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Abstract. Unsupervised domain adaptation (UDA) borrows well-labeled
source knowledge to solve the specific task on unlabeled target domain
with the assumption that both domains are from a single sensor, e.g.,
RGB or depth images. To boost model performance, multiple sensors
are deployed on new-produced devices like autonomous vehicles to ben-
efit from enriched information. However, the model trained with multi-
view data difficultly becomes compatible with conventional devices only
with a single sensor. This scenario is defined as incomplete multi-view
domain adaptation (IMVDA), which considers that the source domain
consists of multi-view data while the target domain only includes single-
view instances. To overcome this practical demand, this paper proposes
a novel Channel Enhancement and Knowledge Transfer (CEKT) frame-
work with two modules. Concretely, the source channel enhancement
module distinguishes view-common from view-specific channels and ex-
plores channel similarity to magnify the representation of important
channels. Moreover, the adaptive knowledge transfer module attempts
to enhance target representation towards multi-view semantic through
implicit missing view recovery and adaptive cross-domain alignment. Ex-
tensive experimental results illustrate the effectiveness of our method in
solving the IMVDA challenge.
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1 Introduction

Deep neural network (DNN) recently becomes the dominate technique in com-
puter vision community due to its success on the real-world applications such
as image classification [49, 49, 20], object detection [38] and image segmentation
[13, 33]. As a data-driven learning strategy, DNN generally requires considerable
training samples with high-quality annotations to capture the intrinsic semantic
knowledge. However, the data collection and manual annotation tend to be ex-
pensive and time-consuming [4, 46, 19]. To benefit from external resources, recent
solutions pay more attentions to transfer learning, especially for unsupervised
domain adaptation (UDA) [21, 36, 2, 6].

UDA aims to transfer well-supervised source knowledge to assist the specific
tasks in target domain without any annotation information [29, 44]. However,



2 H. Xia et al.

data collection typically occurring in varying environments easily triggers the
significant distribution discrepancy across source and target samples [12, 45].
The main challenge of UDA is how to learn domain-invariant feature represen-
tations. Along with this direction, the UDA algorithms mainly explore metric-
based scheme and adversarial training fashion. Specifically, one of the classical
and effective metric-based strategies transforms target samples into source latent
space and explore their sample-wise association to eliminate domain mismatch
[1]. However, the alignment method needs to observe all data to accurately es-
timate the relation of source and target instances, which difficultly adjusts to
the mini-batch training manner in DNN. In addition, the basic UDA setting
considers that the images of source and target domain are merely captured by
one sensor. But the practical application always deploys multiple sensors such
as the autonomous vehicle to obtain more sufficient information to boost the
model performance.

A few efforts [5, 16] have explored multi-view domain adaptation (MVDA),
where source and target data are both collected from multiple sensors. The in-
tuitive idea is to convert MVDA into a UDA problem by independently aligning
source and target instances within each view and fusing multi-view semantic in-
formation within individual domain. They have achieved promising performance
on solving MVDA and abundant empirical studies illustrate that the simple
alignment-and-fusion promotes model performance on identifying target sam-
ples with more enriched data collected by multiple sensors. However, equipment
rehabilitation to upgrade previous single-sensor devices with multiple sensors
causes additional cost overhead, which makes MVDA to be invalid for several
practical application scenarios. Instead, we post a question that “Can we develop
more effective domain adaptation algorithms to benefit single-sensor target data
from enriched source data with multiple sensors?”. This problem is defined as in-
complete multi-view domain adaptation (IMVDA), where there are multi-view
complete data in source domain, while single-view instances in target domain.
This problem is under insufficient exploration in the literature.

To overcome IMVDA challenge, we propose a novel method named Channel
Enhancement and Knowledge Transfer (CEKT) shown in Figure 1, which not
only conducts multi-view semantic fusion within source domain but also trans-
fers the integrated knowledge for the use of target domain. Concretely, CEKT
explores the sparse attribution of channel to distinguish view-common from view-
specific feature maps and exchanges view-specific channels across multiple views
to fuse their semantic information. Furthermore, we develop a metric of chan-
nel similarity to highlight the representation of significant channels, which assists
model learning with more discriminative features. Moreover, we introduce a par-
allel target model taking source and target samples from the same view as input.
The source model trained in the first step teaches the target model to produce
multi-view semantic only with single view data. In addition, we propose a novel
adaptive subspace alignment to gradually mitigate domain discrepancy in an
end-to-end training manner. To sum up, the main contributions of this work are
highlighted in three folds:
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Fig. 1. Overview of our channel enhancement and knowledge transfer framework
(CEKT) for incomplete multi-view domain adaptation (IMVDA). Specifically, the
source channel enhancement module distinguishes view-common from view-specific
channels and explores the channel similarity to emphasis essential representation. The
source triggered missing view recovery teaches target model how to generate multi-view
knowledge. And the adaptive alignment module aims to eliminate domain mismatch
within the identical subspace.

– First, our proposed CEKT introduces a novel channel enhancement mech-
anism to preserve considerable view-common semantic knowledge and ex-
change view-specific semantic to enrich the representation of each view. This
module not only effectively achieves feature fusion but also emphasizes more
discriminative features for the classification task.

– Second, the adaptive knowledge transfer module explores the supervision
of source model to supervise the target model to approximate multi-view
semantic information, which mitigates the negative influence of missing view
on target domain. Simultaneously, we present a novel adaptive subspace
alignment method to learn domain-invariant representations.

– Finally, we exploit many public-available real-world image datasets to im-
itate the IMVDA scenario and conduct abundant experiments to evaluate
the performance of our CEKT. The corresponding experimental results and
analysis fully demonstrate the effectiveness of our method.

2 Related Work

2.1 Domain Adaptation

Unsupervised domain adaptation (UDA) aims to borrow well-supervised source
knowledge to assist the target learning without any label information [6, 44,
46]. And source and target instances belong to different distributions, yet share
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the identical label space [34]. The core task of UDA is to learn domain-invariant
representations by gradually eliminating distribution mismatch. The mainstream
learning mechanisms are considered as two types. One is metric-based alignment
[32] which enforces source and target domains to share the identical statistics
(e.g. mean and co-variance) and transform target samples into the source sub-
space via the estimation of cross-domain sample-wise association [1]. Another
mature exploration adopts generative adversarial game between feature gener-
ator and discrimination to mitigate domain mismatch in latent feature space.
In addition, [14] extends the conventional UDA by introducing more source do-
mains to improve model generalization, which is named multi-source domain
adaptation (MSDA). Similar with UDA based methods, [37] deploys multiple
discriminators for arbitrary one source and target domains to independently
achieve distribution alignment. However, the above problems generally assume
that the instances per domain are captured with only one sensor, which prevents
the development of technique. To improve model performance, abundant devices
as autonomous vehicles are installed with multiple sensors to comprehensively
perceive the open world. Thus, this work explores a practical and challenging
IMVDA scenario, where source data are collected from multiple sensors while
target samples are captured by the single sensor.

2.2 Multi-view Learning

Multi-view learning expects to access sufficient semantics via the joint utiliza-
tion of multiple data sets [30, 52, 5]. Extensive empirical studies show significant
performance improvement on object classification tasks [48, 50] by using multi-
view data. The intuitive learning strategy is to discover the consistent hypothesis
space across various views [22]. Specifically, [47] adopts a co-regularization man-
ner to compress the search space of hypothesis function. Similarly, [28] presents
an efficient dictionary learning and [24] utilizes a large-margin Gaussian process
to find the intrinsic basis across multiple views. In addition, the clustering tech-
nique is introduced to discover complementary semantic knowledge from different
views [43]. And the multi-view spectral embedding is developed to integrate fea-
ture representation. Although these multi-view methods produce positive effect
given complete views, they assume the multi-view samples are from the identical
distribution, which is not the case for the real-world applications. Instead, we not
only consider multi-view knowledge fusion but also conduct simple yet effective
knowledge transfer across multiple domains to address the IMVDA problem.

3 Proposed Method

3.1 Preliminary & Motivation

Formally for the IMVDA problem, we are given the well-annotated source do-
main with enriched views3 as Ds = {(xs

i , z
s
i , yi)}

ns
i=1 and the unlabeled target

3 This paper considers the case that the source domain contains two views while target
domain includes only single view.
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domain with only single view as Dt = {xt
i}

nt
i=1, where x and z denote two view-

paired samples, y represents the corresponding source label, and ns and nt are
the number of source and target samples, respectively. The goal of IMVDA is to
transfer the enriched view information and well-annotated label information in
the source domain to improve the single-view target recognition.

Therefore, two-fold challenges should be considered: 1) How to effectively
integrate multi-view semantics to boost performance of model, and 2) How to
transfer knowledge from multi-view source domain to single view target one.
To address these questions, we propose a novel solution named Channel En-
hancement and Knowledge Transfer (CEKT) framework as Figure 1. Concretely,
CEKT involves two components, i.e., a source channel enhanced network and an
adaptive knowledge transfer network. The former one aims to distinguish view-
common channels from view-specific channels where semantic fusion occurs and
exploit cross-view channel similarity to enhance the representation of necessary
channels. The latter one attempts to adaptively learn a target-to-source projec-
tion to mitigate the domain mismatch.

3.2 Source Channel Enhanced Network

Cross-view Channel Enhancement
Batch normalization (BN) [17] is widely used in deep neural networks to scale

the hidden features of the specific layer to accelerate convergence and avoid the
model collapse as:

ĥc = γc
(hc − µc)√

σ2
c + ϵ

+ βc, (1)

where hc, ĥc mean the input and output of the BN module, µc, σc are the mean
and variance of the c-th channel, and γc, βc are trainable parameters. However,
from the perspective of channel exchange [43], the model training gradually
neglects the representation of task-irrelevant channels as γc → 0, and multi-view
data cause the channels (hx,c, hz,c) from (xs, zs) to be activated differently.
Then, Wang et. al. proposed channel exchange for two views to compensate
each other as [43]:

ĥx/z,c = γz/x,c
(hz/x,c − µz/x,c)√

σ2
z/x,c + ϵ

+ βz/x,c, if γx/z,c < δ, (2)

where δ is an adjustable threshold, and a sparse regularization term
∑C

c=1 |γx/z,c|
is introduced to encourage more channel exchanges. Such channel exchange to-
tally relies on the learned γx/z,c, which makes channel exchange in an unsuper-
vised fashion without considering sharing channels across views.

Thus, we develop a Cross-view Channel Enhancement (C2E) module. Specif-
ically, for one concrete layer, all channels are divided into two groups: view-
common channels and view-specific ones. Under this condition, we suppose view-
common channels tend to involve considerable shared semantics, where the cor-
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responding parameters γx/z,c should be compact rather than sparse, and view-
specific channels carry the unique information for each view and should be ex-
changed and enhanced. With this consideration, the ℓ1-norm over the parameters
is a promising manner to highlight the difference across view-specific channels.
In implementation, we consider the first half of all feature maps as the view-
common channels and the remaining ones as view-specific parts. Thus, we adopt
the following constraint for parameters γx/z as:

min
γl,c

Lγ =

L∑
l=1

⌊C/2⌋∑
c=1

γ2
l,c +

C∑
c=⌊C/2⌋

|γl,c|

 , (3)

where we omit the superscript (x, z) for convenience, C and ⌊C/2⌋ mean the
number of channel and the rounding or flooring operation, and L is the num-
ber of network layers attached with the BN module. It is worth noting that
only the view-specific channels participate in the channel exchange via Eq. (2).
Through the above strategy, we not only achieve feature fusion but also preserve
as much view-common semantics as possible. Hence, γx/z,c ≥ δ illustrates that
this channel can contribute to the classification task.

To further enhance the channels shared across views, we propose a strategy to
identify those channels and amplify their presence during batch normalization.
As two views data present the identical content in various forms, their repre-
sentations to the necessary information such as the contour of object tend to be
similar or even consistent. In other words, the c-th channel with a high similarity
across two views should be considered as an important component with a high
confidence. Thus, the similarity (sc) of two views at channel c is defined as:

sc =
exp(−∥µx,c − µz,c∥2/η)

C∑
c=1

exp(−∥µx,c − µz,c∥2/η)
, (4)

where
∑

c sc = 1 and η controls the change of scale. Then, we first adjust the

importance of channel with ĥx/z,c = (1 + sc)ĥx/z,c before the channel exchange
in Eq. (2). For instance, when the two channels are very different, corresponding
sc plays a small fraction of the similarity vector and, hence, the importance of
the c-th channel is not augmented with a relatively small sc.
Data-dependant Cross-view Fusion

For now, our module is easily applied into most deep neural network F(·)
mapping the original image into the high-level features fx = F(x) or fz = F(z).
To further learn robust features, we adopt a data-dependant fusion manner to
obtain these high-level representations as:

fxz = αxF(x) + αzF(z), (5)

where αx/z are the probability score for two views and we plug in the softmax
layer s(·) to F(x) and F(z) to learn the data-dependant fusion weights.
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Finally, the multi-class source classifier C(·) takes the fused features as input
to generate the prediction. The objective function for training the source model
is formulated as:

min
F,C,s,γ

Ls =

ns∑
i=1

Lc

(
C(f ixz), yi

)
+ λγLγ , (6)

where λγ is a trade-off parameter and Lc(·, ·) is the classical cross-entropy loss.

3.3 Adaptive Knowledge Transfer Network

The target domain lacks one view and exists considerable distribution difference
with source domain, which makes it unreasonable to directly identify target
samples with multi-view source model. Thus, the current challenge is how to ef-
fectively transfer source fused knowledge to the target domain. Along with this
direction, we construct a novel adaptive knowledge transfer network (AKT),
whose core is to associate two domains with source view data xs

i as the bridge.
Concretely, we introduce an additional target network G(·) with the same net-
work architecture to source and the conventional BN module.
Source Triggered Missing View Recovery. To guide the target network
with the ability for missing view, we allow source sample xs

i and target sample
xt
j to pass through the target network G(·) so that we can obtain the high-

level features, i.e., gs
i = G(xs

i ) and gt
j = G(xt

j). Following that, we deploy one
dimensionality-identical full-connection layer with trainable parameter θ to ob-
tain ḡs

i and ḡt
j , which aims to recover the missing view information for the target

network by mapping one view to two-view fused representation.
Since the target model does not directly touch zsi , we expect to learn the

fused semantic only with one source view data. As DNN manifests strong ap-
proximation capability by using the convolution layers and non-linear mapping
[8], it fits better to the given target. Inspired by this observation, when accessing
the fused representations with fixed source model, we make gs

i and ḡs
i approxi-

mate f ix and f ixz, respectively, to mimic the fused semantic features. Hence, we
propose a source triggered missing view recovery term as:

min
G,θ

Lg =

ns∑
i=1

(
∥gs

i − f ix∥22 + ∥ḡs
i − f ixz∥22

)
. (7)

In this way, the source model teaches the target one to offset the absence
of the other view. Moreover, as xs and xt belong to the same view, the imi-
tative manner brings semantics of the other view to feature learning of target
samples. Certainly, the significant domain shift across xs and xt obstructs the
delivery of additional semantic knowledge to the target domain. Thus, the tar-
get model needs to achieve distribution alignment by gradually eliminating the
cross-domain discrepancy.
Adaptive Cross-Domain Alignment. The direct alignment approach is first
to transform all source and target instances into the shared latent space and then
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to reduce the sample-wise distance with the manifold theory. The formulation
of this classical strategy [1] is:

min
Ast

∥Ḡs −AstḠt∥2F +Ω(Ast), (8)

where ∥·∥F denotes the Frobenius norm, Ḡs/t is the feature matrix of all samples

ḡ
s/t
i , and Ast is defined as the transformation matrix mapping target features

into the source feature subspace, and Ω(Ast) denotes a regularization term over
Ast such as the ℓ2-norm or ℓ1-norm. This strategy achieves promising perfor-
mance on domain adaptation with shallow feature extractors [9]. However, the
feature transformation requires simultaneous access to all samples, which the
mini-batch training mechanism used in DNN hardly satisfies. Meanwhile, a di-
rect computation of Ast within each mini-batch is unreasonable since the insuf-
ficient samples fail to accurately capture the association of samples. To break
the bottleneck, we present an adaptive alignment solution involving two fully
connected layers without bias terms. The features ḡs

i and ḡt
j are fed into it to

calculate the similarity Ast
ij via:

Ast
ij = δ

(
⟨Wsḡ

s
i ,Wtḡ

t
j⟩
)
, (9)

where Ws/t is the projection matrix, δ(·) denotes an activation function such
as ReLU, and ⟨·, ·⟩ denotes the inner product operation. During the update of
Ws/t, the inputs are fixed. As the model training, Ws/t gradually learns the
intrinsic distribution information of overall dataset and can accurately estimate
the sample-wise relationship.

On the other hand, we can access to the category probability of sample

with p
s/t
i = C(ḡs/t

i ). As p
s/t
i with more discriminative information can reflect

the structural relation of hidden features via Āst
ij = ⟨ps

i ,p
t
j⟩, we propose the

adaptive cross-domain alignment as:

min
G,θ,Ws/t

La = ∥Ḡs −AstḠt∥2F + ∥Ast − Āst∥ℓ1 , (10)

where ∥ · ∥ℓ1 denotes the ℓ1-norm. Ast and Āst are normalized along the row
dimension. According to the guidance of adaptive similarity Ast, the source
features can be represented by the similar ones in target domain, and Eq. (10)
effectively reduces their divergence to mitigate the domain mismatch.

3.4 Overall Objective

We first finalize the objective function for the target model. To preserve abundant
source knowledge, we adopt source annotations to supervise the target model
training. Similar to [27], the pseudo labels of target samples are explored to make
target features more discriminative. Specifically, for each epoch, the predictions
of target samples (ytj) with the fixed target model are used to calculate the class

centers, Ok = 1
nk

∑nt

j=1 I(ytj = k)ḡt
j , where nk is the number of target samples
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from the k-th class and I(·) is the indicator function. With the class centers,
the K-means clustering is adopted to reassign the optimized labels ŷtj to target
samples. The loss function to the target model is defined as:

min
G,θ,C,Ws/t

Lt = Ls
c + λgLg + λτ (La + Lt

c), (11)

where Ls
c denotes source supervision loss as

∑ns

i=1 Lc(C(ḡs
i ), y

s
i ), Lt

c denotes the
pseudo target supervision loss as

∑nt

j=1 Lc(C(ḡt
i), ŷ

t
j), and λg, λτ are trade-off

parameters. To avoid the negative effect in the beginning, we define λτ as
1−exp(−10τ)
1+exp(−10τ) with the changing of epoch number (τ).

Then, for the overall training strategy, we adopt an iterative training manner
to optimize both source and target networks. Concretely, Eq. (6) is used to
optimize the parameters of source model with the fixed target network G(·) and
then we update target model via Eq. (11) with the frozen source network F(·).

3.5 Theoretical Analysis

In Eq. (3), we adopt two different constraints on the scaling factors γl,c, which en-
able the network to actively learn view-specific and view-common knowledge in
various channels, respectively. Similar with [42], we deduce the following theorem

to explain why the
∑C

c=⌊C/2⌋ |γl,c| can assist the model to capture view-specific

information and the function of
∑⌊C/2⌋

c=1 γ2
l,c.

Theorem 1. The proposed
∑C

c=⌊C/2⌋ |γl,c| will definitely make the corresponding

scaling factors towards zero with the probability 2Φ
(
λγ(

∂Lc

∂hc
)−1

)
− 1, where the

Φ(·) denotes the cumulative probability of standard Gaussian. To be simple, the
subscript l of γl,c is mitigated.
Proof. According to Eq. (6), it is straightforward to deduce the derivative of Ls

with respect to γc, c ∈ [C/2, C] as the following:

∂Ls

∂γc
=



∂Lc

∂ĥc

(hz/x,c − µz/x,c)√
σ2
z/x,c + ϵ

+ λγ
∂Lγ

∂γc
, γc > 0

∂Lc

∂ĥc

(hz/x,c − µz/x,c)√
σ2
z/x,c + ϵ

− λγ
∂Lγ

∂γc
, γc < 0

(12)

When the model training approaches convergence, the derivative of Lc w.r.t
ĥc approximates zero. Due to λγ > 0, we easily achieve the following inequality:

(hz/x,c − µz/x,c)√
σ2
z/x,c + ϵ

> −λγ(
∂Lc

∂ĥc

)−1, γc > 0

(hz/x,c − µz/x,c)√
σ2
z/x,c + ϵ

< λγ(
∂Lc

∂ĥc

)−1, γc < 0

(13)
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With the central limit theorem, we can convert the above inequality into the
probability formulation:

P
(
− λγ(

∂Lc

∂ĥc

)−1 <
(hz/x,c − µz/x,c)√

σ2
z/x,c + ϵ

< λγ(
∂Lc

∂ĥc

)−1
)
= 2Φ

(
λγ(

∂Lc

∂hc
)−1

)
− 1.

(14)
The model convergence means ∂Lc

∂ĥc
→ 0 so that the above probability approxi-

mates one. It suggests the scaling factors to these channels will become zero with
high-probability. Multi-view images are likely to activate different channels in
this part for the classification task. Thus, we consider these channel information
as view-specific content. Inversely, benefit from the ℓ2-norm analysis [51], the

γc, c ∈ [1, C/2) will be dense non-zero values with the constraint
∑⌊C/2⌋

c=1 γ2
l,c.

These channels across various views are both activated to learn semantic from
the identical location of images or feature maps and tend to include the similar
even consistent patterns, which are defined as view-common channels.

4 Experiments

4.1 Experimental Details

♢ Datasets: i). RGB-D dataset [23] is a large-scale household objects dataset
including 51 categories and each specific object is captured by Kinect style 3D
camera (30Hz) generating RGB and depth images at the same time. ii). B3DO
[18] is a popular 3D benchmark database with RGB and depth image pairs from
83 object categories. And these images are collected from real domestic and
office-environments by Microsoft Kinect sensor. iii). Office-31 [39] is a standard
multi-domain RGB image benchmark including Amazon (A), Webcam (W) and
DSLR (D), which are gathered with different cameras. And all domains share
the identical label space with 31 categories. iv). Office-Home [41] as a large-
scale cross-domain dataset involves four domains as Art Painting (Ar), Clipart
(Cl), Product (Pr) and Real World (Rw) with significant image style difference.
And each domain includes the same 65 object classes. v). Caltech-256 (C) [11]
is a classical natural image database with 30,607 images from 257 objects.

In IMVDA experiments, we consider RGB-D and B3DO as two multi-view
(RGB and Depth) well-annotated source domains, while the Caltech-256 or each
domain of Office-31 and Office-Home as the unlabeled target domain to mimic
the incomplete multi-view scenario. For each specific adaptation task, we select
the shared categories across source and target domains. Concretely, the number
of categories for tasks RGB-D→Office31, RGB-D→Office-Home, RGB-
D→Caltech-256 are 8, 13 and 10, respectively, while that forB3DO→Office31,
B3DO→Office-Home, B3DO→Caltech-256 are 27, 14 and 8, respectively.
♢ Implementation Details: The implementation of our model is based on py-
torch platform. And we adopt the pre-trained ResNet-50 [15] without the last FC
layer as the feature extractor for source and target models, and Ws/t ∈ R64×256,

{Fx/z
i ,Fxz

i ,G
s/t
i , Ḡ

s/t
i } ∈ R256. Moreover, the stochastic gradient descent (SGD)
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Table 1. Object Classification Accuracy (%) of target domain with RGB-D datasets
as multi-view source domain. We adopt bold to highlight the best result and show the
second best one with underline.

Method A D W Ar Cl Pr Rw C Avg

ResNet[15] 61.75 79.37 81.73 35.90 28.86 48.01 52.68 74.82 57.89
DANN [10] 67.98 81.51 82.35 46.42 35.50 48.99 63.15 75.42 62.67

CDAN+E [31] 66.15 84.37 85.06 46.95 34.42 51.04 63.30 78.32 63.70
SRDC [40] 68.28 87.70 87.77 51.57 35.96 58.00 66.44 81.45 67.14
CGDM [7] 65.48 84.57 84.59 43.26 36.80 53.54 63.20 77.49 63.62
FixBi [35] 69.07 85.04 86.59 50.29 38.33 61.53 65.58 81.14 67.19

M3SDA [37] 66.11 85.70 85.86 45.10 37.00 56.53 64.96 80.71 65.25
DRT [26] 67.86 86.79 86.57 46.00 35.55 57.28 64.97 80.62 65.71

Ours 70.79 89.68 90.87 56.17 35.46 66.86 70.33 84.21 70.55

Table 2. Object Classification Accuracy (%) of target domain with B3DO datasets
as multi-view source domain. We adopt bold to highlight the best result and show the
second best one with underline.

Method A D W Ar Cl Pr Rw C Avg

ResNet[15] 31.98 49.54 44.35 48.54 35.53 50.56 57.70 48.56 45.85
DANN [10] 44.05 63.53 62.35 59.61 40.05 67.09 74.98 68.18 59.98

CDAN+E [31] 47.70 66.75 64.69 62.00 43.93 70.29 77.93 71.35 63.08
SRDC [40] 49.47 68.67 66.74 64.44 45.85 72.77 79.73 73.55 65.15
CGDM [7] 47.19 66.07 64.09 61.23 43.15 69.70 76.97 70.42 62.35
FixBi [35] 49.67 68.59 66.69 63.97 45.41 71.72 80.23 72.82 64.89

M3SDA [37] 47.76 66.55 64.92 62.01 44.86 71.17 77.51 71.96 63.34
DRT [26] 47.75 67.59 66.01 63.00 44.22 70.84 78.62 72.82 63.86

Ours 50.02 71.87 70.23 68.00 47.40 76.61 82.81 77.21 68.02

optimizer with momentum 0.9 is used to optimize all parameters. The learning
rate and batch size are 1e-3 and 96. The ϵ and δ are set as 1e-6 and 0.02 for all ex-
periments. Our source code is available https://github.com/HaifengXia/IMVDA.
♢ Baselines: In term of IMVDA, since source and target domains both involve
one identical view data, the conventional unsupervised domain adaptation meth-
ods can exploit these samples to achieve alignment and identify target samples.
Thus, we evaluate the DANN [10], CDAN+E [31], SRDC [40], CGDM [7], FixBi
[35] under IMVDA scenario. Moreover, each view data of source domain can
be considered as one independent domain. The multi-source domain adaptation
methods M3SDA [37] and DRT [26] are used to solve IMVDA challenges. And
we adopt their published source code and empirically search optimal parameters
to conduct experiments.

4.2 Comparison of Results

The main experimental results in terms of target recognition accuracy are sum-
marized in Table 1 and Table 2. According to the evaluation performance, we
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Fig. 2. Parameter analysis & Transfer ability. (a) Target classification accuracy with
the varying parameters λγ and λg from 0.1 to 1.0 with B3DO as source domain. (b) A-
distance of source and target features from the same view data with RGB-D as source
domain. (c) λ-value of three methods with tasks from RGB-D to D and W.

can easily achieve several significant conclusions. First, our method outperforms
other baselines by a large margin on the average classification accuracy. Specif-
ically, with RGB-D dataset as source domain, our CEKT surpasses the second
best comparison (i.e., FixBi) by 3.36%. It illustrates the deployment of multi-
view information effectively boosts the model performance on target domain even
with considerable distribution shift. Second, we notice that our CEKT obtains
much higher classification accuracy than others on the task RGB-D→Ar. As
we all know, the images of Art Painting domain in Office-Home include lots of
texture information to describe each object. On the other hand, depth sensor
integrates more spatial information into depth images to clearly show the con-
tour of object, which provides more discriminative semantic to the classification
task. However, M3SDA and DRT, taking advantage of depth images to train the
model, still fail to effectively assist the recognition of unlabeled target samples.
These observations demonstrate our proposed solution not only emphasizes the
specific semantic of depth images via source cross-view channel enhancement but
also transfers such knowledge from source domain to target domain by reducing
the negative influence of missing view with adaptive knowledge transfer network.
Third, comparison of Table 1 and Table 2 shows that B3DO has larger distribu-
tion difference than RGB-D to the other target domain in Office-31, Office-Home
and Caltech-256, as we achieve worse results by directly recognizing the target
based on ResNet features. However, our proposed CEKT model can still achieve
very close results no matter which source is used. In details, we improve the aver-
age accuracy from 57.89% to 70.55% by using RGB-D as source, while promote
the average accuracy from 45.85% to 68.02% by using B3DO as source.

4.3 Empirical Analysis

Parameter Sensitivity. During training model, there are two parameters (λγ ,
λg) in our designed CEKT framework which are manually adjusted. These two
parameters are changed from 0.1 to 1.0 with step size 0.1. To analyse the model
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sensitivity to them, we record the classification accuracy of target domain with
various parameter selection on task from B3DO to Ar, which is shown in Figure
2 (a). On the whole, the model is not sensitive to the change of parameters.
However, larger λγ can easily bring more benefits to the model, while the smaller
λg results in better performance, which further illustrates the proposed channel
enhancement module effectively assists model to learning discriminative features.
Note that for the selection of parameters, we randomly select 10% source samples
as validation set for each tentative and use it to evaluate the model performance.
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Fig. 3. Ablation study of model variants on
three tasks with RGB-D as source domain.

Transfer Ability. In addition,
Ben-David theoretically points out
the learning bound of domain
adaptation [3] is determined by
three parts: 1) the expected error
εs(h) of hypothesis h on source do-
main; 2) the A-distance defined as
dH△H = 2(1 − 2ξ) measuring the
domain mismatch, where ξ is the
error from a trained domain clas-
sifier distinguishing source from
target ones; 3) the error λ pro-
duced by the ideal hypothesis on
both two domains. Inspired by
this theoretical analysis, we report
the A-distance and λ-value over
the shared-view data across source
and target domains and show the results in Figure 2 (b)-(c). Compared with
CDAN and FixBi, our proposed method obtains relative smaller A-distance and
λ-value on two tasks from RGB-D to D and W, which suggests that CEKT
learns a model with a higher generalization ability.

Ablation Study. To clearly reflect the contribution of each component to the
model performance, we carry out experiments on three knowledge transfer tasks
with RGB-D as source domain by removing the corresponding operations. As
previous mentioned, the source channel enhanced network actively discovers the
view-common and view-specific parts via Eq. (3) and encourages the repre-
sentation of important channels with Eq. (9). Thus, we replace Eq. (3) with∑C

c=1 |γx/z,c| (Ours-L2) and attempt to remove Eq. (9) as Ours-Sc to study
their effect. In addition, the model training adopts pseudo labels to facilitate
feature with more discriminative power, and we further add a variant without
the pseudo labeling as Ours-PL. Figure 3 reports the corresponding results with
various methods on three tasks. According to it, we discover the enhancement
with channel similarity and pseudo labels both produce significant and posi-
tive influence on improving model performance on target domain. Moreover, the
sparse constraint for parameters γx/z,c as [43] also results in the performance
degradation, which further verifies the necessity of the preservation for the view-
common channel split in multi-view data analysis.
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(b) CDAN+E (c) Ours(a) ResNet

Fig. 4. Feature Visualization with t-SNE in 2D plane. The source and target features
are represented by red and blue, respectively. And the experiment aims to transfer
knowledge from RGB-D to Ar in Office-Home.

Feature Visualization To further understand the situation of distribution
alignment, we follow [25] to visualize source and target features from the same
view in 2D-plane, shown in Figure 4. Concretely, we access to the high-level

features Ḡ
s/t
i from the well-trained target model and adopt t-SNE technique to

draw them in the canvas. Moreover, the experiment is carried out on adaptation
task from RGB-D to Pr and ResNet as well as CDAN+E are considered as the
competitors. According to the visualization results, it is easy to observe that
there exist more overlaps between source and target features, compared with
other baselines, which shows our method successfully mitigates the domain shift
and better align them. Moreover, we notice that the classification boundary is
more explicit than that in ResNet and CDAN+E. It suggests CEKT effectively
learns the discriminative features for classification task.

5 Conclusion

Unsupervised domain adaptation (UDA) aims to learn the domain-invariant
knowledge across well-supervised source and unlabeled target samples to en-
hance the model generalization ability. However, UDA assumes the instances
per domain are captured by single sensor, which difficultly matches the practical
scenario with multi-view data. This paper considered a practical and challenging
problem named incomplete multi-view domain adaptation (IMVDA) which ac-
cess to multi-view source data and single-view target samples. To overcome the
challenge, we proposed a novel learning framework channel enhancement and
knowledge transfer (CEKT). Concretely, CEKT first explored channel attribu-
tions to conduct semantic fusion and enhance the representation of view-common
channels to learn more discriminative features. Moreover, adaptive knowledge
transfer module not only brought multi-view knowledge to single-view feature
learning but also achieved simple yet effective alignment across source and target
domains. Considerable experimental results and analysis fully demonstrated our
CEKT effectively broke the bottleneck of IMVDA by improving the performance.



Imcomplete multi-view domain adaptation via CEKT 15

References

1. Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized
subspace alignment for unsupervised domain adaptation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 56–63 (2015)

2. Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised
domain adaptation by domain invariant projection. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 769–776 (2013)

3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al.: Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems
19, 137 (2007)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

5. Ding, Z., Fu, Y.: Low-rank common subspace for multi-view learning. In: 2014
IEEE international conference on Data Mining. pp. 110–119. IEEE (2014)

6. Ding, Z., Li, S., Shao, M., Fu, Y.: Graph adaptive knowledge transfer for un-
supervised domain adaptation. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 37–52 (2018)

7. Du, Z., Li, J., Su, H., Zhu, L., Lu, K.: Cross-domain gradient discrepancy mini-
mization for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3937–3946 (2021)
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