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Abstract. High inter-equipment variability and expensive examination
costs of brain imaging remain key challenges in leveraging the heteroge-
neous scans effectively. Despite rapid growth in image-to-image transla-
tion with deep learning models, the target brain data may not always be
achievable due to the specific attributes of brain imaging. In this paper,
we present a novel generalized brain image synthesis method, powered
by our transferable convolutional sparse coding networks, to address the
lack of interpretable cross-modal medical image representation learning.
The proposed approach masters the ability to imitate the machine-like
anatomically meaningful imaging by translating features directly under
a series of mathematical processings, leading to the reduced domain dis-
crepancy while enhancing model transferability. Specifically, we first em-
bed the globally normalized features into a domain discrepancy metric
to learn the domain-invariant representations, then optimally preserve
domain-specific geometrical property to reflect the intrinsic graph struc-
tures, and further penalize their subspace mismatching to reduce the
generalization error. The overall framework is cast in a minimax setting,
and the extensive experiments show that the proposed method yields
state-of-the-art results on multiple datasets.

Keywords: Convolutional sparse coding networks, image synthesis

1 Introduction

Neuroimaging techniques like magnetic resonance imaging (MRI) allow assess-
ment of varying physical and chemical tissue properties of brain. Different pulse
sequences, used in anatomical MRI, provide diverse and complementary infor-
mation about the anatomical organization. However, a certain single imaging
modality is relatively common in real clinical practice, due to the high inter-
equipment variability, expensive examination costs and long acquisition time of
multi-modality imaging. The proliferation of multi-modal imaging is urgently
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Fig. 1. Architecture of our TransCSCN. The first layer is the globally normalized CSC
layer. DDM denotes a module calculating domain discrepancy metric LHk , the LCR
module enforces Laplacian co-regularization LG , and SMP enforces subspace mismatch
penalization LS . LP is the association loss. The right side shows the feature-leveled
operation of each regularizer.

needed for encouraging the comprehensive analysis and making accurate deci-
sions.

Over the last decade, image synthesis technique has enabled transforma-
tional advances in various tasks, delivering superior performance on image-to-
image translation ubiquitously [13,42]. These methods have also been widely
used for medical image analysis [21], including cross-modal MRI synthesis [13],
multi-modal image segmentation [26], registration [2], and tracking of anatom-
ical structures [30]. Sparse-representation-based methods [35,34], as an early
and trustworthy way, construct a linear function for mapping sparse codes and
learning dictionaries jointly. The solution for such a celebrated model can be ap-
proximated using greedy algorithms but later known to be sub-optimal, because
of highly redundant structure and damaged consistency. Convolutional sparse
coding (CSC) [5,12] breaks this dilemma via modeling a shift invariant objective
to obtain the coherent and compact representations via convolution. In addi-
tion to dictionary-based approaches, deep neural networks [38] have made rapid
progress in image generation. The remarkable works are distributed in various
applications such as style transfer [42] and sketch-to-photorealism generation
[18].

Image synthesis algorithms indeed have achieved promising performance.
However, for medical imaging, irrespective of the intrinsic anatomical mean-
ing, requiring a large-scale standardized dataset, at the cost of a large number
of parameters or computational complexity, is unacceptable for auxiliary clinical
diagnosis and advanced research analysis. Specifically, early methods [7,31] seem
to favor a shallow and redundant architecture with descriptors which cannot
effectively capture image features, e.g., by finding edges and pooling them. The
architecture of recent networks makes feature extraction deeper by imposing a
large amount of data and memory overhead in the implementation. However,



Transferable Convolutional Sparse Coding Networks 3

collecting multi-modal medical images can be prohibitively hard or even im-
plausible. The other issue is that most medical image synthesis works pursue
the superficial consistency, omitting the underlying tissue information. Besides
technical challenges, the complexity and heterogeneity of MRI remains a prob-
lem in leveraging the heterogeneous scans effectively, for example, imaging by
different manufacturers (e.g., Philips Achieva System vs. GE SIGNA system)
and abundant sequences (e.g., a turbo spin echo sequence vs. a single-shot EPI
sequence). Taken together, a macro perspective expects that these weaknesses
can be relieved by a compensatory solution, i.e., constructing a new framework
towards standardizing and expanding the synthesis reality for both visual and
anatomical significance.

In view of the above challenges, we propose a novel Transferable Convolu-
tional Sparse Coding Network (TransCSCN) that enables the learner to adapt
to the target modal. This is done by mapping a latent space to generalize both
intra-domain (i.e., multiple imaging manufacturers for one modal) and cross-
domains (i.e., multiple modalities) while preserving the domain-specific geome-
tries and their sub-manifolds. An overview of our TransCSCN is shown in Fig.
1. To summarize, this paper makes the following contributions:

– We propose a novel framework, i.e., TransCSCN, for unsupervised brain im-
age synthesis, where multiple objective-specific layers are adapted, resulting
in mathematically interpretable formulations and anatomically meaningful
results.

– A domain discrepancy metric is provided to embed the globally normalized
features in the reproducing kernel Hilbert space to reduce the variant repre-
sentations of similar tissues in different domains.

– The Laplacian co-regularization term is further devised to optimally preserve
the geometric structures underlying the respective domains.

– Finally, a subspace mismatch regularizer is proposed to penalize the gener-
alization error and variation.

2 Related Work

2.1 Domain Adaptation

Domain discrepancy severely degrades the model performance on cross-domain
tasks. Luckily, significant effort has been devoted in the literature to provide
adapted features or classifiers to new visual domains. Previous methods have
tried to learn domain-invariant representations between source and target do-
mains. Of these methods, Zhong et al. [40] proposed a transfer cross-validation
method, which generalizes a learner across different domains by considering both
marginal and conditional distributions. Qiu et al. [29] presented a function learn-
ing framework by adapting dictionaries learned from one visual domain to the
other for smoothly varying domains utilizing regression. Recent work has fo-
cused on transferring deep neural network representations from a source dataset
to a target domain where the labeled data may be sparse or non-existed. Deep
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adaptation network [23] explores feature transferability of deep CNNs in the
task-specific layers embedded in a reproducing kernel Hilbert space to reduce
the domain discrepancy. In [36], a curriculum manager was proposed as an in-
dependent network module to predict the transferability of source domain data
and adversarially raise the error rate of a domain discriminator. Yu et al. [22]
presented dynamic transfer by adapting model parameters to samples to address
the domain conflict problem. While many domain adaptation or transformation
algorithms for natural images are well explored by minimizing the distribution
discrepancy, some disconnections still form non-negligible gaps between the nat-
ural and medical images.

2.2 Image-to-Image Translation

Image-to-image translation aims to transfer a source image into the style of
a varying reference image. Conventional wisdom and early research [7] tackled
this problem using nonparametric settings to resample the feature statistics of a
given image texture. Roy et al. [31] provided a dictionary-learning-based brain
image contrast synthesis approach by assuming that cross-modality patches have
similar local geometry to linearly approximate the target image. Vemulapalli et
al. [33] relaxed the supervision of fully paired data, by jointly maximizing both
global mutual information and local spatial consistency to match the similari-
ties across modalities. To circumvent the problem of lacking diversity and good
quality, deep generative network was proposed after the introduction of neural
style transfer algorithms. The popular works such as CycleGAN [42] are able to
transfer rich local texture appearance cross domains, e.g., translating between
paintings and photographs. MSGAN [24] designed a mode seeking regularization
term for conditional GANs to handle the mode collapse issue. Huang et al. [15]
relaxed the supervision by matching similarities of both intra- and intre-modal
data in feature-level, and then adopting the manifold penalization to handle the
brain image synthesis problem. Mainstream image-to-image translation meth-
ods are tailored to adapting given modality and target modality; however, these
methods have difficulties in modeling complex patterns of irregular distributions
with heterogeneous variations.

3 Preliminaries

A natural way to cast the problem of learning a shallow architecture of shift-
invariant representations into an optimization problem is a convolutional sparse
coding (CSC) method [5]. CSC has gained popularity in computer vision and
medical imaging, because of its ability to obtain a structured filter that facili-
tates a global handling of the image. CSC is remarkable when compared with
traditional sparse coding, providing a more elegant way to represent data as the
sum of filters convolved with sparsely distributed codes.

Given a set of observations {x1,x2, ...,xS} in RN , CSC can be formulated as
learning a set of sparse coefficient feature maps zi ∈ RN convolved with filters
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fi ∈ RM , ∀i = {1, ...,K}. Its optimization problem boils down to:

min
f ,z

1

2

∥∥∥∥∥x−
K∑
i=1

fi ∗ zi

∥∥∥∥∥
2

2

+ λ

K∑
i=1

∥zi∥1 s.t. ∥fi∥22 ≤ 1 ∀i = {1, ...,K} , (1)

where ∗ denotes the 2D convolution operation, λ is the regularization parameter,
x and z are the vectorized images, and f is the vectorized filter. The objective
in Eq. (1) is difficult to optimize due to the convolutional decomposition mech-
anism. Motivated by Parseval’s theorem and deconvolutional networks, Zeiler et
al. [37] demonstrated that through an alternation strategy to solve a sequence of
convex sub-problems until convergence is an efficient way. As a part of the prox-
imal gradient methods, fast iterative shrinkage thresholding algorithm (FISTA)
[3] provided an iterative approach for solving the l1 penalized least squares prob-
lem with fast quadratic convergence. In parallel, the augmented Lagrange meth-
ods, such as the alternating direction method of multipliers (ADMM) [4], treated
the optimization as sub-problems and computed the convolutions in the Fourier
domain. The subsequent CSC based algorithms often rely on the ADMM formu-
lation to circumvent the computational burdens of the inversion of a convolu-
tional linear operation. For example, Heide et al. [12] exploited the mask matrices
to deal with the incomplete samples, while Choudhury et al. [6] leveraged the
matrix inverse lemma to achieve a global consensus in each of the estimates.

In this study, we consider a special case, where a source domain training
set X ∈ RN×S of S source modality samples and a target domain training set
Y ∈ RN×T of T target modality samples are given. The image synthesis task is
then expected to learn both convolutional feature maps Zx and Zy over their cor-
responding filters Fx and Fy, where the superscript is adopted to distinguish the
variate from the source domain x or from the target domain y. The conventional
solution following the independent scheme in Eq. (1), results in uncorrelated
features. The joint representation learning groups two independent reconstruc-
tion errors in a single objective function, leading to a common set of feature
maps (i.e., Zx ≡ Zy) shared between source and target domains. The flexible
joint learning strategy replaces the common feature assumption by constructing
a linear projector P to calculate ∥Zx −PZy∥2, which is more reasonable.

4 Transferable Convolutional Sparse Coding Networks

The challenge of joint learning mainly arises when the target domain has no or
only limited data pairing with the source domain. In other words, the assump-
tion of the feature maps from one domain to be identical to those observed at the
target domain is no longer valid, let alone the abundance of variations in single
domain. In this paper, we address the dilemma of generalizability against mul-
tivariate nature of neuroimaging, by providing more flexibility in leveraging the
large-scale heterogeneous medical data in an unsupervised manner, such that the
learned transferable representations can close the source and target discrepancy.
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Following the CSC approximation introduced in Sec. 3, a shallow convolu-
tional structure on the learned matrices is constructed for the purpose of low-
level feature extraction. Recent works [8,20] suggested to learn multiple levels of
feature representations in a hierarchical architecture to deeply capture both low-
level and mid-level features. As expected, CSCNets [15] were proposed to exploit
the benefits of depth with convolutional filter learning to convey information with
increasing austerity. GivenX andY, the representations of the multilayered CSC
can be formalized as Zx,|l| = f(X,Fx,|l−1|, λ), Zy,|l| = f(Y,Fy,|l−1|, λ), where
l ∈ {1, 2, . . . , L} denotes the layer index, f is the feature extractor, Zx,|l| ∈
RN |l|×h|l|w|l|

and Zy,|l| ∈ RN |l|×h|l|w|l|
represent the l-th layered feature maps

with tensor properties of height h and width w. Correspondingly, the layerwise
projector P|l| is updated as LP(Z

x,|l|,Zy,|l|) = ∥Zx,|l| −P|l|Zy,|l|∥2F + α∥P|l|∥2F ,
where α is association mapping parameter. This can be solved as a set of the
least squares problem.

4.1 Domain Discrepancy Metric

Despite the obvious cross-domain divergence, the variations such as different
manufacturers and physical parameters in single domain are also harmful to
model generalization. To approach this problem, we adopt the single domain
unit normalization [15] and begin by a global normalization under Zx and Zy.
Then the features are scaled as Zx

max(∥Zx∥2)
and Zy

max(∥Zy∥2)
, respectively. When

the maximum of their norms is guaranteed to be unity, we project the fea-
tures to a unit sphere to eliminate the scaling ambiguity globally as follows:

Ẑx
i = Zx

i /(max(∥Zx
i ∥2)

√
1−

∥∥∥∥ Zx
i

max(∥Zx
i ∥2

)

∥∥∥∥2),∀i ∈ RS, Ẑy
j = Zy

j/(max(
∥∥Zy

j

∥∥
2
)

√
1−

∥∥∥∥ Zy
j

max(∥Zy
j∥2

)

∥∥∥∥2),∀j ∈ RT ,

where the general unit normalization criterion
∥∥∥Ẑx

i

∥∥∥2
2
= 1,∀i and

∥∥∥Ẑy
j

∥∥∥2
2
= 1,∀j

can be satisfied. The globally normalized convolutional feature maps then be-
come Z′x,|l| = f(Ẑx,|l−1|,Fx,|l−1|, λ), Z′y,|l| = f(Ẑy,|l−1|,Fy,|l−1|, λ), where the
imposed upper layer of the representation Ẑx,|l−1| and Ẑy,|l−1| are treated as the
intermediate representations.

The problem of adapting the source domain data to the target domain has
been explored [23,14]. Of these methods, bounding the target error by super-
imposing a discrepancy metric between both domains is a direction to explore,
which can be realized by the two-sample test statistics. Theoretically, given two
samples coming from different domains following different probability distribu-
tions p(x) and p(y), the two-sample testing either accepts or rejects a null hy-
pothesis p(x) = p(y), based on various metrics, such as the maximum mean
discrepancy (MMD) [10]. This prior has motivated us to solve a natural domain
variation in a generalized unsupervised way by learning the correlation-relaxed
features of different domains more efficiently. On further consideration, the orig-
inal MMD is restricted by the local generalization leading to the sub-optimal
kernel problem, while the extended multi-kernel MMD (MK-MMD) criterion is
more applicable to perform unbiased estimation. Suppose the reproducing kernel
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Hilbert space (RKHS) Hk induced with a characteristic kernel k on the vector-
ized element Z has a set of positive definite kernels {ku}du=1,∀u ∈ {1, · · · , d}.
The MK-MMD then can be defined as the squared distance between kernel mean
embeddings in Hk to minimize the domain gap and optimize the kernel selection,

LHk
(X,Y ) =

∥∥Ep(x)[f(X)]− Ep(y)[f(Y)]
∥∥2
Hk

,

∀ k ∈ K := {
d∑

u=1

βuku :

d∑
u=1

βu = 1, βu ≥ 0},
(2)

where K is the convex combination of u positive definite kernels {ku}du=1,∀u;
βu denotes the coefficient for constraining the characteristic of {ku}; f(·) rep-
resents the feature mapping with k(X,Y ) = ⟨f(X), f(Y)⟩Hk

; and LHk
can be

interpreted as matching all orders of statistics with a property of p(x) = p(y) iff
LHk

(X,Y ) = 0. As principally studied in MK-MMD, we are targeting to boost
unpaired cross-modal data underlying the same distributions to be close to each
other. Mathematically, the unsupervised method can be established by adding
the MK-MMD-based layerwise regularizer Ll

Hk
:

min
f

max
k

f(Ẑx,|l−1|,Fx,|l−1|, λ) + f(Ẑy,|l−1|,Fy,|l−1|, λ)

+γ
∥∥∥Ep(x)[Z

′x,|l|]− Ep(y)[Z
′y,|l|]

∥∥∥2
Hk

,
(3)

where γ denotes the penalty parameter. Considering the kernel trick, Ll
Hk

can be

expressed as the layered expectation of kernel function Ll
Hk

≜ 1
S2

∑S
i=1

∑S
j=1 k(Z

′x,|l|
i ,

Z
′x,|l|
j ) + 1

T 2

∑T
i=1

∑T
j=1 k(Z

′y,|l|
i ,Z

′y,|l|
j )− 2

ST

∑S
i=1

∑T
j=1 k(Z

′x,|l|
i ,Z

′y,|l|
j ), where

Z
′x,|l|
i ,Z

′x,|l|
j

iid∼ p(x), and Z
′y,|l|
i ,Z

′y,|l|
j

iid∼ p(y), k ∈ K, ∀i, j.

4.2 Laplacian Co-Regularization

The representations learned in Eq. (3) encourage domain-invariant features against
cross-modal distribution discrepancy; however, some important low-level details
reflecting the domain-specific information are lost. With this limitation, the syn-
thetic may be visually meaningful but lacking practical significance. Recent ad-
vances in exploring manifold assumption [41] reflect the geometric structure
leading to a realistic and correct approximation. Based on the observation of
graph Laplacian (a.k.a. manifold learning), we investigate how to preserve the
complementary properties by introducing a Laplacian co-regularizer. To be spe-

cific, given Z′x,|l| and Z
′y,|l|
i of X and Y, respectively, two layerwise q-nearest

neighbor graphs Gx,|l| and Gy,|l| can be constructed while each with g vertices
[39]. Under the above definition, the Laplacian co-regularization LG(X,Y ) is
given as:

g∑
i,j=1

∏
l∈L

(W
x,|l|
i,j

∥∥∥Z′x,|l|
i − Z

′x,|l|
j

∥∥∥2 +W
y,|l|
i,j

∥∥∥Z′y,|l|
i − Z

′y,|l|
j

∥∥∥2), (4)
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where W
x,|l|
i,j and W

y,|l|
i,j are the layered weight matrices of Gx,|l| and Gy,|l| having

attributions of W
x,|l|
i,j = 1, W

y,|l|
i,j = 1 iff any two features Z

′x,|l|
i and Z

′x,|l|
j or

Z
′y,|l|
i and Z

′y,|l|
j satisfying Z

′x,|l|
i or Z

′y,|l|
i is among the g-nearest neighbors of

Z
′x,|l|
j or Z

′y,|l|
j ; otherwise, W

x,|l|
i,j = 0, W

y,|l|
i,j = 0.

The domain-specific graph structures are encoded intoW
x,|l|
i,j andW

y,|l|
i,j with

the corresponding layerwise diagonal matrices Dx,|l| = diag(d
x,|l|
1 , · · · , dx,|l|g ) and

Dy,|l| = diag(d
y,|l|
1 , · · · , dy,|l|g ). The graph Laplacian provides G = D −W, such

that we can preserve the domain-specific geometrical structures by Eq. (4) up-

dating as LG(X,Y ) = Tr(Z′x,|l|Gx,|l|Z′x,|l|T + Z′y,|l|Gy,|l|Z′y,|l|T ).

4.3 Subspace Mismatch Penalization

Considering the heterogeneity of medical images acquired on scanners from dif-
ferent manufacturers and with different physical parameters, all these prop-
erties induce conflicted and inconsistent features. The aforementioned formu-
lations bridge the domain gap and enrich the domain-specific representation,
but fail to cope with the variational tissue structures across domains. This
means that performance may degrade when high-level features are insensitive
to tissue boundaries, resulting in over-smoothness of the synthesis and poten-
tial scaling-based mismatching. To reduce the generalization error and better
preserve the geometry in our synthesis task, we propose a subspace mismatch
regularizer to constrain the veritable similar bases in their subspace. As sug-
gested by [32], singular value decomposition (SVD) of the feature matrix can be
exploited to enforce the constraint. In this work, we adopt the general SVD to get

the layerwise orthogonal matrices Ux,|l| and Uy,|l|: Z′x,|l| = Ux,|l|Σx,|l|Vx,|l|T ,

Z′y,|l| = Uy,|l|Σy,|l|Vy,|l|T . Here, Σ is the nonnegative real diagonal matrix, and
VT is the conjugate transpose of V denoting the right singular matrix. Follow-
ing [32], we use principal angles to measure the subspace distance between two
domains,

Θ|l| = min
Ux,|l|,Uy,|l|

arccos(
Ux,|l|TUy,|l|∥∥Ux,|l|

∥∥ ∥∥Uy,|l|
∥∥ ),

Ux,|l|TUy,|l| = Ax,|l|(diag(cosΘ|l|))Ay,|l|T ,

(5)

where Θ represents the principal angles and A is the weight matrix. The orthog-

onal bases are then matched by L|l|
S = ∥|A|x,|l|−|A|y,|l|∥2F in the feature-leveled

subspaces.

4.4 Transfer Representation Learning

In our transfer representation learning, we construct the globally normalized
features, the penalization of domain discrepancy, the regularization of domain-
specific manifold, and the reduction of subspace mismatch. The overall objective
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Algorithm 1 Layerwise F-Step Optimization

Input: Training data X, Y, ρf

1: Initialize: Zx
0 , Z

y
0 , F

x
0 ∈ O, Fy

0 ∈ O
2: Zx

0 → Ẑx
0 , Z

y
0 → Ẑy

0

3: while not converged do
4: for i = 1 to B do
5: argminFx,Fy

1
2
(∥X − Fx ∗ Ẑx∥22 + ∥X − Fy ∗ Ẑy∥22 + δ(∥Fx − F̃x + ρfx∥22 +

∥Fy − F̃y + ρfy∥22)), s.t. ∥fxi ∥22 ≤ 1, ∥fyi ∥
2
2 ≤ 1, ∀i

6: end for
7: argminF̃x,F̃y indC(F̃

x)+ indC(F̃
y)+ Nδ

2
(∥F̃x− F̄x− ρ̄fx∥22 + ∥F̃y − F̄y − ρ̄fy∥22)

8: for i = 1 to B do
9: ρfx

′
= ρfx + Fx − F̃x, ρfy

′
= ρfy + Fy − F̃y

10: end for
11: end while
Output: Fx, Fy

function is then represented as follows:

min
f,LP ,LG ,LS

max
k

f(X, λ) + f(Y, λ) + LP + γLHk
+ LG + LS . (6)

The resulting architecture is named as transferable convolutional sparse cod-
ing network (TransCSCN). Once the optimization is completed, we can obtain
the trained filters Fx, Fy, convolutional feature maps Zx, Zy, and their projec-
tion matrices P. The learned model is then applied to synthesize images across
modalities. For the given test image Xt, the correlated target modality version
can be computed as Yt = FyẐty with Ẑty ≈ PZtx, where Ztx = f(Xt, λ).

4.5 Multilevel Optimization

The general CSCNet is convex in each variable of the i-th layer but not jointly
convex. The solutions such as the coordinate descent allow to alternately min-
imize the objective over one block of the variables. Considering the large size
of medical images which places great demands on computational efficiency, fol-
lowing [6,12], we reformulate the objective to an unconstrained optimization by
introducing an indicator indC defined on the convex set of the constraints C,

min
f,LP ,LG ,LS

max
k

f(X, λ)+f(Y, λ)+indC(F
x)+indC(F

y)+LP+γLHk
+LG+LS .

(7)
Eq. (7) then can be solved efficiently by splitting with respect to the filters

F, feature maps Z, and the relationship operator P.
F-Step Subproblem: We first exploit the l-th layer filter learning by solving,

argmin
f

f(Ẑx,|l|,Fx,|l|) + f(Ẑy,|l|,Fy,|l|) + indC(F̃
x,|l|)

+indC(F̃
y,|l|), s.t. ∥fx,|l|k ∥22 ≤ 1, f

y,|l|
k ∥22 ≤ 1,∀k,

(8)
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Algorithm 2 Layerwise Z-Step Optimization

Input: Training data X, Y, ρz, λ, γ
1: Initialize: Zx

0 , Z
y
0 , F

x
0 , F

y
0 , P0

2: Zx
0 → Ẑx

0 , Z
y
0 → Ẑy

0

3: Let Ẑy
0 ← Ẑx

0P0

4: while not converged do
5: for i = 1 to B do
6: argminf,LP ,LG ,LS maxk f(X, λ)+ f(Y, λ)+LP +γLHk +LG +LS + δ

2
(∥Ẑx−

Z̃x + ρzx∥22 + ∥Ẑy − Z̃y + ρzy∥22)
7: end for
8: argminZ̃x,Z̃y ∥Z̃x∥1 + ∥Z̃Y ∥1 + Nδ

2
(∥Z̃x − Z̄x − ρ̄zx∥22 + ∥Z̃y − Z̄y − ρ̄zy∥22)

9: for i = 1 to B do
10: ρzx′ = ρzx + Ẑx − Z̃x, ρzy ′ = ρzy + Ẑy − Z̃y

11: end for
12: end while
Output: Zx, Zy, P

where F̃ means the shared global variable introduced as the slack variable which
is subjected to F − F̃ = 0. Then the optimization with respect to Eq. (8) can
be solved by the ADMM strategy derived from the augmented Lagrangian (La-
grange multiplier ρ) with respect to other variables, yielding Algorithm 1.
Z-Step Subproblem: Alternatively, we optimize the layered convolutional least
squares with the corresponding filters and other regularization. The subproblem
of learning convolutional sparse feature maps then can be written as:

min
f,LP ,LG ,LS

max
k

f(Ẑx,|l|,Fx,|l|, λ) + f(Ẑy,|l|,Fy,|l|, λ) + ∥|A|x,|l| − |A|y,|l|∥2F

+γ
∥∥∥Ep(x)[Z

′x,|l|]− Ep(y)[Z
′y,|l|]

∥∥∥2
Hk

+ ∥Zx,|l| −P|l|Zy,|l|∥2F

+α∥P|l|∥2F +Tr(Z′x,|l|Gx,|l|Z′x,|l|T + Z′y,|l|Gy,|l|Z′y,|l|T ).

(9)

Like the subproblem of F-step, Z can be learned in a similar fashion by taking
the form of Tikhonov-regularized least squares [19] and facilitating vector-wise
manipulations. Through coordinate descent, we derive the Z-step subproblem in
Algorithm 2.
P-Step Subproblem: Updating the projection matrix, which is only associated
with P, can be incorporated into the optimization process as:

argmin
P

∥Zx,|l| −P|l|Zy,|l|∥2F + α∥P|l|∥2F . (10)

5 Experiments

5.1 Network Architecture

We take the architecture proposed in [11] as the backbone, and construct a
nine-layer TransCSCN constrained by different regularizers. All brain volumes
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T2w-input

Original PDw
（PSNR, SSIM）

REPLICA
(27.54, 0.776)

V-S
(30.83, 0.817)

V-US
(29.66, 0.806)

GAN
(29.61, 0.803)

3D-cGAN
(30.27, 0.821)

MSGAN
(30.95, 0.828)

CUT
(32.54, 0.830)

CSCl4Net
(34.32, 0.857)

TransCSCN
(35.28, 0.872)

IXI: T2w -> PDw

Fig. 2. Visual comparisons of different methods for T2w→PDw on the IXI dataset [1].

are split to 2D slices, and the spatial subsampling operation is fulfilled by our
layerwise TransCSCN with a stride of 2 in the last two bottleneck layers, while
batch normalization is incorporated after each layer to facilitate the convergence,
and the last layer is followed by a global average pooling layer. We train the
network for a total of 200 epochs using the Adam solver with a learning rate
of 0.0002 and a batch size of 32. The other parameters are set as λ = 0.2, α =
0.15, γ = 1, and the layered MK-MMD with Gaussian kernels have bandwidths
equipped as median pairwise squared distances.

5.2 Experimental Setup

We validate our method on two public multi-modality brain datasets, viz. IXI4

and BraTS5 databsets, respectively. The IXI dataset involves 578 healthy sub-
jects each imaged using a matrix of 256×256×v (v = 112∼136) scanned from
three hospitals (Hammer Smith Hospital, Guy’s Hospital, and Institute of Psy-
chiatry) by different Magnetic Resonance Imaging (MRI) systems (Philips and
GE). The BraTS dataset, instead, provides multi-modal brain tumor subjects,
contributing 225 valid cases. It is worth noting that our experiments are rela-
tively comprehensive since both healthy subjects and pathological data are cov-
ered. To be specific, we adopt Proton Density weighted (PDw) and T2w MRI
scans (with significant difference) from the IXI dataset, and T1w and Fluid At-
tenuated Inversion Recovery (FLAIR) acquisitions (with significant difference)
from the BraTS dataset. Physically, PDw data recognizes fluid and fat; T2w
data reflects intermediate-bright fat and bright fluid; T1w data provides good

4 https://brain-development.org/ixi-dataset/
5 https://www.med.upenn.edu/sbia/brats2018/data.html
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T1w-input

Original FLAIR
（PSNR, SSIM）

REPLICA
（28.54, 0.803）

V-S
（31.28, 0.826）

V-US
（29.01, 0.808）

GAN
（29.94, 0.800）

3D-cGAN
（32.07, 0.866）

MSGAN
（30.26, 0.854）

CUT
（33.15, 0.882）

CSCl4Net
（36.59, 0.921）

TransCSCN
（38.14, 0.938）

BraTS: T1w -> FLAIR

Fig. 3. Visual comparisons of different methods for T1→FLAIR on the BraTS dataset
[25].

contrast between Gray Matter (GM) and White Matter (WM); FLAIR data ex-
hibits brighter GM than WM and Cerebrospinal Fluid (CSF) is dark, instead of
bright. The conducted evaluations are divided into two parts, resulting in four
tasks: (1) generating T2-w images from PD-w acquisitions and vice versa on the
IXI dataset; (2) synthesizing FLAIR data from T1w images and vice versa on
the BraTS dataset. We fix the number of test cases, i.e., 80 for the IXI and 45 for
the BraTS, respectively, and select 60 samples from the IXI and 20 samples from
the BraTS for our validation. We construct the fully unsupervised training data
with 219 unpaired PDw & T2w MRI for the IXI and 80 unpaired T2w & FLAIR
MRI for the BraTS, respectively, after discarding half of the data pairs. The
hyper-parameters of TransCSCN are tuned on our validation set. In addition to
the visual effort, the anatomical accuracy needs equal attention. To this end,
we calculate the segmentation results of the synthesized data and compare with
their ground truths.6 Both real scans and the synthesized results are fed into the
segmentation tool, i.e., FMRIB software library (FSL7 [16]) to segment major
tissue classes (GM, WM, and CSF) of brain, and the yielded results are averagely
shown for each brain volume. The tissue prior probability templates are based
on averaged multiple automatic segmentation in standard space from the IXI
and BraTS datasets, respectively. The evaluation criteria include PSNR, SSIM
and Dice score to quantitatively assess the quality of the synthesized results.

5.3 Comparison Methods

We compare our results against several state-of-the-art cross-modality synthesis
algorithms including REPLICA [17], V-S and V-US [33], GAN [9], 3D-cGAN [27],

6 Ground truths are calculated through a well-known segmentation tool on the real
scans.

7 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Table 1. Quantitative evaluation of the quality of synthesized images using different
methods on the IXI [1] and BraTS [25] datasets.

Metric (avg.) REPLICA V-S V-US GAN 3D-cGAN MSGAN CUT CSCℓ4Net TransCSCN Improvements ↑
IXI: T2w → PDw

PSNR (dB) 31.27 33.87 32.99 32.25 32.76 32.98 34.06 36.64 37.18 0.54∼5.91
SSIM 0.807 0.851 0.836 0.831 0.851 0.856 0.876 0.900 0.904 0.004∼0.097

Dice (in %) 70.33 68.35 68.02 66.52 75.94 72.55 75.64 80.73 82.03 1.3∼15.51
IXI: PDw → T2w

PSNR (dB) 32.27 34.28 32.87 33.46 35.08 35.63 36.97 38.08 39.14 1.06∼6.87
SSIM 0.865 0.919 0.902 0.901 0.899 0.899 0.910 0.959 0.960 0.002∼0.095

Dice (in %) 76.13 70.33 69.66 69.74 80.25 80.01 82.13 87.62 88.59 0.97∼18.93
BraTS: T1w → FLAIR

PSNR (dB) 31.60 32.07 31.85 32.47 33.92 31.85 34.36 37.36 39.12 1.76∼7.52
SSIM 0.811 0.842 0.833 0.835 0.880 0.870 0.902 0.935 0.943 0.008∼0.131

Dice (in %) 70.92 69.89 69.44 69.26 73.94 74.02 78.92 84.07 85.68 1.61∼16.42
BraTS: FLAIR → T1w

PSNR (dB) 31.65 33.00 31.80 31.93 32.89 33.72 34.96 36.51 37.44 0.93∼5.79
SSIM 0.825 0.857 0.842 0.847 0.881 0.860 0.887 0.911 0.924 0.013∼0.099

Dice (in %) 72.01 70.23 69.90 69.62 78.89 77.00 80.06 82.58 84.02 1.44∼12.01

MSGAN [24], CUT [28], and CSCℓ4Net [15]. Note that REPLICA, V-S, GAN
and MSGAN are the supervised methods, and we follow the defined rule and
input paired data for their training. Others are all unsupervised approaches, thus
we input our manually selected unpaired images for training. Moreover, following
[17,33,27], the brain MRI scans are bias-field corrected. For fair comparison, we
empirically set all methods following the recommended bias correction to obtain
the best performance. Except for outer comparison, we also provide the ablation
study for measuring the impact of each proposed penalization term.

5.4 Empirical Analysis

We evaluate both visual quality and segmentation performance of the synthe-
sized data, and show the quantitative results along with others. The generality of
our TransCSCN is explored by testing on many tasks distributed in two indepen-
dent datasets with consistent property. Specifically, we demonstrate both visual
and quantitative results in Figs. 2-3 and Table 1, respectively. The visual mea-
surements are shown as the average value of the synthesis performance by PSNR
and SSIM. The averaged segmentation results (referred as Dice score) potentially
reflect the anatomical significance. In Figs. 2-3, we show two sets of synthesized
results by different methods and the corresponding ground truths. We found that
our method can generate more realistic results with well approximated appear-
ance and better quantitative outcomes. Table 1 demonstrates the summarized
performance between TransCSCN and other compared methods over different
datasets on different tasks. The last row of Table 1 shows the performance boost
over the worst compared results and the best compared results, respectively. In
particular, TransCSCN consistently outperforms all advanced approaches and
significantly boosts the performances especially in the experiments “T1-w →
FLAIR” on the BraTS dataset. Our best case achieves 7.52dB (in PSNR) and
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Table 2. Our comprehensive ablation study shows the effects of each proposed regu-
larization on the IXI dataset [1] for T2w → PDw task, and on the BraTS dataset [25]
for T1w → FLAIR task.

IXI: T2w → PDw

CSCNet GN LHk LG LS PSNR (dB) SSIM Dice (%)

✓ 32.57 0.845 70.71
✓ ✓ 34.11 0.852 74.54
✓ ✓ 34.92 0.851 74.76
✓ ✓ 33.98 0.858 77.23
✓ ✓ 34.19 0.857 75.60

✓ ✓ ✓ 36.09 0.881 78.03
✓ ✓ ✓ 36.07 0.878 79.63
✓ ✓ ✓ 36.05 0.861 79.62
✓ ✓ ✓ 36.08 0.873 79.78
✓ ✓ ✓ 36.05 0.879 79.82
✓ ✓ ✓ 35.88 0.870 78.89

✓ ✓ ✓ ✓ 36.64 0.894 81.25
✓ ✓ ✓ ✓ 36.52 0.889 81.29
✓ ✓ ✓ ✓ 36.21 0.882 80.34

✓ ✓ ✓ ✓ ✓ 37.18 0.904 82.03

BraTS: T1w → FLAIR

CSCNet GN LHk LG LS PSNR (dB) SSIM Dice (%)

✓ 30.08 0.806 64.19
✓ ✓ 31.67 0.836 71.08
✓ ✓ 33.94 0.872 72.33
✓ ✓ 32.83 0.866 75.06
✓ ✓ 34.12 0.872 75.82

✓ ✓ ✓ 36.30 0.895 78.23
✓ ✓ ✓ 36.08 0.901 80.23
✓ ✓ ✓ 37.35 0.922 81.66
✓ ✓ ✓ 37.89 0.922 81.87
✓ ✓ ✓ 37.87 0.921 81.58
✓ ✓ ✓ 36.75 0.920 81.29

✓ ✓ ✓ ✓ 38.64 0.933 83.83
✓ ✓ ✓ ✓ 38.59 0.932 83.29
✓ ✓ ✓ ✓ 37.96 0.929 82.03

✓ ✓ ✓ ✓ ✓ 39.12 0.943 85.68

0.131 (in SSIM) improvements over the worst one (REPLICA), while the per-
formance of segmentation is boosted by 16.42% compared to the worst baseline
(GAN). We notice that REPLICA generates visually weaker results but plausi-
ble segmentation results. Instead, the appearance quality of GAN seems slightly
better than REPLICA, but getting the worst Dice overlap. We also investigate
the variants of our models to explore effectiveness of each module. For the T1w
→ FLAIR experiments on the BraTS, we separately adopt GN, LHk

, LG , LS
and freely combine them upon the baseline CSCNet to investigate the effects in
terms of image quality and their segmentation performance, where the detailed
results are shown in Table 2 as our comprehensive ablation study (GN means
global normalization). We observe that with the assistance of LHk

, LG , LHk
and

LS , both visual and segmentation results are improved greatly. The appearance
score is sensitive to LG , while the Dice overlap is sensitive to LG and LS .

6 Conclusions

In this paper, we proposed a transferable convolutional sparse coding network
for generalizing brain image synthesis task. The proposed method delves into the
feature representations that jointly learns the cross-domain transferable features
while taking the benefits of both deeper mining and optimal regularization. With
the globally normalized convolutional sparse coding net, we exploited the domain
discrepancy metric, Laplacian co-regularization, and subspace mismatch penal-
ization for minimizing the domain divergence, preserving the local geometries,
and reducing the generalization errors. TransCSCN was evaluated on different
datasets, and showed promising results outperforming a number of recent ap-
proaches consistently. In future work, we plan to explore the performance of
TransCSCN on other medical image processing tasks such as confronting arti-
facts.
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