features are encouraged
to be distributed in tight clusters evenly separated [25]. By adopting the label
smoothing technique, the objective function for training the source model can
be further formulated as:

L′
S,ce = − 1

nS

∑nS

i=1
y′iS log σ(HS(tiS)), (3)

where y′iS is the smoothed label computed as y′iS = (1 − ϵ)yiS + ϵ /C with ϵ
being the smoothing parameter which is set to 0.1 empirically.

3.2 Attentive Temporal Consistent Network

With the absence of source data, conventional VUDA methods can no longer
be applied. Instead, we tackle SFVDA from two perspectives: on the one hand,
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extracting effective overall temporal features that are discriminative and comply
with the cross-temporal hypothesis in a self-supervised manner, without either
target label or source data; on the other hand, aligning to the source data dis-
tribution via attending to local temporal features with higher confidence in its
relevance towards the source data distribution. Following the above strategies,
we develop an Attentive Temporal Consistent Network (ATCoN), whose
structure is presented in Fig. 1. With the same network architecture adopted for
the target spatial and temporal feature extractors GT,sp GT,t as that of GS,sp

GS,t, GT,sp and GT,t are initialized by GS,sp and GS,t respectively. The over-
all temporal feature is obtained by learning temporal consistency over the local
temporal features as well as the respective local source predictions, resulted by
applying the source classifier HS over the local temporal features directly. Note
that the source classifier remains fixed throughout the adaptation process. Mean-
while, for attentive aggregation of target local temporal features, a Local Weight
Module (LWM) is further designed.

Learning Temporal Consistency. As presented in Section 3.1, the different
local temporal features are extracted via the multiple temporal-ordered frames,
sampled from the input video. For a given input video, these local temporal
features should represent the same action even if they may differ in spatial ap-
pearances. Therefore, the overall temporal feature is effective and discriminative
when the corresponding local temporal features are consistent in feature repre-
sentations. Given a target input video VT ∈ DT (with video index i omitted for
simplicity), its local temporal features for the set of clips with r1 and r2 temporal

frames (r1, r2 ∈ [2, k]), lt
(r1)
T and lt

(r2)
T , are defined similarly to Eq. 1. If the local

temporal features are consistent, then the cross-correlation matrix between lt
(r1)
T

and lt
(r2)
T should be close to the identity matrix. The cross-correlation matrix is

formulated by:

Cr1r2 =
(
l̂t
(r1)

T

)T

l̂t
(r2)

T , (4)

where l̂t is the normalized local temporal feature computed as:

l̂t =
lt− E(lt)√
V ar(lt) + ε

, (5)

with ε being a small bias value for numerical stability. The cross-correlation ma-
trix Cr1r2 is a square matrix with the size of d × d, where d is the dimension
of the local temporal feature. Since Cr1r2 should ideally be close to an identity
matrix, the feature consistency loss should maximize the similarity of the respec-
tive local temporal features while reducing redundancy between the components.
Therefore, the feature consistency loss with respect to Cr1r2 is expressed as:

Lr1r2
fc =

∑
i(1− Cr1r2

ii )2 + λ
∑

i

∑
j ̸=i(Cr1r2

ij )2, (6)

where i, j ∈ [0, d−1] are indexes of the local temporal feature dimension, while λ
is a tradeoff constant. The final feature consistency loss is computed as the mean
feature consistency loss over all cross-correlation matrices, with each matrix
corresponding to a pair of local temporal features. The final feature consistency
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loss can be formulated as:

Lfc =
1

Nfc

(∑
r1

∑
r2̸=r1 Lr1r2

fc

)
, (7)

where Nfc =P k−1
2 is the total number of local temporal feature pairs.

Moreover, since the local temporal features of the same input video should
be consistent by minimizing Lfc, their relevance towards the source data distri-
bution should also be consistent. With source data inaccessible, such relevance
cannot be computed directly through measuring the divergence between source
and target data distributions. Since the source classifier contains source data dis-
tribution, such relevance could instead be approximated by the prediction of the
source classifier over the local temporal features. In other words, the consistency
over the relevance of target local temporal features towards source data distri-
bution is equivalent to the consistency over the source prediction of target local
temporal features. Meanwhile, the target overall temporal feature is obtained
by aggregating the respective local temporal features. It should contain similar
motion information as the local temporal features. Therefore, the consistency
over source prediction could be extended to the overall temporal feature.

Given local temporal features lt
(2)
T , . . . , lt

(k)
T , the respective local source pre-

dictions p
(2)
lt,T , . . . , p

(k)
lt,T are obtained via the fixed source classifier HS , following:

p
(r)
lt,T = HS(lt

(r)
T ), ∀r ∈ [2, k]. An average local source prediction could be ob-

tained by averaging over the local source predictions p̄lt,T = 1
k−1

∑k
r=2 p

(r)
lt,T .

To achieve source prediction consistency, we aim to minimize the divergence
between each local source predictions and the average local source prediction:

Llocal
pc = 1

k−1

(∑k
r=2 KL(log σ(p

(r)
lt,T )∥ log σ(p̄lt,T ))

)
, (8)

where KL(p∥q) denotes the Kullback–Leibler (KL) divergence.
Further, the overall target prediction pt,T is computed by applying HS to the

target overall temporal feature tT , which is a simple mean aggregation applied

across local temporal features lt
(2)
T , . . . , lt

(k)
T . To incorporate pt,T into the source

prediction consistency, we aim to minimize the absolute difference between pt,T
and p̄lt,T , defined as:

Loverall
pc =

∑C

c=1
| log σc(pt,T )− log σc(p̄lt,T )|. (9)

The final source prediction consistency is achieved by joint minimization of the
prediction divergence between each local source prediction and the average local
source prediction, as well as between the overall target prediction and the average
local source prediction, formulated as: Lpc = αlocalLlocal

pc +αoverallLoverall
pc , where

αlocal and αoverall are tradeoff constants. Learning temporal consistency is thus
achieved by optimizing both the source prediction consistency loss and feature
consistency loss jointly, expressed as: Ltc = βfcLfc + βpcLpc, with βfc and βpc

being the tradeoff hyperparameters.

Local Weight Module (LWM). While complying with the cross-temporal
hypothesis via learning temporal consistency with feature and source prediction
consistencies enables ATCoN to extract discriminative temporal features, we
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observe that the overall temporal feature tT is constructed by simply averaging
over all local temporal features. This would not be reasonable as the impor-
tance of each local temporal feature is commonly uneven. Therefore, we propose
the Local Weight Module (LWM) to assign local weights to the local temporal
features for subsequent attentive aggregation.

As mentioned in Section 3.2, ATCoN aims to tackle SFVDA by aligning
target videos to the source data distribution. Therefore, LWM is designed such
that local temporal features that are more confident towards its relevance to
the source data distribution gains more attention, weighted by a local rele-
vance weight. More specifically, following Section 3.2, the relevance towards

source data distribution for lt
(r)
T could be referred to its local source prediction

p
(r)
lt,T = HS(lt

(r)
T ), from which the confidence score is computed. Subsequently,

the confidence of p
(r)
lt,T is defined as the additive inverse of its entropy computed

over probabilities of all classes, formulated as:

C(p(r)lt,T ) =
∑C

c=1
σc(p

(r)
lt,T,c) log σc(p

(r)
lt,T,c). (10)

The local relevance weight corresponding to the local temporal feature lt
(r)
T is

finally generated by adding a residual connection for more stable optimiza-

tion, expressed as: w
lt

(r)
T

= 1 + C(p(r)lt,T ). The local relevance weight is applied

to obtain the weighted overall temporal feature t′T , which is the mean aggre-
gation of the corresponding weighted local temporal features, computed as:

t′T = 1
k−1

∑
r wlt

(r)
T

lt
(r)
T . Meanwhile, local relevance weight is further applied

to the local source predictions p
(r)
lt,T , where the source prediction consistency is

learnt with relevance-weighted local source predictions p
(r)
lt,T

′
= w

lt
(r)
T

p
(r)
lt,T .

ATCoN learns temporal consistency by learning feature consistency and
source prediction consistency of local temporal features jointly. Inspired by prior
works in SFDA [21,15,38], we further improve ATCoN from two aspects:

Information Maximization. The ideal overall temporal feature should be
both individually certain and globally diverse. Therefore, we apply an Infor-
mation Maximization (IM) loss over the weighted overall temporal feature as:
.

LIM = −EVT∈DT

∑C

c=1
σc(HS(t

′
T (VT ))) log σc(HS(t

′
T (VT )))

+
∑C

c=1
KL

(
EVT∈DT

[σc(HS(t
′
T (VT )))] ∥

1

C

)
,

(11)

where t′T (VT ) is the weighted overall temporal feature corresponding to target
video VT , while σc is the c-th element in the softmax.

Self-supervised Pseudo-label Generation. To further improve class-wise
alignment of ATCoN with the lack of target label, we follow [20] and generate
pseudo-labels for target videos in a self-supervised manner. Specifically, pseudo-
labels are generated through a repeated k-means clustering process over the
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overall temporal feature, where the initial centroid for class c is attained by:

c
(0)
c =

∑
VT ∈DT

σc(HS(t′T (VT ))) t′T (VT )∑
VT ∈DT

σc(HS(t′T (VT ))) . (12)

Subsequently, the initial pseudo-label of target data VT is obtained by its nearest

centroid, defined by: ŷVT
= argminc cos(t

′
T (VT ) , c

(0)
c ), where cos(·, ·) denotes

the cosine distance function. The initial centroids are further updated to char-
acterize the category distribution of the target domain more reliably based on
the initial pseudo-labels, formulated as:

c
(1)
c =

∑
VT ∈DT

I(ŷVT
=c) t′T (VT )∑

VT ∈DT
I(ŷVT

=c) , (13)

with I(·) being an indicator function. The pseudo-labels are finally renewed fol-

lowing the updated centroids with ŷVT
= argminc cos(t

′
T (VT ) , c

(1)
c ). ATCoN is

further trained with the cross-entropy loss with respect to the pseudo-labels as:

LT,ce = − 1

nT

∑nT

i=1
ŷVT

log σ(HS(t
′
T (VT ))), (14)

where nT is the total number of target videos.

Overall Objective. In summary, given a trained source model, the overall
optimization objective of ATCoN is expressed as: L = βtcLtc + βIMLIM +
βceLT,ce, where βtc, βIM , and βce are tradeoff hyperparameters.

4 Experiments

In this section, we evaluate our proposed ATCoN across three cross-domain
action recognition benchmarks including UCF-HMDBfull [2], Daily-DA [43] and
Sports-DA [43]. These benchmarks cover a wide range of cross-domain scenarios.
We present superior results on all benchmarks. Further, ablation studies and
empirical analysis of ATCoN are also presented to validate the architecture of
ATCoN. Code is provided at https://github.com/xuyu0010/ATCoN.

4.1 Experimental Settings

Among the three benchmarks, UCF-HMDBfull is one of the most widely used
cross-domain video dataset, which contains videos from two public datasets:
UCF101 (U101) [33] and HMDB51 (H51) [16], a total of 3,209 videos in 12
action classes, with 2 cross-domain action recognition tasks. Meanwhile, Daily-
DA is a more challenging dataset that incorporates both normal videos and
low-illumination videos. It is constructed from four datasets : ARID (A11) [42],
HMDB51 (H51), Moments-in-Time (MIT) [24], and Kinetics (K600) [14]. While
HMDB51, Moments-in-Time, and Kinetics are widely used for action recogni-
tion benchmarking, ARID is a more recent dark dataset, comprised with videos
shot under adverse illumination conditions. In total, Daily-DA includes 18,949
videos from 8 classes, with a total of 12 cross-domain action recognition tasks.
Sports-DA is a large-scale cross-domain video dataset, built from UCF101
(U101), Sports-1M (S1M) [13], and Kinetics (K600), with 23 action classes and

https://github.com/xuyu0010/ATCoN
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Table 1. Results for SFVDA on UCF-HMDBfull and Sports-DA.

Methods
Source-
free

UCF-HMDBfull Sports-DA

U101→H51 H51→U101 Avg. K600→U101 K600→S1M S1M→U101 S1M→K600 U101→K600 U101→S1M Avg.

TRN - 72.78 72.15 72.47 86.41 66.95 85.31 71.05 49.29 43.32 67.06

DANN ✗ 74.44 75.13 74.79 86.60 66.79 89.32 70.53 61.77 48.73 70.62
MK-MMD ✗ 74.72 79.69 77.21 86.49 66.18 87.37 71.43 64.17 49.24 70.81

TA3N ✗ 78.14 84.83 81.49 88.24 70.56 83.32 75.54 57.51 46.37 70.26

SFDA ✓ 69.86 74.98 72.42 86.10 60.02 85.37 68.04 55.75 43.58 66.48
SHOT ✓ 74.44 74.43 74.44 91.19 64.95 88.84 72.02 53.93 43.58 69.09

SHOT++ ✓ 71.11 68.13 69.62 90.01 63.11 88.01 70.34 44.75 40.95 66.20
MA ✓ 74.45 67.36 70.91 91.04 65.95 87.84 71.88 60.75 39.41 69.48
BAIT ✓ 75.33 76.36 75.85 92.27 66.61 88.33 72.85 57.25 44.67 70.33
CPGA ✓ 75.82 68.16 71.99 89.42 66.26 86.49 72.55 55.22 44.53 69.08

ATCoN ✓ 79.72 85.29 82.51 93.62 69.70 90.64 75.99 65.24 47.90 73.85

Table 2. Results for SFVDA on Daily-DA.

Methods
Source-
free

Daily-DA

K600→A11 K600→H51 K600→MIT MIT→A11 MIT→H51 MIT→K600 H51→A11 H51→MIT H51→K600 A11→H51 A11→MIT A11→K600 Avg.

TRN - 20.87 36.66 29.00 22.11 43.75 53.10 13.81 22.00 37.10 17.20 14.75 24.38 27.89

DANN ✗ 21.18 37.50 21.75 22.81 43.33 58.76 14.20 29.50 38.24 20.11 19.75 27.03 29.51
MK-MMD ✗ 21.66 36.25 24.00 21.02 50.42 58.48 20.35 25.75 33.79 18.75 18.00 26.07 29.55

TA3N ✗ 19.87 37.67 31.53 21.57 43.01 55.47 14.38 25.71 38.39 14.92 15.56 23.42 28.49

SFDA ✓ 12.57 44.95 27.50 15.96 35.19 49.23 13.08 24.25 24.86 16.29 13.25 25.22 25.19
SHOT ✓ 12.03 44.58 29.50 15.28 36.67 51.04 13.58 24.25 21.24 17.08 14.00 24.35 25.30

SHOT++ ✓ 12.57 40.83 28.75 14.90 41.67 46.34 15.98 22.25 33.10 15.42 12.50 21.76 24.42
MA ✓ 12.76 45.82 30.00 17.75 37.36 53.54 12.90 25.00 22.19 16.67 15.25 24.29 26.13
BAIT ✓ 12.69 45.73 30.00 16.93 39.64 53.00 13.65 25.50 21.17 15.70 14.50 25.52 26.17
CPGA ✓ 13.06 46.02 30.75 18.08 39.21 55.09 13.14 26.25 25.54 19.19 16.50 26.72 26.46

ATCoN ✓ 17.21 48.25 32.50 27.23 47.35 57.66 17.92 30.75 48.55 26.67 17.25 31.05 33.53

a total of 40,718 videos. With three different domains, Sports-DA contains 6
cross-domain action recognition tasks. For fair comparison, all methods adopt
the TRN [50] as the backbone for video feature extraction, with the source model
pre-trained on ImageNet [5]. Following [21], a Batch Normalization [12] and an
additional fully connected layer are inserted while weight normalization [32] is
applied to the last fully connected layer. All experiments are implemented with
PyTorch [27] library. More specifications on benchmark details and network im-
plementation are provided in the Appendix.

4.2 Overall Results and Comparisons

We compare ATCoN with state-of-the-art SFDA approaches, as well as several
competitive UDA/VUDA approaches. These include: SFDA [15], SHOT [20],
SHOT++ [21], MA [18], BAIT [47] and CPGA [28] which are designed for
source-free adaptation; as well as DANN [6], MK-MMD [22] and TA3N that
are designed for UDA/VUDA scenario. We also report the results of the source-
only model (TRN), which is obtained by applying the model trained with source
data directly to the target data. We report the top-1 accuracy on the target
domains, averaged on 5 runs with identical settings for each approach. Table 1
and Table 2 show the performance of our proposed ATCoN compared with the
above methods in the three cross-domain action recognition benchmarks.

The results in Table 1 and Table 2 show that the novel ATCoN achieves
the best results among source-free methods on all 20 cross-domain tasks across
the three cross-domain benchmarks, and outperforms previous source-free ap-
proaches considerably by noticeable margins. Notably, ATCoN exceeds all prior
SFDA approaches designed for the image-based SFDA task (e.g., SHOT, MA,
and CPGA) consistently by an average of more than 10% relative improvements
on mean accuracy over the second-best performances across all 18 cross-domain
tasks. The consistent improvements empirically justify the effectiveness of learn-
ing temporal consistency for obtaining discriminative overall temporal features
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Table 3. Ablations studies of ATCoN on UCF-HMDBfull

Methods U101→H51 H51→U101

Source-only (TRN) 72.78 72.15
ATCoN 79.72 85.29

ATCoN-FC 77.78 83.36

ATCoN-PC† 76.67 82.83
ATCoN-PC 77.50 83.01
ATCoN-TC 78.89 84.59

(a) Components of temporal consistency

Methods U101→H51 H51→U101

Source-only (TRN) 72.78 72.15

ATCoN 79.72 85.29

ATCoN-NA 78.33 83.89

ATCoN-A@F 79.17 84.93

ATCoN-A@P 78.61 84.41

(b) Application of local relevance weight

while attending to local temporal features with high source prediction confidence.
Our proposed ATCoN even exceeds the performance of VUDA methods which
are trained with accessible source data under 13 cross-domain tasks, while the
mean accuracies of our method are consistently higher than all VUDA methods
evaluated across the three benchmarks. This further validates the capability of
ATCoN in constructing effective temporal features.

Further, it could be observed that prior SFDA approaches could not tackle
SFVDA well. Specifically, in 11 out of the 20 cross-domain tasks, more than half
of the evaluated SFDA approaches result in performances inferior to that of the
source-only model trained without any adaptation approaches. Prior SFDA ap-
proaches could only handle spatial features, while unable to obtain discriminative
and transferrable temporal features, resulting in little or negative improvements
compared to the source-only baseline. This further demonstrates the challenges
faced when adapting video models under the source-free scenario. In particular,
all tasks that involve ARID as the source or target domain in Daily-DA would
lead to inferior results by prior SFDA approaches. This scenario could be further
owed to the fact that videos in ARID are collected in adverse illumination with
distinct statistical characteristics, leading to larger cross-domain gaps.

4.3 Ablation Studies and Feature Visualization

To dive deeper into the effectiveness of ATCoN and validate its architecture, we
perform detailed ablation studies and feature visualization. The ablation studies
investigate ATCoN from two perspectives: firstly, the components of temporal
consistency; and secondly the application of local relevance weight generated by
LWM. All ablation studies are conducted utilizing the UCF-HMDBfull dataset
with 2 cross-domain action recognition tasks, while TRN is adopted as the fea-
ture extractor backbone.
Temporal Consistency. We assess ATCoN against 4 variants to validate the
design of the proposed temporal consistency loss Ltc: ATCoN-FC , where only
the feature consistency is learnt; ATCoN-PC † and ATCoN-PC , where only
the source prediction consistency is learnt, with the overall target prediction not
included for ATCoN-PC †; and finally ATCoN-TC , where only the temporal
consistency loss is learnt with both feature consistency and source prediction
consistency. The above 4 variants would not apply both the IM loss and pseudo-
label generation as proposed in Eq. 11 and 14 during training, while the local
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(a) Source local temporal features 
with source-only model

(b) Target local temporal features 
with source-only model

(c) Target local temporal features 
with ATCoN-TC

Fig. 2. t-SNE visualizations of local temporal features with class information. Different
colors represent different classes.

relevance weight in Sec. 3.2 is applied. Results in Table 3(a) demonstrate the
efficacy of learning temporal consistency for constructing discriminative overall
temporal features for tackling SFVDA. By learning either feature consistency or
source prediction consistency, the network is able to outperform all prior SFDA
approaches on both cross-domain tasks. Meanwhile, extending the source predic-
tion consistency to the overall temporal feature further improves its efficacy. The
superior performance of ATCoN-TC justifies that learning feature consistency
and source prediction consistency complements each other.

Further, it could be observed that ATCoN performs slightly better than
ATCoN-TC, thanks to the inclusion of both IM loss and pseudo-labeling in
training the full ATCoN. However, compared to the improvements towards the
baseline model performance brought by learning temporal consistency, the per-
formance gain by applying both IM loss and pseudo-labeling is marginal. The
comparison empirically proves that the key towards ATCoN’s success lies more
in the learning of temporal consistency.
Applying Local Relevance Weight. We propose the local relevance weight
wlt obtained from the LWM which attends to the local temporal features with
high confidence over their relevance to the source data distribution. To justify
the necessity of the wlt, we compare ATCoN against 3 variants: ATCoN-NA,
where the LWM is not inserted thus wlt is not obtained at all; ATCoN-A@F ,
where wlt is only applied for obtaining the overall temporal feature t′T ; and
ATCoN-A@P , where wlt is only applied to obtain the weighted local source

prediction p
(r)
lt,T

′
. Both the IM loss and pseudo-label generation are adopted dur-

ing the training of the three aforementioned variants. As illustrated in Table
3(b), applying local relevance weight brings consistent improvements wherever it
has been applied, which justifies the necessity for such a weight. By employing
the local relevance weight wlt, ATCoN is able to obtain more discriminative tem-
poral features. While wlt bring further improvements on network performance,
it should be noted that the improvement is relatively marginal compared to that
brought by learning temporal consistency, which indicates that the proposed
temporal consistency plays a more vital role in tackling SFVDA effectively.
Feature Visualization. To further understand the characteristics of ATCoN,
we plot the t-SNE embeddings [23] of the features extracted. Specifically, we
first prove our cross-temporal hypothesis by visualizing local temporal features
learned by the source-only model on the source data and the target data, and
local temporal features learned by ATCoN-TC for the H51→U101 task, as pre-
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(a) Source-Only (b) CPGA (c) SHOT (d) ATCoN

Fig. 3. Visualization of features extracted by the (a) source-only model, (b) CPGA,
(c) SHOT, and (d) ATCoN with class information. Different classes are marked by
different colors.

sented in Fig. 2. The local temporal features of the source data share simi-
lar distribution patterns, which confirms that they are both discriminative and
consistent, with similar semantic information embedded. Meanwhile, the data
distribution patterns of target data with the source model are inconsistent. In
comparison, by learning temporal consistency, ATCoN-TC is able to extract
discriminative and relatively consistent local temporal features, satisfying the
cross-temporal hypothesis. This implies that learning temporal consistency en-
ables the learning of source-like representations for target data, and therefore is
effective in aligning target data to source data distribution.

We further plot the t-SNE embeddings of the overall temporal features learnt
by ATCoN, CPGA, and SHOT for the H51→U101 task with class information in
the target domain. The results are presented in Fig. 3, where we can clearly ob-
serve that the features learned by ATCoN are much more clustered than those
learned by other networks. This verifies that features learned by ATCoN are
of higher discriminability, resulting in better SFVDA performance. In contrast,
features learned by CPGA are even less clustered and discriminative than those
learned by the source-only backbone, which corresponds to its inferior perfor-
mance over the backbone in this task. The above observation implies the supe-
riority of our ATCoN in tackling SFVDA while reflecting the challenges faced
by prior SFDA approaches in tackling SFVDA.

5 Conclusion

In this work, we pioneer in formulating the challenging yet realistic Source-Free
Video Domain Adaptation (SFVDA) problem, which addresses data-privacy is-
sues in videos. We proposed a novel ATCoN to tackle SFVDA effectively. With
source video data inaccessible, ATCoN tackles SFVDA via obtaining effective
and discriminative overall temporal features satisfying the cross-temporal hypoth-
esis, achieved by learning temporal consistency, guaranteed by both feature con-
sistency and source prediction consistency. ATCoN further aims to align target
data to the source distribution through attending to local temporal features with
higher source prediction confidence. Extensive experiments and detailed ablation
studies across multiple cross-domain action recognition benchmarks validate the
superiority of our proposed ATCoN in tackling SFVDA.
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