
Appendix for ‘Personalized Education: Blind
Knowledge Distillation’

A Theoretical Proof of Proposition 1

Proposition 1 In KD, for CSTs, only fitting the teacher function on sparse
training data points cannot enable them to well capture the in-distribution func-
tion shape of the teacher (i.e., in-distribution knowledge), thus leading to a per-
formance gap. For ISTs, capacity differences cause the performance gap.

Theoretical Proof : The empirical proof has been given in the paper. We
now provide the theoretical proof below. The goal of KD is to find a student func-
tion Sθ ∈ F to approximate a powerful teacher T on a target data distribution
P (x). The approximation risk is written as:

R(Sθ, T, P (x)) = E
x∼P (x)

ℓ(T (x) , Sθ (x)) (1)

where ℓ is a loss function such as KL-divergence or mean square error.
Directly minimizing R(Sθ, T, P (x)) is typically impossible as P (x) is un-

known. KD instead minimizes the empirical risk over a training dataset Xt =
{xi}ni=1 drawn from P (x):

R̂(Sθ, T,Xt) =
1

n

n∑
i=1

ℓ (T (xi) , Sθ (xi)) (2)

Theorem 1. When ℓ is bounded, we have the following bound with probability
at least 1-δ:

R(Sθ, T, P (x)) ≤ R̂(Sθ, T,Xt) +

√
C + log 2

δ

2n
(3)

where C denotes the complexity of F . This bound can be obtained from ERM
[11, 5].

We next connect CSTs and ISTs with the theoretical error bound (3). CSTs
have enough capacities to memorize the outputs of the teachers so that they
can achieve a small empirical risk R̂(Sθ, T,Xt). In this case, as seen from (3),
if we increase the number (i.e., n) of distillation data points, the bound can
be further decreased and even achieves nearly 0. This is consistent with the
empirical results in the simulation experiments. Therefore, for CSTs, the capacity
differences are not necessarily the root reason and instead the distillation data
matter. In contrast, the capacities of ISTs are too small to memorize the outputs
of the teachers, which leads to a large empirical risk R̂(Sθ, T,Xt). In this case,
the R̂(Sθ, T,Xt) is dominant in the bound (3) and thus further increasing the
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(a) KD with training data (b) KD with regular data
augmentation

(c) KD with OOD assis-
tance

Fig. 1. An intuitive illustration of OOD assistance on 2-D space: Yellow regions denote
the real data distribution P (x); xi denotes training samples; xaug

i denotes augmented
samples; x̂i denotes OOD samples.

number of distillation data may not lead to a smaller bound and even may
further cause a larger empirical error R̂(Sθ, T,Xt). Therefor, for ISTs, capacity
differences cause the performance gap. By connecting CSTs, ISTs, and the bound
(3), we theoretically prove Proposition 1.

B Theoretical Proof of Proposition 2

Proposition 2 Out-of-distribution (OOD) samples can be beneficial to knowl-
edge distillation, but not all OOD samples are useful.

Theoretical Proof : When OOD samples Xo are used to assist distillation,
the distillation dataset Xd is changed from Xt to Xt ∪ Xo. Xt ∪ Xo follows
an unknown distribution Q(x). Q(x) is different from the real data distribution
P (x). Thus, we have:

Theorem 2. When ℓ is bounded, we have the following bound with probability
at least 1-δ:

R(Sθ, T, P (x)) ≤ R̂(Sθ, T,Xt ∪Xo) +

√
C + log 2

δ

2m
+D(P,Q) (4)

where m is the total number of the samples in Xt ∪Xo; D(P,Q) =∫
ℓ (T (x), Sθ(x)) (P (x)−Q(x)) dx.

As seen from (4), when the OOD samples are far from P (x), D(P,Q) is
large, which theoretically explains why not all samples are useful. On the con-
trary, when the OOD samples are not far from P (x), D(P,Q) is small and R̂ is

also small for CSTs. In this case, when m >
C+log 2

δ

2(Bp−D(P,Q))2 where Bp denotes the

error bound by only using Xt, the OOD samples are beneficial to distillation.
We thus theoretically prove Proposition 2.

We also provide an intuitive example in a 2D space about the usefulness of
OOD distillation in Figure 1. As shown in Figure 1(a), even if student S per-
fectly fits teacher T at each training data point, i.e., x1, x2, and x3, their local
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shapes near these samples can still be highly different. To mitigate this issue,
the typically used strategy is the regular data augmentation (e.g. padding and
cropping) formulated by the Vicinal Risk Minimization [2] principle. Neverthe-
less, it has a severe limitation that a newly generated data point is very close
to the original training data point, since they contain almost the identical ob-
jective only with different backgrounds caused by padding or cropping. Due to
this limitation, as shown in Figure 1(b), even if the student S fits the teacher T
at all the training data points plus the augmented data points (i.e., xaug

1 , xaug
2 ,

and xaug
3 ), their local shapes can still differ substantially. We thus propose to go

beyond in-distribution distillation by enforcing students to mimic the behavior
of teachers on OOD samples. As shown in Figure 1(c), OOD samples (i.e., x̂)
can assist the student to better capture the local, in-distribution shape of the
teacher function.

C Comparison with Both non-Data-Driven and
Data-Driven SOTA Approaches

PE is a data-driven approach, which is along a different line from the existing
state-of-the-art (SOTA) distillation approaches. The existing SOTA approaches
are not data-driven as they focus on using different criteria to align the repre-
sentations or the logits between students and teachers. We have shown in the
paper that PE is compatible with these approaches and enhances their perfor-
mances substantially. In this part, we compare PE with these SOTA approaches
including FitNet [8], AT [13], SP [10], VID [1], RKD [6], PKT [7], AB [3], FT
[4], CRD [9], and SSKD [12]. All these SOTA approaches use the standard data
augmentation strategy, except for SSKD using strong data augmentation in the
extra self-supervised task.

The comparison results with SOTA approaches on CIFAR-100 are reported in
Table 1. It is observed that PE betas these SOTA approaches significantly. Note
that although SSKD uses extra tasks (i.e., self-supervised learning tasks) and
extra data (i.e., strong data augmentation in self-supervised learning tasks), PE
is still able to outperform it. These observations demonstrate the superiority of
PE and the promise of addressing knowledge distillation from data perspectives.

The comparison results on Tiny ImageNet are reported in Table 2. It is
observed that PE also performs much better than these SOTA approaches, which
demonstrates the effectiveness of PE.

We further compare PE with SOTA approaches on large dataset ImageNet,
where we follow the existing literature to adopt ResNet34 and ResNet18 as the
teacher and the student, respectively. As shown in Table 3, PE also beats these
SOTA approaches on ImageNet significantly, which demonstrates the applica-
bility and usefulness of PE on large datasets.
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Table 1. Comparison results on CIFAR-100 in terms of test accuracy (%). Underline
denotes students matching or outperforming teachers.

Teacher
(#Params)

WRN-40-2
(2.26M)

resnet-110
(1.74M)

VGG-13
(9.46M)

ResNet32×4
(7.43M)

ResNet50
( 23.71M)

ResNet32×4
(7.43M)

WRN-40-2
(2.26M)

Student
(#Params)

WRN-16-2
(0.70M)

ResNet-32
(0.47M)

VGG-8
(3.97M)

ResNet8×4
(1.23M)

VGG-8
(3.97M)

ShuffleNetV2
(1.36M)

ShuffleNetV1
(0.95M)

Teacher 76.46 74.31 75.38 79.63 79.10 79.63 76.46
Vanilla Student 73.64 71.14 70.68 72.51 70.68 73.12 70.77

KD 74.92±0.28 73.08±0.18 72.98±0.19 73.33±0.25 73.81±0.13 74.45±0.27 74.83±0.17
GANKD 75.05±0.30 72.87±0.35 73.09±0.28 73.46±0.33 73.68±0.27 74.61±0.29 74.88±0.22
Mixup 75.56±0.15 73.67±0.22 74.58±0.27 75.86±0.30 75.15±0.23 77.63±0.20 77.05±0.29
ActiveMixKD 75.60±0.35 73.21±0.28 74.50±0.29 75.98±0.19 75.13±0.25 77.22±0.17 77.01±0.20
PE(Ours) 76.57±0.23 74.35±0.19 75.41±0.25 76.27±0.20 75.81±0.23 79.83±0.14 77.78±0.22

FitNet 75.75 71.06 73.54 74.31 73.84 75.11 75.55
AT 75.28 72.31 73.62 74.26 73.45 75.30 75.61
SP 75.34 72.69 73.44 74.74 73.86 75.15 75.56
VID 74.79 72.61 73.96 74.82 73.75 75.78 75.36
RKD 75.40 71.82 73.72 74.46 73.73 75.74 75.45
PKT 76.01 72.61 73.37 74.17 73.53 75.18 75.51
AB 68.89 70.98 74.27 74.45 74.20 75.66 76.58
FT 75.15 72.37 73.42 75.02 73.58 74.95 75.18
CRD 76.04 73.75 74.06 75.90 74.42 75.72 75.96
SSKD 76.04 73.60 75.33 76.20 75.76 78.61 77.40

Table 2. Comparison results on Tiny ImageNet.

Teacher WRN-40-2 VGG-13 WRN-40-2
Student WRN-40-1 VGG-8 VGG-8

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Teacher 61.84 84.11 61.62 81.71 61.84 84.11
Vanilla student 55.39 79.87 55.46 78.15 55.46 78.15

KD 56.25±0.15 81.11±0.19 60.19±0.21 81.61±0.30 58.25±0.25 82.51±0.18
GANKD 55.71±0.26 80.13±0.16 60.32±0.11 81.90±0.23 58.49±0.35 82.73±0.20
MixupKD 56.80±0.28 81.29±0.15 61.64±0.15 82.81±0.13 59.09±0.19 82.24±0.10
ActiveMixKD 56.66±0.16 81.52±0.30 61.23±0.29 83.07±0.12 59.09±0.14 82.24±0.19
PE (Ours) 58.74±0.17 82.59±0.13 62.40±0.29 83.57±0.16 59.91±0.18 82.98±0.07

FitNet 55.41±0.31 79.75±0.40 55.26±0.20 78.70±0.44 55.85±0.14 78.39±0.16
AT 55.84±0.41 80.03±0.18 56.82±0.46 80.35±0.37 56.62±0.19 79.27±0.12
SP 54.09±0.26 79.26±0.36 56.99±0.42 79.87±0.16 58.25±0.41 81.90±0.35
CC 55.10±0.43 79.05±0.30 54.14±0.19 77.45±0.23 54.61±0.30 78.27±0.19
VID 56.07±0.23 80.47±0.22 54.57±0.26 77.59±0.23 55.79±0.18 78.90±0.29
RKD 55.37±0.29 79.94±0.19 56.60±0.13 78.33±0.39 56.35±0.24 78.83±0.27
PKT 56.31±0.22 81.20±0.27 56.36±0.17 78.98±0.21 56.75±0.15 79.31±0.13
CRD 56.75±0.33 81.64±0.19 59.95±0.23 81.33±0.31 58.80±0.39 82.05±0.23
SSKD 56.90±0.37 81.75±0.21 59.87±0.27 81.15±0.10 58.89±0.33 81.95±0.17

D Implementation Details and Datasets

We first introduce the adopted benchmark datasets and the standard data aug-
mentation on each dataset as follows:
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Table 3. Comparison results on ImageNet with SOTA approaches.

Teacher Student KD AT SP CC SSKD CRD PE(ours)

Top-1 (%) 73.3 69.8 70.7 70.7 70.2 70.0 71.6 71.4 71.9
Top-5 (%) 91.4 89.1 89.9 90.0 89.8 89.2 90.7 90.5 90.7

CIFAR-100: CIFAR-100 is an image classification dataset with 100 classes,
containing 50,000 training images and 10,000 test images with image size 32 ×
32 in the RGB space. The standard data augmentation on CIFAR datasets is as
follows: during training time, 4 pixels are padded on each side of an image and
then are randomly flipped horizontally; finally the image is randomly cropped
to 32 × 32 size.

Tiny ImageNet: Tiny ImageNet i.e., a subset of ImageNet, is an image
classification dataset with 200 classes, containing 100,000 training images and
10,000 test images with size 64 × 64 in the RGB space. At training time, 8 pixels
are padded on each side of an image and then are randomly flipped horizontally;
finally the image is randomly cropped to 64 × 64 size.

ImageNet: ImageNet is a large-scale image classification dataset with 1000
classes, containing 1.28 million training images and 50,000 validation images with
different sizes in the RGB space. On ImageNet, we use the standard scale and
aspect ratio augmentation strategy. Test images are resized so that the shorter
side is set to 256, and then are cropped to size 224 × 224.

On the exploratory experiments, the architectures of SN2 and SN3 are:
Conv(128)-BN-AvgPooling(32)-FC and Conv(128)-BN-ReLU-Covn(256)-BN
-ReLU-AvgPooling(16)-FC, respectively.

We set α, β, and τ to 0.1, 0.9, and 4, respectively, on all the datasets except
on ImageNet where we follow the existing literature to set α = 1 and τ = 2.
Probability p of using BKR samples is set to 0.5 on ImageNet and 0.7 or 0.9
on the other two datasets. The other hyper-parameters can be found in Github
link: https://github.com/Xiang-Deng-DL/PEBKD
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