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A Implementation Details on Transformer

In this section, we present the implementation details on the experiments per-
formed on transformer. We select ViT-B [2] with patch size of 16 as our teacher
model and DeiT-Tiny [4] as our student model. We reproduce the baseline result
with 4 GPUs and the total batch size is 1024. However, for searching the distilla-
tion process, we have to reduce the batch size to 256 due to limited GPU memory
as we have pathways between the feature maps from teacher and student. Mean-
while, we keep the same batch size for retraining after searching. The most sig-
nificant difference between the implementations of convolutional neural networks
(CNNs) and transformers is the transform block. Our experimental results show
that the proposed transform block on CNNs is not applicable to transformer
yielding much worse performance on distillation compared to non-distillation.
Therefore, we employ a transformer-style block to serve as a transform block
for feature transfer between the teacher and student whose architectures are
transformers as shown in Fig. 1. We follow similar search pipeline with a search
learning rate of le-3. Once the distillation process is obtained, we train the mod-
els with 150 epochs for both ReviewKD [1] and our proposed DistPro following
the same configurations in DeiT [4].
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Fig. 1. Transform block architecture for transformer. The linear block is a linear layer
followed with GELU activation and dropout.
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Setting‘Search teacher Search student‘Retrain teacher Retran student‘Top-l (%)

ResNet34 ResNet18 ResNet34 ResNet18 71.89
(b) ResNet50 MobileNet ResNet34 ResNet18 71.87
ResNet50 MobileNet ResNet50 MobileNet 73.26
ResNet34 ResNet18 ResNet50 MobileNet 73.22

Table 1. More results of transferring searched A cross search-retrain networks per-
formed on ImageNet1K with 100 epochs. Top-1 accuracy on validation set is reported.

B More Experimental Results on Transferable Process

In this section, we provide more experimental results to analyze how the learned
process A affects transferable distillation. As shown in the paper, for setting
(b), we adopt the searched process with student /teacher networks of MobileNet /
ResNet50 to networks of ResNet18/ResNet34 since they have same feature path-
ways at similar corresponding layers. We conduct the reversed testing as well. As
shown, all the results are closed, demonstrating the process could be transferred
when similar pathways exist.

C More Dense Prediction Task: Object Detection

In this section, we present the results on another dense prediction task: detec-
tion on COCO dataset [3]. We follow the same distillation configuration as in [1].
Similarly, we distill the backbone output features from the teacher and student.
Different from the other dense prediction tasks in the paper, searching per-
formed on detection is complicated due to the complex detection head and neck.
We performed our experiments of object detection using the searched process
from ImageNet1K with the teacher network ResNet50 and student network Mo-
bileNetV2. We follow all the other training configurations from ReviewKD [1].
As shown in Tab. 2, our proposed DistPro outperforms the baseline method
ReviewKD.

Method mAP |AP50 AP70 APl APm APs

Teacher | Mask R-CNN w/ ResNet50-FPN 37.17|58.60 39.88 53.30 39.49 18.63

Mask R-CNN w/ MobileNetV2-FPN|28.37 [47.19 29.95 41.70 29.01 12.09
Student|+ReviewKD 31.56|50.70 33.44 47.39 32.44 12.76
+DistPro (ours) 32.37|51.22 34.02 48.16 33.29 13.17
Table 2. Quantitative results on object detection performed on COCO.

D Trade-off between distillation efficiency and accuracy

As we mentioned in the paper, our proposed method can contribute to fast
distillation. In this section, we discuss the trade-off between the training speed
and accuracy. We conduct the experiments by setting different thresholds to drop
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the alphas during distillation. Tab. 3 shows the results. As shown in the table,
when we increase the drop rate from 0.3 to 0.7, more alphas will be discarded.
This can lead to faster distillation speed, since less distillation loss need to be
computed but result in lower network accuracy. Keeping around 50% o remains
the best performance regarding speed and accuracy.

Threshold‘Remain alphas (%)‘Computation Cost (GPU hours) HTop—l accuracy (%) 1

0.3 80 102 73.25
0.5 50 81 73.26
0.6 40 73 73.22
0.7 26 60 72.89

Table 3. Trade-off between the distillation cost and accuracy. Experiments are per-
formed on ImageNet1lK with teacher network of ResNet50 and student network of
MobileNetV2.

E Analysis on Searched Process

In this section, we provide more analysis on how the searched process affects
the distillation procedure. Fig. 2 and 3 show the visualization of the searched
process A. The values of « in the figure are normalized. We show three groups
of A learned with combinations of different networks and Ir schedulers. The first
comparison is made between different Ir schedulers during searching (left and
middle columns). The left column shows the A learned with a step Ir scheduler
and the middle one shows that with cosine scheduler. It is noted that the Ir
scheduler is only used for optimizing the network weights w instead of « in
equation (2). We can see even though the Ir scheduler is different which affects the
training loss, the process of a remains similar (the curves show closed shapes).
However, when we change the networks while keeping Ir scheduler the same
(middle and right columns), this will result in significant change in the values
of a. Even though the curve shapes are different, the behavior are similar. For
example, the low-level feature maps from teacher to student at the beginning
remain high importance and later the importance decreases. Later, the high-
level feature maps will raise the importance during distillation. In details, the
importance of connect 5-3, 5-4 and 5-5 in total has large percentage for both
networks, indicating the high-level information from teacher network becomes
more and more significant as the training step increases.
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Fig. 2. Visualization of searched distillation process performed on ImageNetlK A =
{ai’j},O <t < Tsearch,1 <1 < Cr,1 < j < i, where 7 denotes the feature map from
teacher network, while j denotes that from student network. The searching configura-
tion from left to right is: Resnet50 to MobilenetV2 with step Ir scheduler, Resnet50 to
Mobilenet V2 with cosine Ir scheduler, Resnet34 to ResNet18 with cosine Ir scheduler.
The remaining connections are shown in the next figure.
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Fig. 3. The remaining visualization of searched distillation process
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performed on Im-

ageNet1K followed by previous figure. The searching configuration from left to right
is: Resnet50 to MobilenetV2 with step Ir scheduler, Resnet50 to MobilenetV2 with
cosine Ir scheduler, Resnet34 to ResNet18 with cosine Ir scheduler.
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