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Abstract. Knowledge distillation compresses a large model (teacher) to
a smaller one by letting the student imitate the outputs of the teacher.
An interesting question is why the student still typically underperforms
the teacher after the imitation. The existing literature usually attributes
this to model capacity differences between them. However, capacity dif-
ferences are unavoidable in model compression, and even large capacity
differences are desired for achieving high compression rates. By design-
ing exploratory experiments with theoretical analysis, we find that model
capacity differences are not necessarily the root reason; instead the distil-
lation data matter when the student capacity is greater than a threshold.
In light of this, we propose personalized education (PE) to first help each
student adaptively find its own blind knowledge region (BKR) where the
student has not captured the knowledge from the teacher, and then teach
the student on this region. Extensive experiments on several benchmark
datasets demonstrate that PE substantially reduces the performance gap
between students and teachers, even enables small students to outper-
form large teachers, and also beats the state-of-the-art approaches. Code
link: https://github.com/Xiang-Deng-DL/PEBKD
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1 Introduction

The successes of deep neural networks (DNNs) [23, 10] are accompanied with
the requirements of large amounts of computation and memory, which seriously
restricts their deployment on resource-limited devices. One widely used solution
is knowledge distillation (KD) [16] that compresses a large model (teacher) to
a small one (student) by enforcing the student to mimic the outputs of the
teacher. However, there is typically still a performance gap between them even
if the student has imitated the outputs of the teacher. Figuring out the reason
for this gap is essential for further improving the student performance.

Mirzadeh et al. [27] argue that the model capacity difference causes the fail-
ure for transferring the knowledge from a large teacher to a small student, thus
leading to a performance gap. Similarly, Cho and Hariharan [5] point out that as
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Fig. 1. Overview of PE

the teacher grows in capacity and accuracy, it is difficult for the student to emu-
late the teacher. However, the capacity reason is trivial for improving the student
performance, since capacity differences are unavoidable in model compression.
More essentially, large capacity differences are desired in model compression for
achieving high compression rates. In light of this, we conduct simulation experi-
ments (in Section 4) and find that in most experimental settings of the existing
literature [34], the reason for the performance gap is not necessarily the capacity
difference as the student is powerful enough to memorize the teacher’s outputs.
Instead, the reason lies in distillation data on which the knowledge is transferred.

In reality, it is not rare for human students to do better than their teachers.
These excellent human students not only well capture the knowledge from their
teachers but also learn more related knowledge on their own. This gives an
insight for students in KD to match or outperform their teachers. We find that
the students in KD have not well captured the knowledge from their teachers
as they only mimic the behavior of the teachers on sparse training data points.
We thus propose to go beyond the sparse, in-distribution distillation. However,
simply going beyond distribution may not be optimal as different students master
different levels of knowledge from the teacher. Similar to human students needing
personalized education based on their own situations, we propose personalized
education (PE) for KD to assist each student to spot and learn its own blind
knowledge region (BKR) where the student fails to learn well from the teacher.

As image samples lie in a large, high-dimensional space, directly learning the
BKRs in the full space is impossible and also not all samples in the large space
are beneficial to the student. We thus learn BKR from a prior region where the
samples share similar patterns with the training data (in-distribution) samples.
We propose MixPatch as the prior region that linearly combines the patches in
two images with different coefficients. MixPatch is inspired by but different from
Mixup [43] that linearly combines two full images with a coefficient. Mixup is
thus a special case of MixPatch when the patch size in MixPatch is set to the full
image size. MixPatch theoretically can generate any image when the patch size
is set to 1×1. MixPatch is also different from CutMix [40] that cuts a patch from
one image and pastes it to another image. Unlike Mixup and CutMix, MixPatch
is specially designed for KD instead of standard supervised learning, since it is
almost impossible to directly generate the corresponding labels for MixPatch
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images in standard supervised learning while Mixup and CutMix can linearly
combine the ground-truth labels to generate labels for new samples. Thanks to
the pretrained teacher which can provide supervision signals, MixPatch can be
specially used in KD. With MixPatch as the prior region, as shown in Figure 1,
PE first lets a student interact with the teacher to find its own BKR from the
prior region and then lets it learn from the teacher on the BKR.

Our main contributions are summarized as follows:

– Different from the common belief that model capacity differences result in
the performance gap between small students and large teachers, we find
through designing exploratory experiments that capacity differences are not
necessarily the root reason but the distillation data matter when student
capacities are greater than a threshold.

– Different from the existing work focusing on designing different criteria
to align representations or logits between teachers and students, we study
knowledge distillation from a novel (data) perspective and accordingly pro-
pose personalized education (PE). PE goes beyond in-distribution distilla-
tion and adaptively learns the BKR for each student from a prior region.

– We propose a novel, simple yet effective data augmentation strategy (i.e.,
MixPatch) specially designed for KD, which addresses the limited image
diversity issue of Mixup. It can be separately used or serve as a part of PE
to enhance the student performance.

– Extensive experiments on several benchmark datasets demonstrate that PE
reduces the student-teacher performance gap substantially, even enables small
students to match or outperform large teachers, and also betas the existing
SOTA approaches significantly. Furthermore, PE is also compatible with the
existing SOTA approaches to further largely improve their performances.

2 Related Work

Knowledge Distillation. Hinton et al. [16] propose KD that trains a student
network by using the softened logits of a teacher network as the targets. Different
from one-hot labels, the soft targets contain instance-to-class similarity informa-
tion (i.e., dark knowledge) learned by the teacher. However, KD only transfers
the logits but fails to transfer the representations. Many approaches thus have
been proposed to align the representations learned by a student and a teacher.
Fitnets [31] lets a student imitate the intermediate features of a teacher through
regressions. CRD [34] transfers representations by using contrastive learning.
SSKD [38] uses extra self-supervised learning tasks to enhance the knowledge
transfer. Other distillation approaches [42, 17, 39, 33, 37, 29, 28, 14, 15, 5, 2, 21, 1,
12, 24, 45, 44, 19, 8, 4, 18, 9, 3, 7] utilize different criteria to align the feature repre-
sentations or logits between a teacher and a student. Different from these efforts
focusing on designing different fitting criteria, we address knowledge distillation
from a data perspective by exploring the blind knowledge regions for students.
Teacher-Student Performance Gaps. Mirzadeh et al. [27] observe that the
model capacity gap results in the failure for transferring knowledge from a large
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teacher to a small student, thus causing a performance gap. To reduce this gap,
they propose a multi-step KD framework by using several intermediate-size net-
works (teacher assistants). However, the students still underperform the teachers
substantially. Cho and Hariharan [5] argue that as the teacher grows in capacity
and accuracy, it is difficult for the student to emulate the teacher. To reduce
the influence of the large capacity gap, they regularize both the teacher and the
distillation process by early stopping. We find that capacity differences are not
necessarily the root reason when student capacities are greater than a threshold.
Mixup. MixPatch is proposed as a prior region in PE, which is inspired by
Mixup [43] and aims to address the image diversity issue of Miuxp. Mixup [43]
linearly interpolates a pair of training samples and their one-hot labels to gener-
ate new data. Linear combination of samples can preserve some patterns in the
original samples, which can be beneficial to model learning. However, the sim-
ple linear interpolation can only generate limited samples, which is not enough
for PE to learn the BKR. We thus propose MixPatch to address this issue by
linearly combining the patches in two images with different coefficients. Mixup
is thus a special case of MixPatch when the patch size in MixPatch is set to
the image size. Furthermore, setting the patch size to 1 pixel can theoretically
generate any image in the sample space. MixPatch is also substantially different
from CutMix [40] where the patch is cut from one image and pasted into another
image. Another related technique is ActiveMixup [36] which uses Mixup to gen-
erate a big image pool and then actively selects the images that the classifier
has a low confidence on. However, the strategy ignores critical images that the
classifier has a high confidence on but with a wrong prediction. The proposed
PE addresses this issue by letting the student interact with the teacher to find
its own BKR.

3 Reformulating KD

KD [16] aligns the outputs of a student and a teacher over training data Dt =
(Xt, Yt) = {(xi, yi)}ni=0 where Xt and Yt are the training samples and the ground
truth, respectively. The complete objective is written as:

LKD =
∑

(xt,yt)∈Dt

[αLCE(Sθ(xt), yt) + βLKL(Sθ, T, xt)] (1)

where α and β are the weights for balancing the contributions of the two terms;
Sθ and T denote a student network with parameters θ and a pretrained teacher
network, respectively; LCE is the regular cross-entropy loss; LKL is the distilla-
tion loss for transferring knowledge from the teacher to the student:

LKL (Sθ, T, xt) = τ2K
(
σ

(
T (xt)

τ

)
, σ

(
Sθ (xt)

τ

))
(2)

where σ is the softmax function; τ is a temperature to generate soft labels;
K denotes KL-divergence. KD can be considered as using a function Sθ to fit
another function T .
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Note that in (1), LCE requires both data samples Xt and the correspond-
ing ground truth Yt while LKL only needs data samples Xt for distilling the
teacher knowledge. In light of the difference, we consider KD from a semi-
supervised perspective and reformulate (1) in a more general form:

L =
∑

(xt,yt)∈(Xt,Yt)

αLCE(Sθ(xt), yt) +
∑

xd∈Xd

βLKL(Sθ, T, xd) (3)

where we introduce a new concept: distillation dataset Xd is a set of samples
on which the knowledge is transferred from a teacher to a student. The first term
in the right hand side of (3) is supervised while the second term is unsupervised.
It is obvious that the widely used objective (1) is a special case of (3) when Xd

is set to Xt.

4 Why Small Students Underperform Large Teachers?

In this section, we systematically examine the reason for the performance gap
between small students and large teachers. We first introduce several definitions.

Definition 1. Memorization Error (ME): For a given task with data sample
distribution P (x), ME measures the degree of a student Sθ fitting the outputs of
a teacher T over P (x):

E(Sθ, T, P ) = E
x∼P (x)

M(T (x) , Sθ (x)) (4)

where M denotes a distance metric such as KL-divergence or mean square error.

When ME is (or extremely close to) 0, it means that the student can completely
memorize the outputs of the teacher over the data distribution. In this paper,
we take KL-divergence as M .

Definition 2. Capable Students (CSTs) and Incapable Students (ISTs): net-
work Sθ is a CST of teacher T on a task with data sample distribution P if there
exists θ such that E(Sθ, T, P )=0; otherwise, it is an IST.

Note that whether a student is a CST or IST is determined by its own capac-
ity, the complexity of the teacher function T , and the task data distribution
P . Obviously, a CST is able to fully fit the teacher outputs over data distri-
bution P (x). In contrast, an IST does not have the capacity to fit the teacher.
For ISTs, the common belief holds that the student-teacher capacity gap causes
the performance gap. For example, we cannot expect a two-layer neural net-
work with 1000 parameters to fit the outputs of ResNet-101 with 1.7M parame-
ters on CIFAR-100. However, in the current SOTA approaches and applications
[34], the commonly used students are modern neural network architectures, such
as ResNet-32, ResNet8×4, VGG-8, and WRN-16-2. We empirically show that
these models are CSTs on commonly used benchmark datasets, i.e., CIFAR-10,
CIFAR-100, and Tiny ImageNet.
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Table 1. ME of different networks on CIFAR-10, CIFAR-100, and Tiny ImageNet. All
the values are accurate to 1 decimal place.

Teacher
(#Params)

WRN-40-2
(2.26M)

VGG-13
(9.46M)

ResNet32×4
(7.43M)

ResNet-110
(1.74M)

ResNet32×4
(7.43M)

VGG-13
(9.46M)

VGG-13
(9.46M)

Student
(#Params)

WRN-16-2
(0.70M)

VGG-8
(3.97M)

ResNet8×4
(1.23M)

ResNet-32
(0.47M)

ShuffleNetV2
(1.36M)

SN2
(0.0284M)

SN3
(0.0298M)

CIFAR-10 0.0 0.0 0.0 0.0 0.0 1.7 0.1

CIFAR-100 0.0 0.0 0.0 0.0 0.0 2.4 0.3

Tiny ImageNet 0.0 0.0 0.0 0.0 0.0 4.2 1.9

To check whether student Sθ is a CST of teacher T on a task, we mini-
mize ME to check whether E(Sθ, T, P ) can achieve 0. However, in practice, it
is impossible to calculate E(Sθ, T, P ) as the data distribution P is typically un-
known. Fortunately, we have the access to a set of training data (Xt, Yt). With
the training data, we approximate ME E(Sθ, T, P ) with the empirical error:

Eem(Sθ, T,Xt) =
1

|Xt|
∑

xt∈Xt

M(T (xt) , Sθ (xt)) (5)

For comparison, we also evaluate two tiny neural networks which are ex-
pected to be ISTs, i.e., SN-2 and SN-3 with two and three layers, respectively.
We report the ME in Table 1, where we adopt the students and the teachers that
share the same architectures (e.g., WRN-40-2 and WRN-16-2) or use different ar-
chitectures (e.g., ResNet32×4 and ShuffleNetV2). As expected, the widely used
students achieve ME 0.03 on all the three benchmark datasets while the tiny
networks (i.e., SN2 and SN3) have large ME (e.g., 2.4 and 4.2), which demon-
strates that the widely used students are CSTs. However, as shown in Table 2,
these students (i.e., KD) after distillation still underperform the teachers by a
significant margin on the test data. This indicates that these students have well
learned the knowledge on sparse training data points but have not well captured
the local function shapes of the teachers within the data distribution so that
they fail on the test data. This suggests the following proposition:

Proposition 1 In KD, for CSTs, only fitting the teacher function on sparse
training data points cannot enable them to well capture the in-distribution func-
tion shape of the teacher (i.e., in-distribution knowledge), thus leading to a per-
formance gap. For ISTs, capacity differences cause the performance gap.

We further conduct exploratory experiments to verify this proposition and
the theoretical proof of the proposition is given in Appendix A. The exploratory
experiments compare the student performances in the following two settings:
(a) setting the distillation dataset to training data points; (b) setting the distil-
lation dataset to real data distribution P (x). As P (x) is typically unknown in

3 Note that all the ME values in Table 1 are accurate to 1 decimal place. 0.0 is not
exact 0 but is extremely close to 0.
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Table 2. Simulation results on CIFAR-100 in terms of test accuracy (%). Underline
denotes that small students outperform large teachers.

Teacher ResNet32×4 WRN-40-2 VGG-13 ResNet32×4 VGG-13 VGG-13
Student ResNet8×4 WRN-16-2 VGG-8 ShuffleNetV2 SN2 SN3

Teacher 79.63 76.46 75.38 79.63 75.38 75.38
Vanilla Student 72.51 73.64 70.68 73.12 26.29 55.31

Student Type CST CST CST CST IST IST

KD 73.33 74.92 72.98 74.45 26.04 55.32
Simulation KD 79.91 78.46 77.99 81.64 25.58 57.50

practice, we conduct a simulation experiment on CIFAR-100. We suppose that
the union of the training dataset and the test dataset in CIFAR-100 can accu-
rately represent the real data distribution for this task. Then we randomly draw
data samples from the vicinity around the training data and the test data as
the distillation dataset, i.e., Xd in Eq. (3). Consequently, the distillation dataset
can sufficiently represent the real data sample distribution. Note that in this
experiment, we never spy the ground truth of the test samples, since the
distillation datasetXd does not use ground truth as shown in Eq. (3). This means
that the students are trained without any additional supervision compared with
the teachers as training datset (Xt, Yt) in Eq. (3) does not change. Since CSTs
are able to fully memorize the outputs of the teachers, we expect them to achieve
the same accuracies as or higher accuracies than those of the teachers. In con-
trast, we expect ISTs to achieve lower accuracies than those of the teachers.
Table 2 shows the simulation results. As expected, all the CSTs outperform the
teachers in the simulation experiments (i.e., Simulation KD). This is due to the
following facts: first, by using the simulated distillation dataset, the distillation
objective in Eq. (3) makes the CSTs fully capture the knowledge of the teachers
within the data distribution; second, the cross-entropy objective in Eq. (3) en-
ables the CSTs to learn their own knowledge. Consequently, CSTs contain both
the teacher knowledge and the knowledge learned on their own, which results in
better performances than those of the teachers. SN2 and SN3 still underperform
the teachers in the simulation experiments due to their limited capacities. These
results empirically validate the proposition.

The simulation experiments also suggest a way for CSTs to outperform large
teachers. That is to sufficiently distill the knowledge from the teachers with a
well representative distillation dataset. Unfortunately, it is impossible to have
such a distillation dataset as the real data sample distribution P (x) is typically
unknown in reality. As directly modelling the high-dimensional data distribution
from sparse data points is even more difficult than training the classifier itself,
we propose to go beyond in-distribution distillation by using out-of-distribution
(OOD) samples to assist distillation based on the following proposition:

Proposition 2 Out-of-distribution (OOD) samples can be beneficial to knowl-
edge distillation, but not all OOD samples are beneficial.

The theoretical proof of this proposition is given in Appendix B.



8 X. Deng et al.

5 Personalized Education

Although OOD samples can be useful for KD, simply going beyond the distribu-
tion may not be optimal, given the fact that different students master different
levels of knowledge from the teacher. We thus further propose personalized ed-
ucation (PE) which automatically spots the blind knowledge region (BKR) for
each student where the student has not well learned from the teacher. Due to
the large, high-dimensional image space, finding the beneficial BKR from the full
space is difficult or even impossible. We thus learn the BKR from a prior region
where the OOD samples share similar local patterns to the original training data
(i.e., in-distribution data).

5.1 MixPatch

Mixup [43] linearly interpolates two training images to generate a new image
which can preserver or share similar patterns to the original images. However, the
diversities of the generated images are limited by the simple linear interpolation.
CutMix [40] suffers a similar issue as it only cuts one patch from one image and
pastes it to another image. To increase the image sample diversity and preserve
similar local patterns to the original image, we propose MixPatch that linearly
interpolates the patches in two images with different coefficients.

MixPatch has two hyper-parameters, i.e., patch size sh×sw where sh and sw

(a) sh×sw is set
to 56×56.

(b) sh×sw is set
to 80×80.

Fig. 2. An image of size 224×224 are
split into patches with different sh×sw.

are the height and width of the patch,
and beta-distribution parameter a that
is used to generate the coefficients. Sup-
pose that the image size is h × w where
h and w are the height and the width of
the image, respectively (the channel size is
omitted here); then the image is split into
m = ⌈ h

sh
⌉×⌈ w

sw
⌉ patches, where ⌈x⌉ is the

ceiling function that returns the smallest
integer that is greater than or equal to x.
When h and w are divisible by sh and sw
respectively, the sizes of the m patches are
all equal to sh × sw. One intuitive example is given in Figure 2(a) where all the
16 patches are 56×56. On the contrary, when the image size is not divisible by
the patch size, some of the patches have a size smaller than sh × sw, with one
example shown in Figure 2(b) where 80× 64 smaller than 80× 80.

Each images xi can thus be represented by m patches, i.e., [hi0, hi1, ..., him],
where hij is the jth patch in image xi. MixPatch generates a new image x̂z by
linearly combining the patches of two random training images xi and xk with
different coefficients:

ĥzj = λjhij + (1− λj)hkj , j = 0, 1, 2, ...,m (6)

where ĥzj is the jth patch of new sample x̂z, i.e., x̂z = [ĥz0, ĥz1, ..., ĥzm], and
λj ∼ Beta(a, a) where a is the beta-distribution parameter.
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We can see that when patch size sh × sw is set to image size h×w, MixPath
is reduced to Mixup, which indicates that Mixup is a special case of MixPatch.
Furthermore, when patch size is set to 1 × 1 (i.e., 1 pixel), MixPatch is able to
generate any images by tuning λj but loses the information of the local patterns
in the original images. Therefore, the patch size controls the contributions of
the new image diversity and the local pattern information. Another difference
between MixPatch and Mixup is that MixPatch is specially designed for KD as it
is difficult to directly generate labels for these new images in standard supervised
learning. Thanks to the pretrained teacher in KD, the student can make use of
these MixPatch samples by imitating the outputs of the teacher on them.

MixPatch samples can be used in two ways to assist distillation. One way
is to directly use them to enhance the student knowledge by manually tuning
and then freezing hyper-parameter patch size sh × sw and parameter a, but it
may not be the optimal. The other way is to adaptively update the patch size
and the distribution parameter by letting the student interact with the teacher
during the training process.

5.2 Blind Knowledge Region Discovery

PE aims to help each small student spot its own BKR from a prior region by
the interaction with the teacher. We propose a gradient-free search strategy to
find the BKR for each student from the MixPatch prior region. Since the input
images to modern DNNs are typically fix-sized with the height equal to the width
(e.g., 224 × 224 for ImageNet image), for simplicity, we use one parameter s to
represent the patch size by assuming s = sh = sw, and one parameter h to
denote the image size by assuming h = w.

The MixPatch region is then determined by two hyper-parameter a and s
that control coefficient (i.e., λ) distribution and the patch size, respectively. PE
spots the BKR for a student from a set of candidate regions. The candidate
values for a are typically set to a = {0.1, 0.5, 1.0} and those for s are set to
s = {h, h

2 , ...,
h
n} where n is an integer. As a BKR is where the student has

not well learned the knowledge from the teacher, we can search the BKR by
maximizing the output differences of the student and the teacher on the prior
region:

argmaxa,s E
x̂∼MixPatch(a,s)

LKL(Sθ, T, x̂), for a ∈ a s ∈ S (7)

PE adaptively searches the BKR with (7) every k epochs to update a and s.
Note that this search process is very fast as it is gradient-free.

The BKR samples are then added to the distillation dataset Xd in Eq. (3).
PE thus can be considered as a data-driven approach that enhances the student
by enforcing it to mimic the behavior of the teacher on its own BKR:

LPE = LKD +
∑

x̂∈BKR

LKL(Sθ, T, x̂) (8)

where BKR = MixPatch(a, s); a and s are the optimally identified values by (7)
and updated every k epochs. By adaptively learning the BKR, PE is expected to



10 X. Deng et al.

Table 3. Effects of different components in PE.

Teacher Student Teacher Vanilla student KD KD+Mixup KD+MixPatch PE

WRN-40-2 WRN-16-2 76.46 73.64 74.92 75.56 75.94 76.57

VGG-13 VGG-8 75.38 70.68 72.98 74.58 74.93 75.41

Fig. 3. Effects of p. Fig. 4. Effects of update interval k.

enhance CSTs to match the performance of the teacher or largely reduce their
performance gap.

6 Experiments

In this section, we aim to answer the following questions:
Q1: Ablation studies regarding MixPatch and the personalized education in PE.
Q2: Can PE enable small students to outperform large teachers or substantially
reduce their performance gap?
Q3: Can PE outperform other similar data-driven approaches?
Q4: Is PE compatible with other SOTA distillation approaches?
Q5: Does PE indeed reduce teacher-student function shape differences?
Q6: What do the BKR images from the MixPatch prior region look like?

The experiments are conducted on the three widely used knowledge distilla-
tion benchmark datasets, i.e., CIFAR-100 [22], Tiny ImageNet 4, and ImageNet
[6]. For a fair comparison, we adopt the architectures used in the existing litera-
ture (we have shown that most of them are CSTs in Section 4.) including
ResNet [13], WRN [41], VGG [32], and ShuffleNet [26].

6.1 Answers to Q1

The ablation studies are conducted on CIFAR-100 with two teacher-student pairs
of WRN-40-2 and WRN-16-2, and VGG-13 and VGG-8.

Effects of the Components in PE. PE uses the proposed MixPatch as
the prior region, which is inspired by Mixup. We thus first show the superiority
of MixPatch over Mixup and then show the effectiveness of (7) for spotting
BKRs. As shown in Table 3, KD+MixPatch performs better than KD+Mixup on
both pairs of teachers and students, which validates the superiority of MixPatch

4 https://tiny-imagenet.herokuapp.com
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Table 4. Comparison results on CIFAR-100 in terms of test accuracy (%). Underline
denotes students matching or outperforming teachers.

Teacher
(#Params)

WRN-40-2
(2.26M)

resnet-110
(1.74M)

VGG-13
(9.46M)

ResNet32×4
(7.43M)

ResNet50
( 23.71M)

ResNet32×4
(7.43M)

WRN-40-2
(2.26M)

Student
(#Params)

WRN-16-2
(0.70M)

ResNet-32
(0.47M)

VGG-8
(3.97M)

ResNet8×4
(1.23M)

VGG-8
(3.97M)

ShuffleNetV2
(1.36M)

ShuffleNetV1
(0.95M)

Teacher 76.46 74.31 75.38 79.63 79.10 79.63 76.46
Vanilla Student 73.64 71.14 70.68 72.51 70.68 73.12 70.77

KD 74.92±0.28 73.08±0.18 72.98±0.19 73.33±0.25 73.81±0.13 74.45±0.27 74.83±0.17
GANKD 75.05±0.30 72.87±0.35 73.09±0.28 73.46±0.33 73.68±0.27 74.61±0.29 74.88±0.22
Mixup 75.56±0.15 73.67±0.22 74.58±0.27 75.86±0.30 75.15±0.23 77.63±0.20 77.05±0.29
ActiveMixKD 75.60±0.35 73.21±0.28 74.50±0.29 75.98±0.19 75.13±0.25 77.22±0.17 77.01±0.20
PE(Ours) 76.57±0.23 74.35±0.19 75.41±0.25 76.27±0.20 75.81±0.23 79.83±0.14 77.78±0.22

over Mixup for assisting KD. Furthermore, personalized education (PE) further
enhances the performances of KD+MixPatch significantly on both pairs, even
beating the teachers, which indicates the effectiveness of Eq. (7) for spotting
BKRs.

Effects of the Number of BKR Samples. PE can theoretically find
infinite BKR samples to assist distillation. However, the diversity of them is also
limited by the original data. We randomly use the BKR samples with probability
p and the training samples with 1−p as the distillation data in each optimization
step so that we can control the number of BKR samples. Figure 3 presents
the effects of p on CIFAR-100. As expected, with the number of BKR samples
increasing, the performance first increases and then becomes stable.

Effects of the Update Frequency. PE updates the BKR every k epochs in
the training process. The effects of k are presented in Figure 4. It is observed that
overall the performance of PE is not sensitive to k. However, when the BKR is
updated too frequently (i.e., too small k), the student cannot have enough epochs
to learn the current BKR, which leads to an inferior performance. Similarly, when
the update frequency is too small, the performance of the student is also inferior,
since not enough BKRs are found in the training process.

6.2 Answers to Q2 and Q3

We examine whether PE can indeed enable small students to outperform large
teachers or substantially reduce their performance gap and compare it with the
approaches along the same line. PE is a data-driven approach while the existing
approaches focus on using different criteria to align the representations or logits
of the teacher and the student. We thus design three data-driven baselines for
reference (the comparison with non-data-driven SOTA approaches such as CRD
[34] and SSKD [38] is reported in Appendix C):
(1) GANKD: As analysed in Section 4, only fitting the teacher outputs at
sparse data points cannot enable students to well capture the in-distribution
shape of the teacher function. One natural idea is to use generative adversarial
networks (GANs) [11, 25] to learn the data distribution and then use the gener-
ator to generate fake data to assist distillation.
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Table 5. Comparison results on Tiny ImageNet.

Teacher WRN-40-2 VGG-13 WRN-40-2
Student WRN-40-1 VGG-8 VGG-8

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Teacher 61.84 84.11 61.62 81.71 61.84 84.11
Vanilla student 55.39 79.87 55.46 78.15 55.46 78.15

KD 56.25±0.15 81.11±0.19 60.19±0.21 81.61±0.30 58.25±0.25 82.51±0.18
GANKD 55.71±0.26 80.13±0.16 60.32±0.11 81.90±0.23 58.49±0.35 82.73±0.20
MixupKD 56.80±0.28 81.29±0.15 61.64±0.15 82.81±0.13 59.16±0.19 82.10±0.10
ActiveMixKD 56.66±0.16 81.52±0.30 61.23±0.29 83.07±0.12 59.09±0.14 82.24±0.19
PE (Ours) 58.74±0.17 82.59±0.13 62.40±0.29 83.57±0.16 59.91±0.18 82.98±0.07

(2) MixupKD5: MixupKD uses Mixup 6 samples to assist distillation.
(3) ActiveMixKD: ActiveMixup [36] is originally proposed to train a classifier
in data-few cases. It first uses Mixup to generate an image pool and then selects
the images that the classifier has a low confidence on. ActiveMixKD adds these
ActiveMixup samples to the distillation dataset.

CIFAR-100 The performances on CIFAR-100 are reported in Table 4. It is
observed that there is an obvious performance gap between the students and the
teachers in KD for different pairs. By enhancing each student on its own BKR,
PE enables small students to match or outperform large teachers on five of
the seven teacher-student pairs, and also substantially reduces the performance
gap on the other two pairs. For example, the performance gap between teacher
ResNet32×4 and student ResNet8×4 is reduced from 6.30 (KD) to 3.36 (PE).
Note that there is no guarantee for PE to make small students match or out-
perform teachers as the BKR in PE cannot fully compensate for the unknown
data sample distribution. Furthermore, PE also outperforms the data-driven
competitors significantly. The reason for the superior performances of PE over
GANKD is that modelling high-dimensional data distribution from sparse data
points is even more challenging than training the classifier itself, which results in
a nontrivial data discrepancy between the generated images and the real train-
ing images. This also causes that GANKD sometimes even underperforms KD.
PE also beats ActiveMixKD significantly, since ActiveMixup ignores the critical
samples that the student has a high confidence but with a wrong prediction and
it also fails to interact with the teacher. In contrast, PE adaptively spots the
BKRs for each student by interacting with the teacher. PE also outperforms
Mixup due to the diverseness of MixPatch images in PE.

Tiny ImageNet We further evaluate PE on Tiny ImageNet. As shown in Table
5, PE beats all the competitors in terms of both Top-1 and Top-5 accuracies on

5 CutMix performs almost the same with Mixup for assisting KD but is slower so that
we simply adopt Mixup as the baseline here.

6 The core code for this baseline is borrowed from this publicly accessible implemen-
tation: https://github.com/facebookresearch/mixup-cifar10.



PE: BKD 13

Fig. 5. Comparison on ImageNet

all the three pairs, and even enables the small student VGG-8 to significantly
outperform the teacher VGG-13, which demonstrates the superiority of PE and
the promise of addressing knowledge distillation from data perspectives.

ImageNet To investigate whether PE is applicable to large scale datasets, we
conduct experiments on ImageNet. We follow CRD [34] to use ResNet-34 and
ResNet-18 as the teacher and the student, respectively. As shown in Figure 5,
by exploring the knowledge in the BKR, PE reduces the teacher-student perfor-
mance gap significantly and also outperforms the competitors in terms of Top-1
and Top-5 accuracies, which demonstrates the applicability and usefulness of PE
on large scale datasets. Nevertheless, the small student still underperforms the
large teacher. Further examination reveals that ResNet-18 is an IST of ResNet-
34 on the large and complex dataset ImageNet with ME 0.8, which indicates that
the capacity difference can be the reason for the performance gap on ImageNet.

6.3 Answers to Q4

We further explore whether PE can be generalized to other SOTA distillation ap-
proaches inlcuding FitNet [31], AT [42], SP [35], CC [30], VID [2], RKD [28], PKT
[29], AB [15], FT [20], NST [17], CRD [34], and SSKD [38]. The BKR searched
by PE is used to enhance these SOTA approaches. We use WRN-40-2 and WRN-
16-2 as the teacher and the student, respectively. Table 6 reports the results on
CIFAR-100. It is observed that the enhanced counterparts (PE+Methods) con-
sistently and substantially outperform the original methods even for the strong
baselines like CRD and SSKD, which demonstrates the compatibility and use-
fulness of PE on different distillation approaches.

6.4 Answers to Q5

We further investigate whether students trained by PE indeed better capture the
local, in-distribution shapes of the teachers than those trained by KD. The local
shape of a function can be represented by a set of points (x, y) on the function
graph where x is the input and y is the function output. To measure the shape
difference, we report the average mean square student-teacher output logit
differences (S-T DIFs) by using test data as inputs. As shown in Table 7,
S-T DIFs of PE are consistently smaller than those of KD on all the seven pairs,
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Table 6. Generalization (or Compatibility) of PE on SOTA distillation methods.

FitNet AT SP CC VID RKD PKT AB FT NST CRD SSKD

Methods 75.75 75.28 75.34 75.09 74.79 75.40 75.33 68.89 75.15 74.67 76.04 76.04

PE+Methods 76.63 76.37 75.50 75.88 75.78 76.49 76.23 72.20 75.48 75.86 76.81 76.45

Table 7. S-T DIFs (shape differences) on CIFAR-100

Teacher WRN-40-2 resnet-110 VGG-13 ResNet32×4 ResNet-50 ResNet32×4 WRN-40-2
Student WRN-16-2 resnet-32 VGG-8 ResNet8×4 VGG-8 ShuffleNetV2 ShuffleNetV1

KD 2.39 3.74 1.55 2.06 1.90 1.23 2.13
PE 1.74 2.92 1.15 1.53 1.37 0.77 1.52

Fig. 6. MixPatch images from the BKR on ImageNet.

which validates that the student shapes of PE are closer to the teacher shapes
and indicates that the BKRs in PE are indeed beneficial to the students for
capturing the local shapes of the teacher functions.

6.5 Answers to Q6

PE adaptively learns the BKR from the MixPatch prior region for a student
by interacting with the teacher. We show some BKR samples in Figure 6. It is
observed that these samples share similar local patterns with the original images.

7 Conclusion

In this paper, we study why small students typically underperform large teach-
ers in KD and how they can outperform large teachers. Through designing ex-
ploratory experiments with theoretical analysis, we find that model capacity
differences are not necessarily the root reason and the distillation data mat-
ter when the student capacity is greater than a threshold. Inspired by this,
we propose to our best knowledge the first personalized distillation approach
PE that goes beyond in-distribution distillation and adaptively learns the blind
knowledge region for each student through interacting with the teacher. Exten-
sive experiments demonstrate that PE substantially reduces the student-teacher
performance gap and even enables small students to outperform large teachers.
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