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Appendix

The appendix provides more details about the main paper in both methods in
Sec.A and experiments in Sec.B.

A More Details about SFDA

A.1 Interpretation of weighted Kendall’s tau

The Kendall’s τ represents the ratio of concordant pairs minus discordant pairs

when enumerating all
(
M
2

)
pairs of {Tm}Mm=1 and {Gm}Mm=1 as given by

τ =
2

M(M − 1)

∑
1≤i<j≤M

sgn(Gi −Gj)sgn(Ti − Tj) (10)

where sgn(x) is a sign function returning 1 if x > 0 and −1 otherwise. Moreover,
we use a weighted version of Kendall’s τ , denoted as τw, to evaluate transfer-
ability metrics considering that a best performing pre-trained model is always
preferred for target task in transfer learning. τw can measure the ranking per-
formance of top performing models. In principle, a larger τw indicates the trans-
ferability metric can produce a better ranking for pre-trained models.

A.2 Algorithm of SFDA

Algorithm 1 Pipeline of SFDA.

1: Input: target dataset T = {(xn, yn)}Nn=1; M pre-trained models {ϕm}Mm=1;
2: Hyper-parameters: a = 4 in Eqn.(3) to generate the regularization coefficient.
3: Output: the transferability scores of SFDA, {Tm}Mm=1;.
4: Set: self-challenge = True
5: for m = 1 to M do
6: calculate: static representations x̂ = θm(x).
7: split: T = {x̂(1)

n }N1
n=1 ∪ · · · ∪ {x̂(C)

n }NC
n=1.

8: calculate: µ =
∑N

n=1 x̂n, µc =
∑Nc

n=1 x̂
(c)
n . ▷ total mean and class mean.

9: calculate: SW =
∑C

c=1

∑Nc
n=1(x̂

(c)
n − µc)(x̂

(c)
n − µc)

T. ▷ within scatter.
10: calculate: SB =

∑C
c=1 Nc(µc − µ)(µc − µ)T. ▷ between scatter.

11: calculate: λ = 1/(1 + exp−aσ(SB)). ▷ regularization strength.
12: solve U : SBU = [tr(UTSBU)/tr(UTS̃WU)]S̃WU in Eqn.(4).
13: calculate: updated representations x̃ = UTx̂ in Fisher Space.
14: calculate: δc(x̂n) = x̂n

TUUTµc − 1
2
µc

TUUTµc + log qc.

15: calculate: p(yn|xn) = expδyn (x̂n) /
∑C

c=1 exp
δc(x̂n)

16: if self-challenge then
17: calculate: x̂n = pnx̂n + (1− pn)µc̸=yn ▷ ConfMix Noise.
18: Set: self-challenge = False
19: turn to line 7.
20: end if
21: Calculate: Tm = 1

N

∑N
n=1 log p(yn|xn). ▷ Transferability score of SFDA.

22: end for
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Supervised ResNet-50 Infomin ResNet-50

(a) t-SNE of !𝑥 with supervised ResNet-50 (b) t-SNE of !𝑥 with Infomin ResNet-50

Fig. 5. (a & b) show that Infomin ResNet-50 has a larger within scatter of classes than
its supervised counterpart on CIFAR-10 dataset.

Algorithm 1 illustrates the whole pipeline of our proposed SFDA. As we can
see, SFDA consists of a two-stage Reg-FDA. The Reg-FDA in the second stage
challenges the Reg-FDA in the first stage by the proposed ConfMix noise. SFDA
has an obvious advantage compared with previous transferability metrics such
as LogME, because it explicitly projects static features {x̂n}Nn=1 into a Fisher
space where features exhibits better linear separability as shown in line 13 in
Algorithm 1. Besides, the updated features {x̂n}Nn=1 becomes more discrimina-
tive in classification difficulty, behaving more like finetuning than other metrics.
Moreover, SFDA is fast to obtain, as it requires no gradient optimization and
only involves generalized eigenvalue problem.

Note that the largest eigenvalue of σ(SB) in line 11 of Algorithm 1 can
be obtained by iteration method [6]. Specifically, we calculate σ(SB) by the
following iteration. For s = 1, 2 · · ·S,

vs = SB
Tus−1/∥SB

Tus−1∥2 and us = SB
Tvs/∥SB

Tvs∥2 (11)

where we initialize u0 as a vector of all ones. After S iterations, we have σ(SB) =
uS

TSBvS . In practice, we find that S = 3 is enough for obtaining a precise σ(SB).
Note that Eqn.(11) only involves matrix-vector product. σ(SB) can be efficiently
acquired.

A.3 Feature visualization by t-SNE

In Sec.4.1, we treat λ ∈ [0, 1] as an adaptive regularization strength, considering
the diverse distribution of features {x̂i}Ni=1 extracted from different pre-trained
models. For example, as shown in Fig.5, supervised ResNet-50 has a larger be-
tween scatter of classes than its self-supervised counterpart with Infomin on
CIFAR-10 dataset, implying that ResNet-50 with Infomin needs stronger super-
vision on minimizing within scatter of every class for better classes separation.
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Algorithm 2 Top-k model ensembles of SFDA.

1: Input: projected features in Fisher space {(x̃m
n }Nens

n=1 ,m = 1, 2, · · ·M where the su-
perscript m denotes the m-th model and Nens is the number of samples used to
select top-k models;

2: Hyper-parameters: k to the number of selected models, r = 0.5 in Eqn.(9).
3: Output: top-k models ensemble;.
4: for n = 1 to Nens do
5: calculate: models feature ensemble F ens

n = [x̃1
n, · · · , x̃M

n ].
6: calculate: complementarity score (T com

m )n = ∥F ens
n ∥∗ − ∥F ens

n ⊙ 1m∥∗
7: calculate: model ensemble score (T ens

m )n = r(T SFDA
m )n + (1− r)(T com

m )n.
8: end for
9: calculate: T ens

m by averaging (T ens
m )n under all Nens input samples.

10: ranking: select k models by top-k ranked ensemble T ens
m , n = 1, 2, · · ·M

A.4 Algorithm of SFDA for top-k model ensembles selection

Here we provide the framework of SFDA for top-k model ensembles selection
in Algorithm 2. As we can see, the total ensemble score for selecting top-k
models is determined by combining SFDA and complementarity scores. The
former evaluates the transferability of a single model, and the latter measures
the complementarity between models. In experiment, we set Nens = 3000 which
is large enough to measure the complementarity score precisely and efficiently
(tens second to run Algorithm 2 for each target task).

B More Experimental Results

B.1 Results of ground truth of fine-tuning

Fine-tuning details. The ground-truth of the problem of pre-trained models
ranking is to fine-tune all pre-trained models with a hyper-parameters sweep
on target datasets. Given the model and the target dataset, two of the most
important parameters would be learning rate and weight decay in optimizing
the model [4]. Therefore, we careful fine-tune pre-trained models with a grid
search of learning rate in {1e−1, 1e−2, 1e−3, 1e−4} and weight decay in {1e−
3, 1e−4, 1e−5, 1e−6, 0}. After determining the best hyper-parameters candidate,
we fine-tune the pre-trained model on the target dataset with the candidate and
then obtain the test accuracy as the ground truth. We use a Tesla V100 with a
batch size of 128 to perform finetuning. All input images are resized to 224×224.
To avoid random error, we repeat the above fine-tuning procedure three times
and take an average to obtain the final fine-tuning accuracy. For reference, we list
the fine-tuning accuracy of supervised CNN models in Sec.5.2, self-supervised
CNN models in Sec.5.3, and vision transformer models in Sec.B.2 in Table 6,
Table 7, and Table 8, respectively. To obtain ensemble finetuning accuracy, we
also use the above hyper-parameters sweep. To avoid huge memory consumption,
we firstly finetune each pre-trained model on target dataset and then fix the
static representation extracted by the fine-tuned pretrained model. After that,
we train k classification head for each model, and average the resulting class
logits to make the final label prediction.
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Table 6. The fine-tuning accuracy of supervised CNN models on 11 target tasks.

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

ResNet-34 84.06 91.15 88.63 96.12 81.94 72.96 95.2 81.99 93.5 61.02 84.6

ResNet-50 84.64 91.98 89.09 96.28 82.8 74.72 96.26 84.45 93.88 63.54 85.8

ResNet-101 85.53 92.38 89.47 97.39 84.88 74.8 96.53 85.58 93.92 63.76 85.68

ResNet-152 86.29 93.1 89.88 97.53 85.66 76.44 96.86 86.28 94.42 64.82 86.32

DenseNet-121 84.66 91.5 89.34 96.45 82.75 74.18 97.02 84.99 93.07 63.26 85.28

DenseNet-169 84.19 92.51 89.02 96.77 84.26 74.72 97.32 85.84 93.62 64.1 85.77

DenseNet-201 85.38 93.14 89.44 97.02 84.88 76.04 97.1 86.71 94.03 64.57 85.67

MNet-A1 66.48 89.34 72.58 92.59 72.04 70.12 95.39 71.35 91.08 56.56 81.06

MobileNetV2 79.68 88.64 86.44 94.74 78.11 71.72 96.2 81.12 91.28 60.29 82.8

Googlenet 80.32 90.85 87.76 95.54 79.84 72.53 95.76 79.3 91.38 59.89 82.58

InceptionV3 80.15 92.75 87.74 96.18 81.49 72.85 95.73 81.76 92.14 59.98 83.84

Table 7. The fine-tuning accuracy of self-supervised CNN models on 11 target tasks.

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

BYOL 82.1 91.9 89.83 96.98 83.86 76.37 96.8 85.44 91.48 63.69 85.13

Deepclusterv2 82.43 91.16 90.16 97.17 84.84 77.31 97.05 87.24 90.89 66.54 85.38

Infomin 83.78 80.86 86.9 96.72 70.89 73.47 95.81 78.82 90.92 57.67 81.41

InsDis 79.7 77.21 80.21 93.08 69.08 66.4 93.63 76.47 84.58 51.62 76.33

MoCov1 81.85 79.68 82.19 94.15 71.23 67.36 94.32 77.21 85.26 53.83 77.94

MoCov2 83.7 82.76 85.55 96.48 71.27 72.56 95.12 77.15 89.06 56.28 78.32

PCLv1 82.16 88.6 87.15 96.42 79.44 73.28 95.62 77.7 88.93 58.36 81.91

PCLv2 83.0 87.52 85.56 96.55 79.84 69.3 95.87 80.29 88.72 58.82 81.85

Sela-v2 85.42 90.53 89.85 96.85 84.36 76.03 96.22 86.37 89.61 65.74 85.52

SimCLRv1 80.54 90.94 89.98 97.09 84.49 73.97 95.33 82.2 88.53 63.46 83.29

SimCLRv2 81.5 88.58 88.82 96.22 78.91 74.71 95.39 82.23 89.18 60.93 83.08

SWAV 83.04 89.49 89.81 96.81 83.78 76.68 97.11 87.22 90.59 66.1 85.06

Hardware for counting wall-clock time. For all wall-clock time counting,
we use Intel(R) Xeon(R) Platinum CPU.

B.2 Evaluation on Vision Transformer Models

Models. Vision transformer (ViT) models have attracted much attention re-
cently due to its power in processing multi-modal data. When pre-training ViT
models, various model architectures and data augmentation settings result in
models with drastically different performance. Hence, how to select a model for
further adaptation for an end application is significant in practice. We compare
SFDA with other metrics in ranking pre-trained ViT models in terms of trans-
ferability. To this end, we collect 10 ViT models including ViT-T [11], ViT-S
[11], ViT-B [11], DINO-S [1], MoCov3-S [2] , PVTv2-B2 [7], PVT-T [7], PVT-S
[7], PVT-M [7], and Swin-T [5]. The ground truth of models’ transferability are
obtained by fine-tuning these models on 11 downstream tasks as shown in Table
8.
Performance Comparison. We compare our SFDA with LogME and NLEEP
on transferability assessment in terms of rank correlation τw. The results are
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Table 8. The fine-tuning accuracy of vision transformer models on 11 target tasks.

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

ViT-T 71.26 89.39 82.09 96.52 81.58 71.86 95.5 81.96 91.44 58.4 83.1

ViT-S 73.12 92.7 86.72 97.69 86.62 75.08 96.79 86.26 94.02 64.76 86.62

ViT-B 78.39 93.47 89.26 98.56 89.96 77.66 97.98 88.96 94.61 68.62 87.88

PVTv2-B2 84.14 93.13 90.6 97.96 88.24 77.16 97.89 88.67 93.86 66.44 86.44

PVT-T 69.76 90.04 84.1 94.87 75.26 72.92 95.8 83.78 91.48 61.86 84.6

PVT-S 75.2 93.02 87.61 97.34 86.2 75.77 97.32 86.98 94.13 65.78 86.62

PVT-M 76.7 93.75 87.66 97.93 87.36 77.1 97.36 85.56 94.48 67.22 87.36

Swin-T 81.9 91.9 88.93 97.34 85.97 77.04 97.4 86.67 94.5 65.51 87.54

MoCov3-S 76.04 89.84 82.18 97.92 85.84 71.88 93.89 82.84 90.44 60.6 81.84

DINO-S 72.18 86.76 79.81 97.96 85.66 75.96 95.96 85.69 92.59 64.14 84.8

Table 9. Comparison of different transferability metrics on ViT models in terms of
τw and the wall-clock time. We see that our proposed SFDA achieves better trade-off
between transferability assessment and computation consumption over 11 target tasks.

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

Weighted Kendall’s tau τw

LogME 0.299 0.382 0.642 0.741 0.723 0.569 0.512 0.580 0.528 0.619 0.519

NLEEP -0.282 0.027 0.693 0.674 0.538 0.123 -0.262 0.105 0.409 0.268 0.109

SFDA 0.533 0.533 0.632 0.743 0.692 0.570 0.515 0.592 0.787 0.707 0.809

Wall-Clock Time (s)

LogME 5.7 3.6 11.2 13.1 21.9 14.2 3.6 33.1 4.9 186.1 3.6

NLEEP 553.7 716.8 1.1e3 8.0e3 1.2e4 183.7 819.2 3.4e4 256.4 2.7e4 288.3

SFDA 31.3 34.0 59.1 121.7 140.3 20.7 28.7 218.8 45.6 129.8 26.5

reported in Table 9, SFDA still performs consistently well in measuring trans-
ferability of self-supervised models. An interesting observation is that LogME
outperform NLEEP on evaluation of ViT models, which is not the case on eval-
uation supervised and self-supervised CNN models. We guess that LogME is
adept in deal with sequential feature representation extracted from ViT models
as LogME is also designed for regression downstream tasks. Averaging τw over 11
target tasks, SFDA (0.647) improves rank correlation τw by 196.8% and 16.3%
relative to NLEEP (0.218) and LogME (0.556), respectively. Hence, our SFDA
can measure the transferability of pre-trained ViT models better.

Wall-clock time comparison.We provide wall-clock time comparison in Table
9. We can see that LogME is efficient enough to calculate transferability score on
all target tasks. Moreover, NLEEP performs worse than LogME and our SFDA
in terms of both rank correlation τw and computation efficiency. In addition, our
SFDA is much more efficient in computing transferability score while achieving
the best transferability assessment.
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Table 10. Comparison of different transferability metrics on top-k model ensembles
selection. Results are obtained by selecting top-2 and top-3 models among supervised
CNN models and them perform ensemble fine-tuning following [1]. SFDA and SFDAcom

select top-k models by top-k ranked SFDA scores and top-k ranked ensemble score
through Eqn.(9), respectively. SFDAcom generally performs well over 11 target tasks
as it considers complementarity between models.

Top-k Method Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

k = 2

LogME 87.23 93.87 91.38 97.86 86.98 77.14 96.87 87.43 94.62 65.47 86.46

NLEEP 85.17 93.45 91.03 97.86 86.98 77.25 97.04 86.62 94.59 65.81 86.64

SFDA 87.71 93.40 91.03 97.86 86.98 76.95 97.59 87.95 94.58 65.81 86.46

SFDAcom 87.71 93.87 91.69 97.91 86.98 76.95 97.24 87.95 94.62 65.81 86.46

k = 3

LogME 87.23 93.87 91.80 97.88 86.96 77.68 97.56 87.83 94.70 66.20 86.89

NLEEP 86.98 94.12 91.76 98.02 87.48 78.14 97.65 87.37 94.71 66.95 86.89

SFDA 88.01 93.95 91.76 98.02 87.48 77.68 97.99 88.49 94.82 66.53 86.89

SFDAcom 88.01 93.87 91.95 98.02 87.48 78.14 97.35 88.49 94.92 66.53 86.89

Table 11. SFDA under different measurements of transferability assessment on
CIFAR-10 and CIFAR-100 datasets using supervised CNN models.

Data Method Rel@1 Rel@3 r rw τ τw Data Method Rel@1 Rel@3 r rw τ τw

CF10

LEEP 1.0 1.0 0.623 0.753 0.673 0.824

CF100

LEEP 0.991 1.0 0.653 0.692 0.624 0.677

LogME 1.0 1.0 0.718 0.756 0.782 0.852 LogME 1.0 1.0 0.508 0.586 0.477 0.692

NLEEP 1.0 1.0 0.635 0.774 0.636 0.806 NLEEP 1.0 1.0 0.694 0.762 0.734 0.823

SFDA 1.0 1.0 0.768 0.801 0.891 0.949 SFDA 1.0 1.0 0.691 0.764 0.771 0.896

B.3 Results on Top-k Model Ensembles Selection

Performance Comparison. Table 10 shows that SFDAcom leads to higher
fine-tuning accuracy on most target tasks. It demonstrates SFDA’s superiority
to those metrics which do not consider the complementarity between models. For
example, when performing top-2 and top-3 ensembles selection, SFDAcom out-
performs LogME, NLEEP, and SFDA on 9 and 8 downstream tasks. Therefore,
SFDAcom is effective in multiple pre-trained model ensembles selection.

B.4 More ablation study

SFDA under other transferability assessment measures. Other than
weighted Kendall’s tau, here we also adopt different types of measurement to
evaluate our SFDA. The measures include Kendall’s tau (τ), Pearson’s correla-
tion (r), weighted Pearson’s correlation (rw), top-k relative accuracy denoted as
Rel@k that is the ratio between the best fine-tuning accuracy on the downstream
task with the top-k ranked models and the best fine-tuning precision with all the
models. We test the robustness of transferability metrics to different measure-
ments using supervised CNN models on the CIFAR-10 and CIFAR-100 datasets
in Table 11. Our SFDA consistently outperforms previous transferability metrics
such as LEEP, LogME and NLEEP under the above measurements, showing the
superiority of SFDA.
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