
Human Trajectory Prediction via Neural Social
Physics-Supplementary Material

Jiangbei Yue1 , Dinesh Manocha2 , and He Wang1(�)

1 University of Leeds, Leeds, UK
H.E.Wang@leeds.ac.uk

2 University of Maryland at College Park, College Park, USA

1 Additional Experiments

1.1 Generalization to Unseen Scenarios

We use the collision rate to evaluate prediction plausibility. We first elaborate
on the definition of the collision rate and then show more experimental results.
Provided there are N agents in a scene, we consider their collision rates during
a period of time such as 4.8 seconds which is widely used to evaluate trajectory
predictions [2,1,4]. We count one collision if the minimum distance between two
agents is smaller than 2r at any time, where r is the radius of a disc representing
an agent. The maximum possible number of collisions is N(N − 1)/2. The final
collision rate is defined as:

Rcol =
M

N(N − 1)/2
(1)

where M is the number of collisions.
We show more results on the scene, coupa0, with different numbers of agents.

We chose this scene because it is a relatively large space and can theoretically
accommodate many people. The highest number of people simultaneously in the
environment in the original data is merely 11. Therefore, this is a good scene
to show how different methods can generalize to higher densities when learning
from low density data.

In each experiment, the agents are randomly initialized with different initial
positions, initial velocities and goals near the boundary of the scene, which is
sufficient for our method to simulate. Therefore, we use NSP to predict trajec-
tories of 30 seconds (t = 0 to 29) at FPS = 10 for all agents. We sample three
intervals out of every trajectory, from t = 0 to 8, t = 4 to 12 and t = 8 to 16,
where the density in the central area reaches the highest during t=8 to 16. For
each interval (8 seconds long), we subsample at FPS = 2.5 to get 20 frames,
where the first 8 frames are used as input for Y-net [1] and S-CSR [4]. The re-
maining 12 frames and the predictions (12 frames) of Y-net and S-CSR are used
to calculate the collision rate. Before prediction, all methods are trained on the
training dataset of SDD under the same setting explained in the main paper.

The results are shown in Table 1. We tested 50, 74, 100, 150 and 200 agents on
the aforementioned three methods including ours. We can see that our method

https://orcid.org/0000-0002-4851-4321
https://orcid.org/0000-0001-7047-9801
https://orcid.org/0000-0002-2281-5679


2 J. Yue et al.

Table 1. Collision rates of the generalization experiments on Coupa0. Results of Y-net,
S-SCR and NSP on 50, 74, 100, 150 and 200 agents are shown in corresponding tables,
where (1), (2) and (3) denote three intervals for calculating the collision rate.

(a) 50 Agents

Methods (1) (2) (3) avg

Y-net 2.8% 2.9% 3.8% 3.2%

S-CSR 2.5% 1.7% 1.9% 2.0%

NSP(ours) 0.6% 0.6% 0.6% 0.6%

(b) 74 Agents

Methods (1) (2) (3) avg

Y-net 3.8% 4.8% 3.0% 3.9%

S-CSR 0.9% 0.9% 1.5% 1.1%

NSP(ours) 0.2% 0.3% 0.5% 0.3%

(c) 100 Agents

Methods (1) (2) (3) avg

Y-net 4.2% 5.2% 7.6% 5.7%

S-CSR 0.9% 1.1% 0.8% 0.9%

NSP(ours) 0.3% 0.7% 0.4% 0.5%

(d) 150 Agents

Methods (1) (2) (3) avg

Y-net 4.9% 4.0% 3.4% 4.1%

S-CSR 0.6% 1.0% 1.7% 1.1%

NSP(ours) 0.2% 0.5% 1.0% 0.6%

(e) 200 Agents

Methods (1) (2) (3) avg

Y-net 5.9% 4.0% 3.5% 4.5%

S-CSR 0.6% 0.9% 2.0% 1.2%

NSP(ours) 0.2% 0.5% 0.8% 0.5%

is always the best in the collision rate under different settings. Although its
collision rate increases with the growth of the number of agents, our method is
still the best compared with the baselines and our predictions are more plausible.
In addition, we also plot the relation between the collision rate (and the number
of collisions) and the agent number ranging from 50 to 200 in Figure 1. Y-net is
worse than S-CSR and NSP. In addition, although the trend of NSP and S-CSR
are similar, the number of collisions of S-CSR increases faster than NSP. Finally,
some visualization results can be found in Figure 2. Here, every green disc has
a radius of 7.5 pixels. When two green discs intersect, they collide with each
other. Figure 2 demonstrates that our method (NSP) has better performance in
avoiding collisions than Y-net and S-CSR.

1.2 Interpretability of Prediction

More examples of interpretability are shown in Figure 3. In Figure 3 (1)-(2), we
show the influence of different three forces, Fgoal, Fcol and Fenv, on the whole
trajectory of an agent. In Figure 3 (3)-(4), we choose two consecutive moments of
one agent for analysis. In Figure 3 (1), instead of directly aiming for the goal, the
agent suddenly turns (at the intersection between red and green dots) due to the
incoming agents (the three blue dots under the green dots). The result is a result
of major influence from Fgoal and Fcol. Similarly, the agent in Figure 3 (2) did
not need to avoid other agents but still did not directly walk towards the goal,
because of Fenv from the grass. In Figure 3 (3)-(4), we show the detailed analysis



Supplementary Material 3

(a) Collision Rate (b) Number of Collisions

Fig. 1. The collision rate and the number of collisions against the number of agents
are shown in (a) and (b) respectively. Both of horizontal axes represent the number of
agents from 50 to 200. The vertical axes in (a) and (b) represent the collision rate and
the number of collisions respectively.

Table 2. Ablation experiments on network architecture. Goal-Network and the
Collision-Network possess the same architecture under each experimental setup.

ADE Two layers MLP Full MLP

w/o LSTM 6.83 6.61

with LSTM 6.66 6.52

of forces at two consecutive time steps of the same agent, where Fenv is from
the lawn which is a ’weakly repulsive area’. More examples where randomness
is captured by our model are shown in Figure 4.

1.3 Ablation Experiments

We conduct more ablation experiments to further validate our design decisions
and explore the effect of components of our model. The ablation studies on the
network architectures focuses on the Goal-Network and the Collision-Network.
The main variants are with/without LSTM to show the importance of the tem-
poral modeling for learning τ and knj , and replacing the MLPs with simple
two-layer MLPs. Table 2 shows the results on SDD. We can see that the tem-
poral modeling and the original MLPs make our model achieve the best perfor-
mance. To understand the role of each component in our model, we take social
force model (SFM) as the baseline and incrementally add components from our
model. The results are shown in Table 3. We tried our best to manually find good
parameter values: τ = 0.5, knj=25/50 and kenv=65. We adopted the same way
with our model to sample destinations for SFM. Then we only learn τ and knj .
At last, the result of the full model without CVAE is given. The performance is
better when more components are added.



4 J. Yue et al.

(a) 74 Agents (b) 100 Agents

(c) 150 Agents (d) 200 Agents

Fig. 2. The visualization results of generalization to 74, 100, 150 and 200 agents on
coupa0 are shown in (a), (b), (c) and (d) respectively. For each experimental setting,
visualization results of NSP, Y-net and S-CSR are at the same frame. We amplify the
area of red ellipse to boxes with yellow borders for better visualization performance.

2 Details of the Neural Social Physics Model

In this section, we elaborate the details of the Goal Sampling Network (GSN)
and the conditional Variational Autoencoder (CVAE) in our model.

2.1 Goal Sampling Network

The main components of the GSN are two U-nets [3] as illustrated in Figure 5.
We first feed the scene image I to a U-net, Useg, to get its corresponding en-
vironment pixel-wise segmentation with dimension of H ∗ W ∗ Kc. H and W
are the height and width of I, and Kc is the number of classes for segmenta-
tion. The segmantation maps are byproducts of the GSN from [1]. NSP can use
manually annotated or automatically segmented environment maps to calculate
Fenv, but using segmentation maps from the GSN is more efficient. Then the
past trajectories {pt}Mt=0 are converted into M+1 trajectory heatmaps by:

Hm(t, i, j) = 2
∥(i, j)− pt∥

max
(x,y)∈I

∥(x, y)− pt∥
(2)



Supplementary Material 5

Table 3. Ablation experiments on SDD. Different components from our model are
added incrementally

knj=25 hand-tuned learned τ and knj NSP

ADE 8.32 6.53 6.52

FDE 10.97 10.61 10.61

knj=50 hand-tuned learned τ and knj NSP

ADE 7.54 6.53 6.52

FDE 10.81 10.61 10.61

Fig. 3. Examples of interpretability. Red dots are observed, green dots are our pre-
diction. Bule dots in (1), (3) and (4) are other pedestrians at time step 7, 16 and 17
respectively. We show the influence of all forces, Fgoal, Fcol and Fenv, on the whole
trajecroty in (1) and (2). We display detailed analysis of three forces at two consecutive
time steps of the same agent, where Fgoal, Fcol and Fenv are shown as yellow, light
blue and black arrows respectively.

where (i, j) is the pixel coordinate on the heatmap and (x, y) is the pixel coordi-
nate on the scene image I. Then, we concatenate these trajectory heatmaps and
the segmentation map to get the input with dimension of H∗W ∗(Kc+M+1) for
the network Ugoal. Ugoal will output a non-parametric probability distribution

map, D̃goal, with dimensions H ∗ W . Every pixel in D̃goal has a correspond-
ing probability value between 0 and 1, and their sum is equal to 1. Details of
these two U-nets can be found in [1]. We train the GSN by minimizing the Kull-
back–Leibler divergence between predicted D̃goal and its ground truth Dgoal. We
assume that Dgoal is a discrete gaussian distribution with a mean at the position
of the ground-truth goal and a hyper-parameter variance σgoal. During testing,
instead of picking the position with highest probability, we adopt the test-time
sampling trick (TTST) introduced by [1] to sample goals for better performance.

2.2 Conditional Variational Autoencoder.

We model the dynamics stochasticity for each agent individually by using a
CVAE as illustrated in Figure 6. Red connections are only used in the training



6 J. Yue et al.

Fig. 4. Motion randomness is captured by our model. Red dots are observed, green
dots are our prediction and black dots are the ground-truth.

Fig. 5. Model Architecture of Goal Sampling Network. The detailed network architec-
ture of two U-nets, Useg and Ugoal, can be found in [1].

phase. Given an agent pt and his/her destination, a deterministic prediction p̄t+1

without dynamics stochasticity is first calculated from Fgoal, Fcol and Fenv and
a semi-implicit scheme. During training time, we use the corresponding ground
truth pt+1 to calculate the error αt+1 = pt+1 − p̄t+1, and feed αt+1 into an
encoder Ebias to get the feature fbias. The brief history (pt−7, . . . , pt−1, pt) is
encoded as fpast by using an encoder Epast. We concatenate fbias with fpast and
encode it using a latent encoder to yield the parameters (µ, σ) of the gaussian
distribution of the latent variable Z. We sample Z, concatenate it with fpast
for history information, and decode using the decoder Dlatent to acquire our
guess for stochasticity α̃t+1. Finally, the estimated stochasticity will be added
to the deterministic prediction p̄t+1 to get our final prediction p̃t+1. During test-
ing time, the ground truth pt+1 is unavailable. Therefore, we sample the latent
variable Z from a gaussian distribution N(0, σlatentI) where σlatent is a hyper-
parameter. We concatenate the sampled Z and fpast to decode directly using the
learned decoderDlatent to get the estimate of stochasticity α̃t+1. We can produce
final prediction p̃t+1 using the same way as the training phase. Encoders Ebias,
Epast, Elatent and the decoder Dlatent are all multi-layer perceptrons (MLP)
with dimensions indicated in the square brackets in Figure 6.



Supplementary Material 7

Fig. 6. The architecture of the CVAE, where p̄t+1 is the intermediate prediction out
of our force model and αt+1 = pt+1 − p̄t+1. Encoder Ebias, Epast, Elatent and decoder
Dlatent are all MLP networks with dimensions indicated in the square brackets. Red
connections are only used in the training phase.

3 Implementation Details

We use ADAM as the optimizer to train the Goal-Network, Collision-Network
and Fenv with a learning rate between 3× 10−5 and 3× 10−4, and to train the
CVAE with a learning rate between 3× 10−6 and 3× 10−5. When we train the
CVAE of our model, the training data is scaled by 0.005 to balance reconstruction
error and KL-divergence in lcvae. The hyper-parameter λ in lcvae is set to 1.
Concrete structures of all sub-network are shown in Figure 6.

For the Goal-Network, instead of learning parameter τ directly, we set τ =
a ∗ sigmoind(NNϕ1

(qt, pT )) + b where a and b are hyper-parameters. We list all
hyper-parameters of our model in Table 4. We segment scene images into two
classes and three classes on ETH/UCY and SDD, respectively. The two classes
on ETH/UCY are ‘walkable area’ and ‘unwalkable area’. Three classes on SDD
include ‘walkable area’, ‘unwalkable area’ and ‘weakly repulsive area’ that some
people tend to avoid such as lawns. The calculation of Fenv on ETH/UCY has
been introduced in our main paper. On SDD, we calculate the position of the
obstacle pobs and the position of the weak obstacle pw−obs (i.e. in the weakly
repulsive area) by averaging pixels that are classified as ‘unwalkable area’ and
‘weak repulsive area’ respectively. Then, the Fenv consists of two repulsive forces
from pobs and pw−obs as shown in Equation 3, where the parameter kenv is shared
and an additional hyper-parameter λweak is introduced for pw−obs:

Fenv =
kenv

∥ptn − pobs∥
(

ptn − pobs
∥ptn − pobs∥

) +
λweakkenv

∥ptn − pw−obs∥
(

ptn − pw−obs

∥ptn − pw−obs∥
) (3)

References

1. Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long
term human trajectory forecasting. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 15233–15242 (2021)



8 J. Yue et al.

Table 4. Hyper-parameters for all six datasets.

Hyper-Para ETH Hotel UNIV ZARA1 ZARA2 SDD

a(τ) 1 1 1 1 1 1

b(τ) 0.1 0.1 2.2 1.6 1.4 0.4

a(knj) 50 50 50 50 50 100

b(knj) 0 0 0 0 0 0

ω π/3 π/3 π/3 π/3 π/3 π/3

rcol 75 75 75 75 75 100

renv 50 50 50 75 75 50

σgoal 4 4 4 4 4 4

σlatent 1.3 1.3 1.3 1.3 1.3 1.3

λweak N/A N/A N/A N/A N/A 0.2

2. Mangalam, K., Girase, H., Agarwal, S., Lee, K.H., Adeli, E., Malik, J., Gaidon, A.: It
is not the journey but the destination: Endpoint conditioned trajectory prediction.
In: European Conference on Computer Vision. pp. 759–776. Springer (2020)

3. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 234–241. Springer (2015)

4. Zhou, H., Ren, D., Yang, X., Fan, M., Huang, H.: Sliding sequential cvae with
time variant socially-aware rethinking for trajectory prediction. arXiv preprint
arXiv:2110.15016 (2021)


	Human Trajectory Prediction via Neural Social Physics-Supplementary Material

