
Supplemental Material:
ML-BPM: Multi-teacher Learning with

Bidirectional Photometric Mixing for Open
Compound Domain Adaptation in Semantic

Segmentation

Fei Pan1, Sungsu Hur1, Seokju Lee2, Junsik Kim3, and In So Kweon1

1 KAIST, South Korea. {feipan, sshuh1215, iskweon77}@kaist.ac.kr
2 KENTECH, South Korea. slee@kentech.ac.kr
3 Harvard University, USA. mibastro@gmail.com

1 Subdomain Style Purification and the t-SNE
Visualization

Fig.A1: (a) presents the noisy samples from Subdomain 2 of C-Driving dataset
before subdomain style purification (before SSP) and after subdomain style pu-
rification (after SSP). (b) shows the t-SNE visualization of the concatenated
histograms of the C-Driving dataset on LAB color space when k = 3.

As mentioned in Section 3.2, it is hard to guarantee that the images from
the same target subdomain have the same style. In other words, small domain
gaps might still results from the various image styles in each subdomain. We
propose subdomain style purification to unify the styles of the target data that
belongs to the same subdomain so that the domain gaps in these images could be
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further reduced. We provide the visualization of the sample images transformed
by subdomain style purification (SSP) from subdomain 2 in Figure A1 (a). Note
that the images from before SSP in Figure A1(a) has the styles different from
the standard style, and they are transformed into the standard style with the
help of histogram matching on the LAB color space. We further set up k = 3 and
present the t-SNE visualization of the concatenated histograms of the C-Driving
images from LAB color space in Figure A1 (b).
The reason of subdomain style purification (SSP). With the help of auto-
matic domain separation, the number of abnormal samples with different styles
is small. Though these abnormal samples might be helpful for the model’s gen-
eralization, they could also lead to a negative transfer, which further hinders the
model from learning domain invariant features in a specific subdomain. With
GTA5→C-Driving, we get a 0.5% of mIoU drop on average over all the subdo-
mains without using SSP, as shown in Table 3(b).

2 ACDC Dataset

We also evaluate the proposed approach on another ACDC dataset[24]. ACDC
dataset contains real-world images from the road scenes in diverse weather con-
ditions, including fog, nighttime, rain and snow. We consider the 2, 800 images
of fog, nighttime and rain from the training split of ACDC as the compound
domain; the 400 snow images with pixel-wise annotations of ACDC training
split are taken as the open domain. The final performance is evaluated on the
validation set of ACDC, which contains 306 images with ground-truth maps.

We present the performance comparison of mean IoU in Table A1. For the
compound target domain of ACDC (fog, nighttime, rain), we achieve 32.1% of
mean IoU on GTA5→ACDC and 31.9% of mean IoU on SYNTHAI→ACDC,
outperforming all the UDA and OCDA approaches in the list. We also evaluate
the generalization of our approach compared with other works. After finishing
the compound domain adaptation training, all the models are directly tested
on the open domain of ACDC (snow). Note that the snow images have never
been used in training before. Under the benchmark datasets GTA5→ACDC and
SYNTHIA→ACDC, our approach shows 41.6% and 29.1% of mean IoU. This
demonstrates that our approach has better generalization ability toward novel
domains (snow).

3 The Practicability of Our Approach

Though we use the multi-teacher models for training, our approach still has
strong practicability for the two following reasons: these teacher models are
trained simultaneously; only a single student model from distillation is needed
for inference. The size of the student model is not affected by the number of the
subdomains. With the number of the subdomains k∗, the FLOPS and the number
of parameters of our multi-teacher’s model are 327.08× 109 and 43.8×k∗× 106.
After the adaptive knowledge distillation, the FLOPS and number of parameters
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Table A1: The performance comparison of mean IoU on the compound target
domain (fog, nighttime, and rain) and the open domain (fog) of ACDC. Our
approach is compared with the state-of-the-art UDA and OCDA approaches on
(a) GTA5→ACDC and (b) SYNTHIA→ACDC benchmark dataset with ResNet-
101 as the backbone.

(a) GTA5→ACDC
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mIoU mIoU

Source - 43.6 2.5 46.2 5.2 0.1 30.3 15.3 16.3 56.9 0.0 71.5 16.3 13.7 51.4 0.0 15.1 0.0 1.4 4.2 20.5 27.1
CDAS [13] OCDA 53.2 5.9 56.1 10.1 2.6 22.0 37.1 11.4 53.9 23.5 71.3 27.6 14.6 47.5 16.8 19.5 0.0 3.2 3.8 25.3 29.1
CSFU [8] OCDA 47.0 4.1 53.0 13.9 1.0 23.2 41.2 18.8 55.8 23.2 72.1 31.5 10.8 69.1 26.4 27.8 0.2 1.7 2.6 27.6 30.5
SAC [2] UDA 42.6 4.2 57.6 11.9 3.8 23.0 49.7 23.8 63.6 31.9 76.0 30.3 10.5 65.3 23.6 23.1 0.1 0.7 3.2 28.7 33.6
DACS [24] UDA 48.9 9.7 54.5 16.8 5.7 22.7 42.0 22.9 61.3 29.7 73.7 32.2 11.6 63.3 23.2 26.5 0.0 1.2 5.2 29.0 34.8
DHA [19] OCDA 49.8 5.2 59.1 10.2 3.1 25.6 47.8 27.9 65.1 32.0 75.2 29.0 12.2 61.5 20.5 32.4 0.0 1.0 2.0 29.5 37.5

Ours OCDA 48.4 5.0 58.2 25.3 10.0 35.1 50.4 26.7 66.8 33.3 75.8 32.1 16.7 73.5 16.8 26.6 0.2 3.9 4.6 32.1 41.6

(b) SYNTHIA→ACDC
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mIoU16 mIoU16

Source - 45.2 0.2 36.7 1.7 0.6 25.7 4.0 5.6 46.6 64.3 16.9 11.3 39.6 16.5 0.6 1.9 19.8 20.5
CDAS[13] OCDA 61.3 0.7 60.1 11.7 1.8 28.4 18.8 23.5 48.6 28.9 16.5 15.9 69.2 18.4 5.4 5.6 25.9 23.3
CSFU[8] OCDA 62.6 0.3 60.3 8.6 1.8 21.3 20.7 29.1 44.5 22.1 34.5 19.0 71.1 23.2 4.4 4.3 26.7 24.8
SAC[2] UDA 69.8 0.4 56.2 1.7 0.0 20.0 12.6 13.7 52.5 78.1 29.1 15.5 68.9 20.9 3.2 1.2 27.7 25.4
DACS[24] UDA 55.6 1.1 55.7 0.1 0.7 25.8 31.7 18.3 65.5 53.7 31.1 16.6 69.2 22.5 2.9 3.1 28.3 27.0
DHA[19] OCDA 55.5 1.1 57.2 0.7 0.8 26.6 22.7 24.6 65.8 58.4 29.6 23.9 70.8 19.5 5.4 4.2 29.2 27.3
Ours OCDA 66.7 1.7 62.4 10.8 1.4 30.8 23.9 29.2 62.6 69.0 31.6 14.6 71.8 22.9 6.8 4.5 31.9 29.1

Table A2: The evaluation on GTA5→C-Driving.

(a) ImageNet pre-trained VGG-16 Backbone

Method
Compound (C) Open (O) Average

Rainy Snowy Cloudy Overcast C C+O

CDAS [13] 23.8 25.3 29.1 31.0 26.1 27.3
CSFU [8] 24.5 27.5 30.1 31.4 27.7 29.4
DACS [24] 26.8 29.2 35.1 35.9 30.4 31.8
DHA [19] 27.1 30.4 35.5 36.1 32.0 32.3

Ours 34.5 35.8 39.9 40.1 36.7 37.5

(b) Mixing Algorithm Comparison

Algorithm BPM (Ours) ClassMix [15] CutMix [31] CowMix [7]

mIoU 40.2 39.1 37.6 37.4

of our student model is 327.08× 109 and 43.8× 106.

The VGG-16 backbone and different mixup algorithms. We use VGG-16
backbone network for evaluation. The experimental results on GTA5→C-Driving
in Table A2(a) demonstrates the effectiveness of our approach against existing
works with ImageNet pre-trained VGG-16 as the backbone. We provide the
comparison to existing domain mixup algorithms in the same setting, including
ClassMix [15], CutMix [31], and CowMix [7].
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The online updating on the open domains. Our online updating is con-
ducted on each sample from the open domain, thus it is still domain generaliza-
tion at the testing stage. Our student model Gsd is trained through the adaptive
distillation from all the subdomain’s segmentation models {Gm}k∗

m=1 (Eq. (10,
11)). Each Gm is optimized by Eq. (7) with the help of the mean teacher Mm,
following the work of DACS[24]. We also used Mm instead of Gm for distillation
but do not see significant performance gain.

The reason of using bidirectional mixing. Using the photometric transform
∆ (Eq.(6)) on target-to-source mixing, we enforce the consistency of prediction
between the target and the mixed image, which are taken as additional augmen-
tation to improve the model’s performance (Table.3(a,b)). With the experiment
on GTA5→C-Driving, we get 40.1% of mIoU on using pseudo-labels of target
data for ClassMix on target-to-source mixing, similar to ours 40.2% (Table 1(a)).
Table A2 (b) shows that our BPM outperforms existing mixing algorithms.


