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Abstract. With the increasing abundance of pretrained models in re-
cent years, the problem of selecting the best pretrained checkpoint for a
particular downstream classification task has been gaining increased at-
tention. Although several methods have recently been proposed to tackle
the selection problem (e.g. LEEP, H-score), these methods resort to ap-
plying heuristics that are not well motivated by learning theory. In this
paper we present PACTran, a theoretically grounded family of metrics
for pretrained model selection and transferability measurement. We first
show how to derive PACTran metrics from the optimal PAC-Bayesian
bound under the transfer learning setting. We then empirically evalu-
ate three metric instantiations of PACTran on a number of vision tasks
(VTAB) as well as a language-and-vision (OKVQA) task. An analysis of
the results shows PACTran is a more consistent and effective transfer-
ability measure compared to existing selection methods.

1 Introduction

Recent advances in machine learning and neural networks have resulted in ef-
fective but extremely over-parameterized models [37, 9], sometimes referred to
as foundation models [6]. Despite the fact that their training recipe and data
are often available, training such models requires access to computational re-
sources that are well beyond the reach of an average machine learning user or
group. At the same time, many such model checkpoints (parameter snapshots
at a particular training step) have been made publicly available in platforms
such as Tensorflow-Hubs⋆ [1] and Huggingface⋆⋆ [47], so that ML users who are
interested in a certain model configuration need only write a few lines of code
to initialize their own model from a public checkpoint, and continue fine-tuning
on their downstream task of interest without incurring the cost of pretraining
a model themselves. However, as the number of such models and checkpoints
increases, a natural question of selection arises – is it possible to tell which
initialization checkpoint is most suitable for a given downstream task without
brute-force fine-tuning from all the available checkpoints?

⋆ https://www.tensorflow.org/hub
⋆⋆ https://huggingface.co/
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To answer this question in the context of classification tasks, a number of
existing approaches have been recently proposed. For example, the LEEP met-
ric [33] assumes the pretrained model was trained on a source classification task,
and then estimates the likelihood of an empirical predictor which maps source
labels to target (downstream) labels for classifying the target data. On the other
hand, the H-score metric [3] casts the classification problem as a linear regression
task involving the representations of the penultimate layer and the target labels.

Unfortunately, both these methods resort to heuristics or approximations to
arrive at their estimate. Specifically, the empirical predictor used by LEEP is
not the optimal solution to its associated objective function. Furthermore, the
predictor and the metric are estimated on the same dataset, which is prone to
overfitting. On the other hand, the least squares solution of H-score is generally
not a valid approximation to the commonly-used cross-entropy loss for classifica-
tion, unless the dependence between the label and the input feature is weak [23],
which rarely holds in practice.

In this paper we present PACTran, a theoretically grounded framework for
deriving metrics that measure the transferability of pretrained models to down-
stream classification tasks. Our framework seeks an optimal yet efficient PAC-
Bayesian bound [31, 16] to the generalization error in a transfer learning setting,
and the error is based on the cross-entropy loss between the prediction and the
labels, as is commonly used in classification. That is, the PACTran framework
enjoys at least one of two advantages compared to previous methods: (1) It is
based on learning theory (as opposed to LEEP) through PAC-Bayesian bounds
that measure the generalization gap, and (2) it is compatible with classification,
since it relies on the cross-entropy loss (as opposed to H-score).

We instantiate the PACTran framework with three different priors, yield-
ing three new transferability metrics: PACTran-Dirichlet, PACTran-Gamma and
PACTran-Gaussian. Our experiments empirically evaluate and compare these
new metrics against a number of baseline metrics over various image classifica-
tion tasks in the Visual Task Adaptation Benchmark (VTAB) [51]. Furthermore,
we also evaluate our metrics over the multimodal Open-Knowledge VQA [19, 30]
task, which contains both image and text.

2 Transferability Metrics: A Quick Review

In this section, we describe the transferability problem and review several trans-
ferability metrics which will be used as baselines in our experiments. We be-
gin by describing the setup of Transfer Learning, where the goal is to leverage
knowledge acquired on a source task in order to solve a new target task. Specif-
ically, let M denote a model checkpoint already pretrained to solve a source
task, and let S denote a dataset for the target (downstream) task, such that
S = {(x1, y1), . . . , (xn, yN )} with inputs x ∈ X and target labels y ∈ Y. Trans-
fer learning seeks to transfer the knowledge already encoded in M by finetuning
from M using S.
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At the same time, given multiple pretrained checkpoints M , another problem
arises – is it possible to know which of the pretrained checkpoints is most suitable
for the downstream task S, without incurring the cost of fine-tuning from each of
them? To this end, several effective and computationally efficient transferability
metrics have been proposed and are summarized below.

2.1 LEEP

Given a checkpoint M of a model pretrained on a source classification task,
LEEP [33] estimates the transferability of M to the target dataset S by first
computing two types of probabilities: (1) the predicted distribution M(xi) over
the source label set Z of the pretraining task, where we let M(xi)z denote the
output probability of the z-th source label, and (2) the empirical conditional
distribution p̂(y|z) of the target label y given the source label z,

p̂(y|z) = p̂(y, z)∑
y p̂(y, z)

,where p̂(y, z) =
1

N

∑
(xi,yi)∈S

M(xi)z · δ(yi = y). (1)

The LEEP measure is then defined as the logarithm of the marginal likelihood
p̂(y |x) (called EEP) given the empirical predictor p̂(y|z) and M(x),

RLEEP =
1

N

∑
(xi,yi)∈S

log p̂(yi|xi) =
1

N

∑
(xi,yi)∈S

log

(∑
z∈Z

p̂(yi|z)M(xi)z

)
. (2)

LEEP was proposed as an improvement over the Conditional Entropy (CE)
measure [42] which itself is an information theoretic approach that measures
the transferability between two classification tasks by analyzing the correlation
between their label sequences Y = {y1, . . . , yN} and Z = {z1, . . . , zN}. In [33]
the authors show that LEEP is an upper bound of negative CE and outperforms
it empirically as a transferability metric. However, from a theoretic stand point
the LEEP formulation suffers from a few deficiencies. For example, plugging
in the empirical conditional distribution p̂(y|z) into Eq.(2) is not guaranteed
to maximize the target log-likelihood log p̂(y |x). Furthermore, both p̂(y|z) and
log p̂(y |x) are computed over S, which make the latter prone to overfitting and
behave more similarly to training error as opposed to generalization error.

2.2 N -LEEP

Another limitation of the LEEP measure (as well as CE) is that it can only
be applied to measure the transferability of pretrained classification models.
In addition, LEEP’s performance degrades when the number of source classes
is considerably smaller than the number of target classes. To overcome these
issues, several methods that propose using the outputs f(x) of the penultimate
layer.

In N -LEEP [29], the authors suggest to first apply Principal Component
Analysis (PCA) on the penultimate layer outputs f(x) to reduce their dimension
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and then fit a Gaussian Mixture Model (GMM) to the PCA-reduced representa-
tion s(x), so that p(s) =

∑
v∈V αv N (s |uv,Σv) and the posterior of the cluster

assignment

p(v|x) = p(v| s) ∝ αv N (s |uv,Σv) (3)

are used to replace M(x)z in Eq.(1). The rest of the procedure follows the same
as in Eq. (2).

The N -LEEP method [29] conjectures that the cluster assignment p(v| s)
is more reliable than the class assignment M(x)z, because the GMM fitting is
learned from the downstream target data, while the softmax classifier of LEEP is
learned over the pretrained source data. Since N -LEEP is a extension of LEEP,
it also inherits its aforementioned problems such as the non-optimality of the
log-likelihood, as well as the lack of generalization consideration.

2.3 H-Score

The H-score [3] transferability metric is also not restricted to pretrained classi-
fiers. The idea for H-score comes from the matrix factorization of the divergence

transition matrix (DTM) B̃ = p(x,y)√
p(x)p(y)

−
√
p(x)p(y), for discrete random vari-

ables x and y. It is shown in [23] that, under the assumption of sufficiently small
B̃, the solution of the cross-entropy loss coincides with the following solution of
the matrix decomposition:

Ψ∗ = argmin
Ψ

∥B̃ − Φ(x)⊤Ψ∥2F , where Φ(x) =
√
p(x)f(x). (4)

After plugging in the least squares solution Ψ∗ = B̃Φ(Φ⊤Φ)−1, Eq.(4) becomes

∥B̃∥2F − ∥B̃Φ(Φ⊤Φ)−
1
2 ∥2F , in which the second term is defined as the H-score:

H =∥B̃Φ(Φ⊤Φ)−
1
2 ∥2F = tr(cov(f(x)))−1cov(Ep(x|y)[f(x)|y]). (5)

Compared to LEEP, H-score is more theoretically solid, in that it is optimal
with respect to its loss. However, the key drawback of the H-score is that the
optimality is based on the least squares objective, which is rarely used for clas-
sification. As proven in [23], the least squares solution is a valid approximation
to the cross-entropy classification loss only when label y and input x are weakly
dependent, which is clearly not the case in general.

2.4 LogME

Similarly to H-Score, the Log Marginal Evidence (LogME) [49] transferabil-
ity metric also uses a least squares objective function. However, to avoid over-
fitting, instead of directly minimizing the Gaussian based log-likelihood (a.k.a
the squared-loss) w∗ = argminw ∥y− f⊤ w ∥2F , LogME uses Bayesian averag-
ing to improve its generalization ability. That is, the LogME metric uses the
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marginal evidence of the target task p(y| f) =
∫
p(w)p(y| f ,w)dw. When p(w)

is defined as a Gaussian prior and p(y| f ,w) is a Gaussian likelihood, then p(y| f)
can be analytically estimated.

LogME shares the same theoretical problems as H-score due to its dependence
on the least squares objective, however, by relying on the marginal evidence it is
less prone to overfitting [49] which potentially improves its generalization ability.

3 PACTran

In this section, we first briefly review the PAC-Bayesian bound [31, 17] in the su-
pervised learning setting. We then show how to leverage this bound for measuring
transferability as the PACTran metric (Section 3.1). Specifically, we derive three
instances of the PACTran metric based on the cross entropy loss using three dif-
ferent prior distributions: two based on conjugate priors with the Dirichlet and
Gamma distributions (Section 3.2 and 3.3), and a third with a non-conjugate
Gaussian prior (Section 3.4).

3.1 PAC-Bayesian Bounds for Supervised and Transfer Learning

Consider a learning task with data distribution D where examples are denoted
as u = (x, y). A hypothesis h from the hypothesis space H allows us to make
predictions for each input x. The quality of the predictions is measured by a
loss function l(h, u), and the goal is to minimize the expected loss L(h,D) =
Eu∼D l(h, u). Typically, the data distribution D is unknown, and instead we
are given a set of N (training) examples S ∼ DN = {ui ∼ D}Ni=1, in which

case the empirical error on S is simply L̂(h, S) = 1
N

∑N
i=1 l(h, ui). The gap

between L(h,D) and L̂(h, S) is known as the generalization gap of h. Based on
this, various forms of PAC (Probably Approximately Correct) bounds have been
studied in the ML community over the last few decades [7, 43].

A key drawback of the PAC bounds is that the worst-case analysis (via the
union bound over all h ∈ H) makes the bound vacuous for modern machine learn-
ing approaches [25, 52]. To address this drawback, PAC-Bayesian learning [31,
17] goes one step further by bounding the generalization gap of distributions over
H, which can be optimized to obtain a non-vacuous bound [14, 25]. In particular,
let us assume that the learner has some prior knowledge of the hypothesis space
H in the form of a prior distribution P (h). Once the learner observes a training
dataset S, it updates its prior P into a posterior distribution Q. The expected er-
ror of the posterior Q is called the Gibbs error L(Q,D) = Eh∼Q L(h,D), and its

empirical counterpart is L̂(Q,S) = Eh∼Q L̂(h, S). The PAC-Bayesian framework
provides the following upper bound [31, 16] over L(Q,D) based on its empirical
estimate L̂(Q,S):

Theorem 1. [16] Given a data distribution D, a hypothesis space H, a prior
P , a confidence level δ ∈ (0, 1], and λ > 0, with probability at least 1 − δ over
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samples S ∼ DN , for all posterior Q,

L(Q,D) ≤ L̂(Q,S) +
1

λ
DKL(Q∥P ) + C(δ, λ,N) (6)

where C(δ, λ,N) is a constant independent of the posterior Q.

The hyperparameter λ can be adjusted to balance between the divergence and
the constant C terms, where a common choice is λ ∝ N (see [16, 38, 11]).

In the transfer learning setting, starting from a pretrained checkpoint M that
is encoded within the prior P (h), L(Q,D) measures the generalization error of
a posterior Q after it was finetuned over the downstream data S. Furthermore,
by minimizing the RHS of the bound (Eq. (6)) with respect to Q ∈ QM , one can
obtain a posterior Q that has low transfer error L(Q,D). Therefore, to measure
the transferability of a pretrained checkpoint M , we define a family of metrics
PACTran by optimizing the PAC-Bayesian bound (ignoring the constant C since
it is the same for all checkpoints):

min
Q∈QM

L̂(Q,S) +
1

λ
DKL(Q∥P ). (7)

For computational efficiency, we restrict the domain of QM in which the
feature network of the pretrained checkpoint M remains fixed. Since all h ∈
dom(QM ) shares the same feature network, we can simplify P as the prior dis-
tribution of the top classification layer of the network only; andQ as the posterior
distribution of the top layer after finetuning. Despite this restriction, PACTran
appears promising in comparing the transferability of pretrained checkpoints
even after full-model finetuning.

According to [16], the so-called Gibbs posterior Q∗ that minimizes the ob-
jective of Eq.(7) takes the form of Q∗(h) = P (h) exp(−λL̂(h, S))/Z(S), where
Z(S) is equal to the marginal evidence

∫
P (h) exp(−λL̂(h, S))dh. Plugging in

Q∗(h) back into Eq.(7), the resulting optimal PAC-Bayesian bound equals to
− 1

λ logZ(S). Note however, that computing logZ(S) is only analytically feasible,

when the prior P (h) and the likelihood function exp(−λL̂(h, S)) are conjugate,
for example, when both are Gaussians as in LogME [49].

In this paper, we focus on metrics for which L̂(h, S) is based on the cross-
entropy loss, as it is more compatible with classification tasks (in which case
exp(−L(Q,D)) is an estimate of the expected test accuracy). From a theoretical
perspective, this makes the PACTran metric preferable to LEEP (which is not
optimal over the cross entropy loss) as well as LogME and H-score metrics (whose
proposed solution is based on the squared loss instead of the classification loss
of the downstream task).

In what follows, we derive three instantiations of the bound using the con-
jugate Dirichlet and Gamma priors whose solution can be found with a fast
variational approach, and the non-conjugate Gaussian prior, which requires gra-
dient optimization.
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3.2 PACTran with a Dirichlet Prior

Given the target data S = {(x1, y1), . . . , (xN , yN )} ∈ (X ,Y), let us assume that
the pretrained model M provides a probability vector M(x) where

∑
z M(x)z =

1. Here, z ∈ Z can either be defined over the set of source label as in LEEP or
over the Gaussian clusters as in N -LEEP. We restrict the top layer to a set of l1-
normalized vectors W =

{
w1, . . . ,w| Z |

}
in the probability simplex, where for

each vector wz we have
∑

y∈Y wyz = 1, wyz ≥ 0, and then define the marginal
likelihood as:

p(yi|xi,W) =
∑
z

p(yi, z|xi,W) =
∑
z

M(xi)zwyiz. (8)

We assign a Dirichlet prior P (wz) on these vectors and let λ = N for simplicity.
Using the above definitions, we can rewrite logZ(S) as

log

∫ ∏
z

P (wz)
∏
i

(∑
z

p(yi, zi = z|xi,W)

)
dW

= log
∑
z1

. . .
∑
zN

∫ (∏
z Γ (

∑
y αy)∏

z

∏
y Γ (αy)

)∏
z

∏
y

wnyz+αy−1
yz

∏
i

M(xi)zidW, (9)

where Γ (·) is the well-known Gamma function. The form of the resulting model
is similar to Latent Dirichlet Allocation (LDA) [5]. Evaluating Eq.(9) exactly is
considered intractable, as it involves a summation over z which has | Z |N differ-
ent configurations. Therefore, we turn to the variational inference approach as
in [5, 4] to optimize the evidence lower bound (ELBO). The PACTran-Dirichlet
is the negation of the optimal ELBO, and equals to (see details in A.1):

∑
z

(
logC(α̃z)− logC(αz) +

∑
i

q∗(zi = z) (log q∗(zi = z)− logM(xi)z)

)
, (10)

where,

q∗(zi = z) = softmax

(
logM(xi)z + Ψ(α̃yiz)− Ψ(

∑
y

α̃yz)

)
,

α̃yz = αyz +
∑
i

q∗(zi = z)δ(yi = y), and C(αz) =
Γ (
∑

y αyz)∏
y Γ (αyz)

,

where Ψ(·) denotes the digamma-function.
It is worth noting that the PACTran-Dirichlet metric Eq.(10) is a valid PAC-

Bayesian upper bound to the generalization error (up to a constant). That is
because Eq.(10) is the negation of ELBO which upper bounds the negative log
evidence − logZ(S) which itself is an upper bound of L(Q∗, D). Furthermore,
both upper bounds are optimally tight with respect to their hypothesis spaces
in consideration: the variational distribution q∗ optimizes the ELBO over all
the independent approximate distributions q, and the Gibbs posterior Q∗(h)
optimizes the PAC-Bayes bound (6) over all the base-learner Q.
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3.3 PACTran with a Gamma Prior

Instead of using a set of l1-normalized vectorsW, we can also relax the constraint
by working on a matrix of non-negative variablesV = {vyz} whose prior is chosen
to be the gamma distribution P (vyz) = Gamma(ay, b). Unlike the normalized
vectors W, where

∑
y∈Y

∑
z∈Z M(x)zwyz = 1 is automatically satisfied, when

using unnormalized V, we need to normalize the output explicitly,

p(yi, z|xi,V) =
M(xi)zvyiz∑

y∈Y
∑

z∈Z M(xi)zvyz
. (11)

Note that M(xi) is also not required to be normalized, which potentially makes
the use case of Eq.(11) broader. Even with a normalized M(xi), Eq.(11) strictly
subsumes Eq.(8), because the former is only normalized once, while the latter
is normalized | Z | times for each wz. In addition, since vyz appears in both
denominator and numerator, their scaling cancels out. Therefore, we fix a simple
scaling coefficient b = 1 for all Gamma priors.

The rest of the Bayesian inference is similar to that of PACTran-Dirichlet.
The PACTran-Gamma metric is the negative ELBO after applying the varia-
tional principles, and equals to (see details in A.2):∑

y

∑
z

(logΓ (ay)− logΓ (ãyz)) +
∑
i

log λ̃i

+
∑
i

∑
z

q∗(zi = z) (log q∗(zi = z)− logM(xi)z) , (12)

where,

q∗(zi = z) = softmax (logM(xi)z + Ψ(ãyiz)) ,

ãyz = ay +
∑
i

q∗(zi = z)δ(yi = y), λ̃i =
∑
y

∑
z

M(xi)zãyz.

PACTran-Gamma metric is also a valid PAC-Bayesian upper bound to the gen-
eralization error, for the same reasons as the PACTran-Dirichlet metric.

3.4 PACTran with a Gaussian Prior

In the previous sections, we focus on the cases when the source model out-
puts normalized (in the Dirichlet prior case) or non-negative vectors (in the
Gamma prior case). When the pretraining model is not based on classification
tasks, one needs to add additional components (such as the Gaussian mixture
models in N -LEEP) to obtain those outputs. Here, we present another metric
PACTran-Gaussian which relies only on penultimate layer representations f(x).
In PACTran-Gaussian, the prior P and posterior Q are both Gaussian distri-
butions, where P (θ) ∼ N (0, σ2

0 I) and Q(θ) ∼ N (θq,Σq). For computational
efficiency, we consider Σq = σ2

q I only. Note that although both LogME and
PACTran-Gaussian use Gaussian priors and posteriors on θ, a main difference
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is that the former applies the squared loss, while the latter applies the cross-
entropy loss (see more discussions in A.3). However, since the Gaussian prior
is not conjugate to the exponentiated cross-entropy loss, we derive the bound
using 2nd order approximations and a reparameterization trick as in [44],

L̂(Q,S) +
1

λ
DKL(Q∥P )

≃L̂(θq, S) + Eϵ∼N (0,I)[σqϵ
⊤∇L̂(θq, S) +

σ2
q

2
ϵ⊤∇2L̂(θq, S)ϵ

+
1

λ
logN (θq + σqϵ|θq, σ2

q I)−
1

λ
logN (θq + σqϵ|0, σ2

0 I)]

=L̂(θq, S) +
σ2
q

2
Tr(∇2L̂(θq, S)) +

KD

2λ
(log

σ2
0

σ2
q

− 1 +
σ2
q

σ2
0

+
∥θq∥2F
KDσ2

0

). (13)

The results of minimizing Eq. (13) with respect to σq and θq yield the following
optimal σ∗ and θ∗ (see details in A.3),

σ2
0

σ2
∗
= 1 +

β

KD
Tr(∇2L̂(θ∗, S)), θ∗ = argmin

θq

{
L̂(θq, S) +

∥θq∥2F
2β

}
,

where β = λσ2
0 , So that we reach the following PACTran-Gaussian metric,

L̂(θ∗, S) +
∥θ∗∥2F
2β︸ ︷︷ ︸

RER

+
KDσ2

0

2β
log

σ2
0

σ2
∗︸ ︷︷ ︸

FR

. (14)

In Eq.(14), the first two terms are simply the l2-regularized empirical risk (RER).
The third term is a ”flatness regularizer” (FR) that involves the trace of the Hes-
sian of the empirical risk Tr(∇2L̂(θ∗, S)) and has a simple closed-form solution
for the cross-entropy loss (provided in A.3). It is accepted wisdom that a model
generalizes better when its optimum is relatively flat [44, 14, 32] (low trace of
Hessian). Empirically, we observe that the FR term is extremely effective in pre-
venting the metrics from overfitting even though metric evaluation is done only
on the training set.

It is also worth noting that there are two subtle, yet critical, differences
between the derivations of our bound Eq.(14) and the ones in [44]. First, our
mean parameter θ∗ is a minimum of Eq.(13), while in [44] it is an arbitrary model
parameter. Second, in [44], σ0 and σ∗ were tied together during the optimization
of σ∗, which violates the assumption of the PAC-Bayes theorem where the prior
must be data independent. Instead, our σ∗ is not only optimal, but also leaves
σ0 data independent.

4 Empirical Studies

In this section, we evaluate the PACTran metrics: PACTran-Dirichlet, PACTran-
Gamma and PACTran-Gaussian, over several transfer learning benchmarks, and
compare them against other existing transferability metrics including LEEP,
NCE, N -LEEP, H-Score, LogME.
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4.1 The Neural Checkpoint Ranking Benchmark (NeuCRaB)

Pretrained Checkpoints Following NeuCRaB [29] (Group I), we collected a
set of 16 ResNet-50 based checkpoints trained with various types of supervision.
These checkpoints were pretrained on ImageNet with different training strate-
gies, which include 5 models via self-supervised learning (Jigsaw [35], Relative
Patch Location [12], Exemplar [13], Rotation [18], and Sup-Rotation [50]), 6
models via discriminators of generative models (WAE-UKL [39], WAE-GAN,
WAE-MMD [41], Cond-BigGAN, Uncond-BigGAN [8], and VAE [26]), 2 via
semi-supervised learning (Semi-Rotation-10% and Semi-Exemplar-10% [50]), one
with a hybrid supervised loss (Sup-Exemplar-100% [50]), one by supervised
learning of a standard Resnet50 (Sup-100% [21]), and lastly, one by supervised
learning of a Resnet50 with identity mappings (Feature Vector [22]).

Downstream Tasks Following NeuCRaB [29], we adopt the Visual Task
Adaptation Benchmark (VTAB) [51] and study diverse downstream tasks. The
original NeuCRaB only contains four tasks: Caltech101 [15], Flowers102 [34],
Patch Camelyon [46] and Sun397 [48]. In order to compare the transferabil-
ity metrics on a wider variety of downstream tasks, we added 5 more tasks:
DMLAB [51], CBIS-DDSM [40], Cifar10 [27], Oxford IIIT Pet [36] and Small-
norb(azimuth) [28]. These new tasks not only enrich the task categories, but also
span the full range of the number of classes per tasks (single-digit, double-digit,
and 100+ classes), which allows us to analyze the performance of transferabil-
ity metrics according to the number of classes. In particular, we group these
tasks according to the number of output classes: tasks with 100+ classes include
Caltech101 (102 classes), Flowers102 (102 classes), Sun397 (397 classes); tasks
with 10-99 classes include Cifar10 (10 classes), Oxford IIIT Pet (37 classes) and
Smallnorb(azimuth) (18 classes); tasks with 2-9 classes include Patch Camelyon
(2 classes), DMLAB (6 classes), and CBIS-DDSM (5 classes).

Evaluating the Transferability Metrics We use the Kendall-Tau rank
correlation coefficient to correlate between the transferability metric scores and
the testing error of the finetuned checkpoints. The ”ground-truth” testing error
that corresponds to each pretrained checkpoint M is obtained by finetuning M
on the downstream training set multiple times and setting the ground-truth
testing error eM to the lowest test error among the runs (See details in B.3).

Experimental Settings Since it is crucial for a transferability metric to be
highly efficient compared to the finetuning, we focus our experiments on limited-
data settings. Let K denote the number of classes, D the feature dimension and
N the number of examples for computing the metric. We consider three data
settings with increasing average number of samples per classN/K ∈ {2, 5, 10} (to
avoid having too few examples, we also set a lower bound for N ≥ 20). For each
N/K setting, we subsample N samples from the training set of each downstream
task 5 times. The transferability metrics are then evaluated over the 5 splits and
their average Kendall-Tau correlation is reported. Compared to evaluating the
metrics on the full training set, the limited-data setting significantly reduces the
cost of penultimate-layer feature extraction, which is usually orders of magnitude
more expensive than computing the metrics themselves (see Table. 2).
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Besides the aforementioned baseline transferability metrics (LEEP, N -LEEP,
H-score, LogME), we also include two additional metrics based on linear classifi-
cation. The LINEAR metric is based on the training loss of a regularized linear
classifier (the sum of the first two terms of Eq.(14)). The second metric LINEAR-
VALID splits the subsampled dataset into two equally sized folds, trains a linear
classifer on one fold and computes the validation error on the other. The regular-
izing coefficients for both metrics are β ∈ {0.1, 1.0, 10}·N . For LINEAR-VALID,
the model with the lowest validation error is chosen. For LINEAR, since there is
no validation set, we select the β that maximizes the Kendall correlation between
the loss and LINEAR-VALID’s validation error across checkpoints.

For N -LEEP, we follow the recipe from [29] and set the PCA energy per-
centage to 80% and the number of Gaussian components to the number of
classes in the downstream task. For PACTran-Dirichlet and PACTran-Gamma,
we set αy = p̂(y). For PACTran-Gaussian, we report two sets of results: In
PT-Gaussfix, we fix the two hyperparameters to β = 10N and σ2

0 = 100
D . In PT-

Gaussgrid, we perform a hyperparameters grid-search over β ∈ {0.1, 1.0, 10} ·N
and σ2

0 ∈ {1.0, 10, 100, 1000} · 1
D and select the hyperparameters (β, σ2

0) that
maximize the Kendall correlation between the PT-Gaussgrid metric scores and
LINEAR-VALID’s validation errors across checkpoints. More detailed discus-
sions about the hyperparameters are available in B.5.

Results and Analysis Table 1 reports the Kendall-Tau correlations of the
various transferability metrics. Table 2 reports the GFLOPS per metric for each
task as well as those of the feature extraction stage from the pretrained check-
points. For LINEAR and PT-Gaussgrid, we include the GFLOPS for all hyper-
parameter runs as well as hyperparameter selection for LINEAR-VALID.

Although LEEP is the fastest algorithm, its averaged performance is worse
than most other metrics. All other metrics employ more expensive components
(PCA and GMM forN -LEEP andN -PT-Dir/Gam, SVD for Hscore and LogME,
and L-BFGS for LINEAR and PT-Gauss) but are still 1-2 orders of magnitude
faster to compute than feature extraction from the penultimate layer.

N -LEEP, which obtains the source class assignments by applying GMM on
the penultimate layer outputs, performs much better than LEEP on average. In
addition, PACTran-Dirichlet and PACTran-Gamma with the GMM assignments
(denoted as N -PT-Dir and N -PT-Gam) perform similarly to the N -LEEP algo-
rithm, which indicates that the EEP estimator is surprisingly close to Bayesian
optimal based on the GMM assignments of the VTAB tasks.

Among the algorithms that use the L-BFGS optimizer, LINEAR-VALID per-
forms better than LINEAR for large K. However, for small K LINEAR-VALID
becomes worse, probably because the training and validation splits are too small.
In contrast, the PT-Gauss metrics are consistently among the best metrics across
all settings, which provides clear evidence that the 3rd “flatness” term (Eq.(14))
plays a crucial role in predicting generalization error. For example, they are the
only metrics with correlation 0.4 or higher on 2-9 classes.

In comparing between PT-Gaussgrid and PT-Gaussfix, we find that PT-
Gaussgrid usually performs well whenever LINEAR-VALID’s does (since it de-



12 N. Ding et al.

N/K = 2 100+ classes 10-99 classes 2-9 classes Average

LEEP 0.202 0.005 0.041 0.083
N -LEEP 0.723 0.401 0.077 0.401
H-score 0.413 0.106 0.185 0.235
LogME 0.308 0.067 0.071 0.149
LINEAR 0.231 0.072 0.114 0.139

LINEAR-VALID 0.750 0.309 0.063 0.374

N -PT-Dir 0.760 0.327 0.099 0.395
N -PT-Gam 0.763 0.333 0.108 0.401
PT-Gaussgrid 0.868 0.664 0.509 0.680
PT-Gaussfix 0.770 0.683 0.509 0.654

N/K = 5 100+ classes 10-99 classes 2-9 classes Average

LEEP 0.112 0.082 0.023 0.109
N -LEEP 0.795 0.536 0.096 0.476
H-score 0.412 0.141 0.118 0.224
LogME 0.421 0.093 0.075 0.196
LINEAR 0.253 0.084 0.122 0.153

LINEAR-VALID 0.807 0.411 0.044 0.420

N -PT-Dir 0.826 0.458 0.140 0.475
N -PT-Gam 0.825 0.462 0.151 0.479
PT-Gaussgrid 0.793 0.716 0.412 0.641
PT-Gaussfix 0.832 0.675 0.512 0.673

N/K = 10 100+ classes 10-99 classes 2-9 classes Average

LEEP 0.276 0.079 0.049 0.134
N -LEEP 0.822 0.520 0.148 0.497
Hscore 0.461 0.318 0.158 0.313
LogME 0.488 0.138 0.073 0.233
LINEAR 0.325 0.089 0.109 0.174

LINEAR-VALID 0.835 0.482 0.123 0.480

N -PT-Dir 0.839 0.446 0.134 0.473
N -PT-Gam 0.839 0.452 0.140 0.477
PT-Gaussgrid 0.769 0.678 0.429 0.625
PT-Gaussfix 0.778 0.609 0.534 0.641

Table 1. Kendall-Tau correlations on the NeuCRaB experiments with different N/K,
where K is the number of classes, N the number of examples for computing the metric.

pends on it for hyperparameter selection). On the other hand, when LINEAR-
VALID is worse (K is small), PT-Gaussfix outperforms PT-Gaussgrid.

4.2 Visual Question Answering

We further conduct experiments over the multi-modal VQA task. Following com-
mon practice ([2, 20]), we treat VQA as a classification task (vocab-based VQA).
That is, we construct a vocabulary based on the top answers in the training sets
and classify into one of those labels.
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GFLOPS 100+ classes 10-99 classes 2-9 classes

LEEP 6.40E-1 2.00E-2 1.55E-3
N -LEEP 2.09E2 1.40E0 7.25E-2
Hscore 1.33E2 1.30E2 1.29E2
LogME 1.34E2 1.30E2 1.29E2
LINEAR 2.89E2 9.03E0 7.07E-1

LINEAR-VALID 9.64E1 3.02E0 2.36E-1

N -PT-Dir 2.09E2 1.40E0 7.25E-2
N -PT-Gam 2.09E2 1.40E0 7.25E-2
PT-Gaussgrid 2.90E2 9.07E0 7.10E-1
PT-Gaussfix 6.45E1 2.02E0 1.58E-1

Penultimate Feature 3.88E3 6.84E2 1.90E2
Table 2. GFLOPS of running each metrics and the penultimate-layer feature extrac-
tion stage on the subsampled datasets, when N/K = 10.

Pretrained Checkpoints We apply the state-of-art VQA model architec-
ture, which fuses image and question representations in a multimodal Trans-
former model [45] (see C.1). We pretrain the VQA models over 9 datasets, includ-
ing: VQA-v2 [20], GQA [24], V7W [53], CNETVQA, TP-COLOR-COCO, TP-
COLOR-CC3M, TP-COLOR-CC12M, VQ2A-COCO, and VQ2A-CC3M [10].
The detailed descriptions of the datasets are provided in C.2.

For each pretraining dataset, we consider 3 different model sizes and 4 dif-
ferent finetuning hyperparameter settings. For model sizes, the number of layers
t of the text-encoder and m of the multimodal-encoder is varied from (t,m) ∈
{(6, 3), (9, 5), (12, 7)}. For hyperparameters, the dropout ratios are varied from
{0, 0.1}. We use two learning schedules: a constant learning rate of 0.0005 and
a decay learning rate starting at 0.2. For each of these 12 settings, we set batch
size to 128, and save a checkpoint after 100,000 iterations.

Downstream Task We chose the OKVQA dataset [30] because the task
requires additional knowledge beyond its own training set, and it has been shown
that proper pretraining brings significant benefits to performance [30, 10].

Experimental Settings Finetuning details are available in C.3. The hy-
perparameter settings match the NeuCRaB experiments. Otherwise, we vary
the number of data examples for metric computation from N ∈ {40, 100, 200}
and restrict the examples from the top 20 answers such that N/K ∈ {2, 5, 10}.
For each N , we create 5 subsamples of the OKVQA train set. Each metric is
then evaluated on the 5 splits and the average correlation score is reported.

Results and Analysis In total, there are 108 = 9 × 12 checkpoints that
span 9 different pretraining datasets, and 12 different model configurations. In
Table 3, we report their results in 3 different ways: (1) “CD” (cross pretraining
data sources), reports the averaged correlation of metrics across the 9 different
pretraining datasets for each of the 12 model configurations; (2) “CM” (cross
models), reports the averaged correlation of metrics cross the 12 model con-
figurations for each of the 9 pretraining datasets; and (3) “Total”, reports the
correlation over all 108 checkpoints.
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N 40 100 200

CD CM Total CD CM Total CD CM Total

LEEP 0.420 0.337 0.471 0.430 0.373 0.492 0.435 0.402 0.508
N -LEEP 0.309 0.077 0.295 0.452 0.232 0.427 0.503 0.329 0.480
Hscore 0.220 0.048 0.198 0.253 0.079 0.222 0.233 0.116 0.243
LogME 0.350 0.141 0.402 0.343 0.154 0.395 0.357 0.160 0.397
LINEAR 0.355 0.137 0.410 0.351 0.167 0.407 0.382 0.209 0.423

LINEAR-VALID 0.488 0.118 0.430 0.526 0.172 0.474 0.579 0.360 0.528

PT-Dir 0.253 0.329 0.301 0.449 0.418 0.480 0.460 0.469 0.503
PT-Gam 0.453 0.348 0.490 0.518 0.411 0.544 0.522 0.430 0.532
N -PT-Dir 0.424 0.093 0.358 0.522 0.277 0.476 0.548 0.335 0.504
N -PT-Gam 0.421 0.092 0.353 0.524 0.278 0.474 0.547 0.333 0.504
PT-Gaussgrid 0.480 0.272 0.451 0.566 0.349 0.544 0.617 0.391 0.582

Table 3. Kendall-Tau correlations on the OKVQA experiments with different N .

As can be seen, when the pretraining tasks are classification based, LEEP
performs much better compared to the “mixed supervision” tasks in the previous
section. On the other hand, PACTran-Gamma outperforms LEEP and PACTran-
Dirichlet, which indicates that an unnormalized weight transfer matrix is more
helpful in these setting. LINEAR-VALID is a strong baseline, especially as more
data examples are provided. Finally, we see that PACTran-Gauss (with β = 0.1N
and σ2

0 = 1
D from the grid search) provides competitive performance in all cases,

and is consistently among the best in evaluating transferability from different
pretraining datasets (“CD”).

5 Conclusion

In this paper we presented PACTran, a PAC-Bayesian based framework for mea-
suring the transferability of pretrained checkpoints to downstream tasks. Our
method significantly improves upon previous methods in that it is both theo-
retically sound as well as compatible with downstream classification tasks. We
instantiated three variant PACTran metrics using different hypothesis spaces
and priors and conducted experiments over a set of vision tasks (VTAB) and a
vision-and-language task (OKVQA). We showed that some PACTran variants
can provide theoretical justification for existing methods. For example, (N -)PT-
Dir and (N -)PT-Gam metrics subsume (N -)LEEP, in which the finetuning head
sits on top of the pretrained classification head (or a GMM). Our experiments
also showed that several of the baseline metrics are unable to measure checkpoint
transferability better than a simple linear classification and validation baseline
(LINEAR-VALID). On the other hand, the proposed PT-Gauss metric behaved
well as a measure of transferability in a limited data setting and consistently
exhibited high correlation with the test performance of models finetuned on the
downstream tasks. Possibly, this is because it more closely matches the setup of
the finetuned model, where the finetuning head is placed directly on the penul-
timate layer and trained with a cross-entropy loss.



PACTran 15

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., Parikh,
D.: VQA: Visual question answering. In: ICCV (2015)

3. Bao, Y., Li, Y., Huang, S.L., Zhang, L., Zheng, L., Zamir, A., Guibas, L.: An
information-theoretic approach to transferability in task transfer learning. In: 2019
IEEE International Conference on Image Processing (ICIP). pp. 2309–2313. IEEE
(2019)

4. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: A review for
statisticians. Journal of the American statistical Association 112(518), 859–877
(2017)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the Journal of
machine Learning research 3, 993–1022 (2003)

6. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S.,
Bernstein, M.S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S.,
Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J.Q., Demszky,
D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Etha-
yarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K., Goodman, N.,
Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D.E., Hong,
J., Hsu, K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti,
S., Keeling, G., Khani, F., Khattab, O., Koh, P.W., Krass, M., Krishna, R., Ku-
ditipudi, R., Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I.,
Li, X.L., Li, X., Ma, T., Malik, A., Manning, C.D., Mirchandani, S., Mitchell, E.,
Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles,
J.C., Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park, J.S.,
Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong,
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Wang, R.E., Wang, W., Wu, B., Wu, J., Wu, Y., Xie, S.M., Yasunaga, M., You,
J., Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K.,
Liang, P.: On the opportunities and risks of foundation models (2021)

7. Bousquet, O., Boucheron, S., Lugosi, G.: Introduction to statistical learning theory.
In: Summer school on machine learning. pp. 169–207. Springer (2003)

8. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis (2019)

9. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

10. Changpinyo, S., Kukliansky, D., Szpektor, I., Chen, X., Ding, N., Soricut, R.: All
you may need for vqa are image captions. In: NAACL (2022)

11. Ding, N., Chen, X., Levinboim, T., Goodman, S., Soricut, R.: Bridging the gap
between practice and pac-bayes theory in few-shot meta-learning. Advances in
Neural Information Processing Systems 34 (2021)



16 N. Ding et al.

12. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction (2016)

13. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative un-
supervised feature learning with convolutional neural networks. In: Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems. vol. 27. Curran Associates, Inc. (2014)

14. Dziugaite, G.K., Roy, D.M.: Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. arXiv
preprint arXiv:1703.11008 (2017)

15. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. Computer Vision and Pattern Recognition Workshop (2004)

16. Germain, P., Bach, F., Lacoste, A., Lacoste-Julien, S.: PAC-bayesian theory meets
bayesian inference. Advances in Neural Information Processing Systems 29, 1884–
1892 (2016)

17. Germain, P., Lacasse, A., Laviolette, F., Marchand, M.: PAC-bayesian learning of
linear classifiers. In: Proceedings of the 26th Annual International Conference on
Machine Learning. pp. 353–360 (2009)

18. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations (2018)

19. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in
VQA matter: Elevating the role of image understanding in Visual Question An-
swering. In: Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

20. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in
VQA matter: Elevating the role of image understanding in visual question answer-
ing. In: CVPR (2017)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

22. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks
(2016)

23. Huang, S.L., Makur, A., Wornell, G.W., Zheng, L.: On universal features for high-
dimensional learning and inference. arXiv preprint arXiv:1911.09105 (2019)

24. Hudson, D.A., Manning, C.D.: GQA: A new dataset for real-world visual reasoning
and compositional question answering. In: CVPR (2019)

25. Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., Bengio, S.: Fantastic gener-
alization measures and where to find them. In: ICLR (2020)

26. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)
27. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.,

University of Toronto (2009)
28. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recogni-

tion with invariance to pose and lighting. Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition 2, II–104 Vol.2
(2004)

29. Li, Y., Jia, X., Sang, R., Zhu, Y., Green, B., Wang, L., Gong, B.: Ranking neural
checkpoints. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2663–2673 (2021)

30. Marino, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Ok-vqa: A visual question
answering benchmark requiring external knowledge. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2019)



PACTran 17

31. McAllester, D.A.: Some PAC-bayesian theorems. Machine Learning 37(3), 355–363
(1999)

32. Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring general-
ization in deep learning. Advances in neural information processing systems 30
(2017)

33. Nguyen, C., Hassner, T., Seeger, M., Archambeau, C.: Leep: A new measure to
evaluate transferability of learned representations. In: International Conference on
Machine Learning. pp. 7294–7305. PMLR (2020)

34. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics
and Image Processing (Dec 2008)

35. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles (2017)

36. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: IEEE
Conference on Computer Vision and Pattern Recognition (2012)

37. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR (2020)

38. Rothfuss, J., Fortuin, V., Josifoski, M., Krause, A.: Pacoh: Bayes-optimal meta-
learning with pac-guarantees. In: International Conference on Machine Learning.
pp. 9116–9126. PMLR (2021)

39. Rubenstein, P., Bousquet, O., Djolonga, J., Riquelme, C., Tolstikhin, I.O.: Practi-
cal and consistent estimation of f-divergences. In: Advances in Neural Information
Processing Systems. vol. 32 (2019)

40. Sawyer-Lee, R., Gimenez, F., Hoogi, A., Rubin, D.: Curated breast imaging subset
of ddsm (2016). https://doi.org/10.7937/k9/tcia.2016.7o02s9cy

41. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders
(2019)

42. Tran, A.T., Nguyen, C.V., Hassner, T.: Transferability and hardness of supervised
classification tasks. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 1395–1405 (2019)

43. Tripuraneni, N., Jordan, M., Jin, C.: On the theory of transfer learning: The im-
portance of task diversity. Advances in Neural Information Processing Systems 33,
7852–7862 (2020)

44. Tsuzuku, Y., Sato, I., Sugiyama, M.: Normalized flat minima: Exploring scale in-
variant definition of flat minima for neural networks using PAC-Bayesian analysis.
In: Proceedings of the 37th International Conference on Machine Learning. pp.
9636–9647 (2020)

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

46. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equiv-
ariant cnns for digital pathology (Sep 2018). https://doi.org/10.1007/978-3-030-
00934-2-24

47. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., et al.: Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)

48. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-
scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. pp. 3485–3492 (June 2010).
https://doi.org/10.1109/CVPR.2010.5539970



18 N. Ding et al.

49. You, K., Liu, Y., Wang, J., Long, M.: Logme: Practical assessment of pre-trained
models for transfer learning. In: International Conference on Machine Learning.
pp. 12133–12143. PMLR (2021)

50. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: Self-supervised semi-supervised
learning. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 1476–1485 (2019). https://doi.org/10.1109/ICCV.2019.00156

51. Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djo-
longa, J., Pinto, A.S., Neumann, M., Dosovitskiy, A., et al.: A large-scale study of
representation learning with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867 (2019)

52. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM
64(3), 107–115 (2021)

53. Zhu, Y., Groth, O., Bernstein, M., Li, F.F.: Visual7W: Grounded question answer-
ing in images. In: CVPR (2016)


