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Abstract. Trajectory prediction has been widely pursued in many fields,
and many model-based and model-free methods have been explored. The
former include rule-based, geometric or optimization-based models, and
the latter are mainly comprised of deep learning approaches. In this pa-
per, we propose a new method combining both methodologies based on a
new Neural Differential Equation model. Our new model (Neural Social
Physics or NSP) is a deep neural network within which we use an explicit
physics model with learnable parameters. The explicit physics model
serves as a strong inductive bias in modeling pedestrian behaviors, while
the rest of the network provides a strong data-fitting capability in terms
of system parameter estimation and dynamics stochasticity modeling. We
compare NSP with 15 recent deep learning methods on 6 datasets and im-
prove the state-of-the-art performance by 5.56%-70%. Besides, we show
that NSP has better generalizability in predicting plausible trajectories in
drastically different scenarios where the density is 2-5 times as high as the
testing data. Finally, we show that the physics model in NSP can provide
plausible explanations for pedestrian behaviors, as opposed to black-box
deep learning. Code is available: https://github.com/realcrane/Human-
Trajectory-Prediction-via-Neural-Social-Physics.

Keywords: Human Trajectory Prediction; Neural Differential Equa-
tions

1 Introduction

Understanding human trajectories is key to many research areas such as physics,
computer science and social sciences. Being able to learn behaviors with non-
invasive sensors is important to analyzing the natural behaviors of humans.
This problem has been widely studied in computer graphics, computer vision
and machine learning [5]. Existing approaches generally fall into model-based
and model-free methods. Early model-based methods tended to be empirical or
rule-based methods derived via the first-principles approach: summarizing ob-
servations into rules and deterministic systems based on fundamental assump-
tions on human motion. In such a perspective, social interactions can be mod-
elled as forces in a particle system [20] or an optimization problem [8], and
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individuals can be influenced by affective states [36]. Later, data-driven model-
based methods were introduced, in which the model behavior is still dominated
by the assumptions on the dynamics, e.g. a linear dynamical system [19], but
retains sufficient flexibility so that the model can be adjusted to fit obser-
vations. More recently, model-free methods based on deep learning have also
been explored, and these demonstrate surprising trajectory prediction capabil-
ity [1,18,48,9,29,33,14,31,38,49,32,37,55,76,16,70].

Empirical or rule-based methods possess good explainability because they
are formed as explicit geometric optimization or ordinary/partial differentiable
equations where specific terms correspond to certain behaviors. Therefore, they
have been used for not only prediction but also analysis and simulation [58].
However, they are less effective in data fitting with respect to noise and are
therefore unable to predict accurately, even when the model is calibrated on
data [69]. Data-driven model-based methods (e.g., statistical machine learning)
improve the ability of data fitting but are restricted by the specific statistical
models employed which have limited capacities to learn from large amounts of
data [19]. Finally, deep learning approaches excel at data fitting. They can learn
from large datasets, but lack explainability and therefore have been mainly used
for prediction rather than analysis and simulation [1,38,76].

We explore a model that can explain pedestrian behaviors and retain good
data-fitting capabilities by combining model-based and model-free approaches.
Inspired by recent research in neural differential equations [13,44,74,77,25], we
propose a new crowd neural differentiable equation model consisting of two parts.
The first is a deterministic model formulated using a differentiable equation.
Although this equation can be arbitrary, we use a dynamical system inspired
by the social force model [20]. In contrast to the social force model and its
variants, the key parameters of our deterministic model are learnable through
data instead of being hand-picked and fixed. The second part of our model
captures complex uncertainty in the motion dynamics and observations via a
Variational Autoencoder. Overall, the whole model is a deep neural network with
an embedded explicit model; we call this model Neural Social Physics (NSP).

We demonstrate that our NSP model outperforms the state-of-the-art meth-
ods [18,48,9,29,33,14,31,38,49,32,37,55,76,16,70] in standard trajectory predic-
tion tasks across various benchmark datasets [46,43,28] and metrics. In addi-
tion, we show that NSP can generalize to unseen scenarios with higher densities
and still predict plausible motions with less collision between people, as opposed
to pure black-box deep learning approaches. Finally, from the explicit model
in NSP, we demonstrate that our method can provide plausible explanations for
motions. Formally, (1) we propose a new neural differentiable equation model for
trajectory prediction and analysis. (2) we propose a new mechanism to combine
explicit and deterministic models with deep neural networks for crowd model-
ing. (3) We demonstrate the advantages of the NSP model in several aspects:
prediction accuracy, generalization and explaining behaviors.
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2 Related Work

2.1 Trajectory Analysis and Prediction

Statistical machine learning has been used for trajectory analysis in computer
vision [42,15,66,26,64,11]. They aim to learn individual motion dynamics [75],
structured latent patterns in data [64,63], anomalies [12,11], etc. These meth-
ods provide a certain level of explainability, but are limited in model capacity
for learning from large amounts of data. Compared with these methods, our
model leverages the ability of deep neural networks to handle high-dimensional
and large data. More recently, deep learning has been exploited for trajectory
prediction [53]. Recurrent neural networks (RNNs) [1,4,59] have been explored
first due to their ability to learn from temporal data. Subsequently, other deep
learning techniques and neural network architectures are introduced into trajec-
tory prediction, such as Generative Adversarial Network (GAN) [18], conditional
variational autoencoder (CVAE) [22,38,76] and Convolutional Neural Network
(CNN) [39]. In order to capture the spatial features of trajectories and the in-
teractions between pedestrians accurately, graph neural networks (GNNs) have
also been used to reason and predict future trajectories [39,52]. Compared with
existing deep learning methods, our method achieves better prediction accuracy.
Further, our method has an explicit model which can explain pedestrian motions
and lead to better generalizability. Very recently, attempts have been made in
combining physics with deep learning for trajectory prediction [3,27,21]. But
their methods are tied to specific physics models and are deterministic, while
NSP is a general framework that aims to accommodate arbitrary physics models
and is designed to be intrinsically stochastic to capture motion randomness.

2.2 Pedestrian and Crowd Simulation

Crowd simulation aims to generate trajectories given the initial position and des-
tination of each agent [58], which essentially aims to predict individual motions.
Empirical modelling and data-driven methods have been the two foundations in
simulation [40,35]. Early research is dominated by empirical modelling or rule-
based methods, where crowd motions are abstracted into mathematical equations
and deterministic systems, such as flows [40], particle systems [20], and velocity
and geometric optimization [8,51]. Meanwhile, data-driven methods using sta-
tistical machine learning have also been employed, e.g., using first-person vision
to guide steering behaviors [35] or using trajectories to extract features to de-
scribe motions [23,67]. While the key parameters in these approaches are either
fixed or learned from small datasets, our NSP model is more general. It can take
existing deterministic systems as a component and provides better data-fitting
capacity via deep neural networks. Compared with afore-mentioned model-based
methods, our NSP can be regarded as using deep learning for model calibration.
our model possesses the ability to learn from large amount of data, which is
difficult for traditional parameter estimation methods based on optimization or
sampling [61]. Meanwhile, the formulation of our NSP is more general, flexible
and data-driven than traditional model-based methods.
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2.3 Deep Learning and Differential Equations

Solving differentiable equations (DE) with the assistance of deep learning has
recently spiked strong interests [13,74,77,24]. Based on the involvement depth of
deep learning, the research can be categorized into deep learning assisted DE,
differentiable physics, neural differential equations and physics-informed neural
networks (PINNs). Deep learning assisted DE involves accelerating various steps
during the DE solve, such as Finite Element mesh generation [73,72]. The deeper
involvement of neural networks is shown in differentiable physics and neural dif-
ferential equations, where the former aims to make the whole simulation process
differentiable [17,30,68], and the latter focuses on the part of the equations being
parameterized by neural networks [50]. PINNs aim to bypass the DE solve and
use NN for prediction [45,10]. Highly inspired by the research above, we propose
a new neural differential equations model in a new application domain for human
trajectory prediction.

3 Methodology

3.1 Neural Social Physics (NSP)

At any time t, the position pti of the ith pedestrian can be observed in a crowd.
Then a trajectory can be represented as a function of time q(t), where we have
discrete observations in time up to T , {q0, q1, · · · , qT }. An observation or state
of a person at time t is represented by qt = [pt, ṗt]T where p, ṗ ∈ R2 are the
position and velocity. For most datasets, p is given and ṗ can be estimated via
finite difference. Given an observation qtn of the nth person, we consider her
neighborhood set Ωt

n containing other nearby pedestrians {qtj : j ∈ Ωt
n}. The

neighborhood is also a function of time Ω(t). Then, in NSP the dynamics of a
person (agent) in a crowd can be formulated as:

dq

dt
(t) = fθ,ϕ(t, q(t), Ω(t), qT , E) + αϕ(t, q

t:t−M ) (1)

where θ and ϕ are learnable parameters, E represents the environment. θ con-
tains interpretable parameters explained later and ϕ contains uninterpretable
parameters (e.g. neural network weights). The agent dynamics are governed by
f which depends on time t, its current state q(t), its time-varying neighbor-
hood Ω(t) and the environment E. Similar to existing work, we assume there
is dynamics stochasticity in NSP. But unlike them which assume simple forms
(e.g. white noise) [19], we model time-varying stochasticity in a more general
form: as a function of time, the current state and the brief history of the agent,
αϕ(t, q

t:t−M ). Then we have the following equation in NSP:

qT = q0 +

∫ T

t=0

fθ,ϕ(t, q(t), Ω(t), qT , E) + αϕ(t, q
t:t−M )dt (2)

given the initial and final condition q(0) = q0 and q(T ) = qT .
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Physics models have been widely used to model crowd dynamics [40,20]. To
leverage their interpretability, we model the dynamics as a physical system in
NSP. Assuming the second-order differentiability of p(t), NSP expands q(t) via
Taylor’s series for a first-order approximation:

q(t+△t) ≈ q(t) + q̇(t)△t =

(
p(t)
ṗ(t)

)
+△t

(
ṗ(t) + α(t, qt:t−M )

p̈(t)

)
(3)

where △t is the time step. The stochasticity α(t, qt:t−M ) is assumed to only
influence ṗ. Equation 3 is general and any dynamical system with second-order
differentiability can be employed here. Below, we realize NSP by combining a
type of physics models-social force models (SFM) [20] and neural networks. We
refer to our model NSP-SFM.

3.2 NSP-SFM

We design the NSP-SFM by assuming each person acts as a particle in a particle
system and each particle is governed by Newton’s second law of motion. p̈(t)
is designed to be dependent on three forces: goal attraction Fgoal, inter-agent
repulsion Fcol and environment repulsion Fenv.

p̈(t) = Fgoal(t, q
T , qt) + Fcol(t, q

t, Ωt) + Fenv(t, q
t, E) (4)

where E is the environment and explained later. However, unlike [20], the three
forces are partially realized by neural networks, turning Equation 1 into a neural
differential equation. The overall model is shown in Figure 1. Note that, in
Equation 1, we assume pT is given, although it is not available during prediction.
Therefore, we employ a Goal Sampling Network (GSN) to sample pT . During
testing, we either first sample a pT for prediction or require the user to input
pT . The GSN is similar to a part of Y-net [37] and pre-trained, and detailed in
the supplementary materials.

Given the current state and the goal, we compute Fgoal using the Goal-
Network NNϕ1 in Eq. 5 (Fig. 2 Left), Fcol using the Collision-Network NNϕ2 in

Fig. 1. Overview of NSP-SFM. Fgoal, Fcol and Fenv are estimated in every time step
by Goal-Network, Collision-Network and Eq. 7 before solving Eq. 4. The output is used
to update the position and velocity which are then combined with the estimated noise
from α for the final prediction
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Fig. 2. Left: Goal-Network and Right: Collision-Network. The numbers in square
brackets show both the number and dimension of the layers in each component.

Fig. 3. The architecture of the CVAE, where p̄t+1 is the intermediate prediction out
of our force model and αt+1 = pt+1 − p̄t+1. Encoder Ebias, Epast, Elatent and decoder
Dlatent are all MLP networks with dimensions indicated in the square brackets. More
Details of the network can be found in the supplementary material

Eq. 6 (Fig. 2 Right) and Fenv using Eq. 7 directly. The Goal-Network encodes
qt then feeds it into a Long Short Term Memory (LSTM) network to capture
dynamics. After a linear transformation, the LSTM output is concatenated with
the embedded pT . Finally, τ is computed by an MLP (multi-layer perceptron).
In Collision-Network, the architecture is similar. Every agent qtj in the neigh-
borhood Ωt

n is encoded and concatenated with the encoded agent qtn. Then knj
is computed. τ and knj are interpretable key parameters of Fgoal and Fcol. The
corresponding parameter in Fenv is kenv. Finally, we show our network for α for
stochasticity modeling in Figure 3.

Goal attraction. Pedestrians are always drawn to destinations, which can
be abstracted into a goal attraction force. At time t, a pedestrian has a desired
walking direction et determined by the goal pT and the current position pt:

et = pT−pt

∥pT−pt∥ . If there are no other forces, she will change her current velocity to

the desired velocity vtdes = vt0e
t where vt0 and et are the magnitude and direction

respectively. Instead of using a fixed v0 as in [20], we update vt0 at every t to mimic
the change of the desired speed as the pedestrian approaches the destination:

vt0 = ∥pT−pt∥
(T−t)△t . Therefore, the desired velocity is defined as vtdes = vt0e

t = pT−pt

(T−t)△t .

The goal attraction force Fgoal represents the tendency of a pedestrian changing
her current velocity ṗt to the desired velocity vtdes within time τ :

Fgoal =
1

τ
(vtdes − ṗt) where τ = NNϕ1(q

t, pT ) (5)
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Fig. 4. (a) The neighborhoodΩ(t) of a person is a sector within a circle (centered at this
person with radius rcol) spanned by an angle ω from the current velocity vector (green
arrow). (b) Each person has a view field (orange box) within which the environment
repels a pedestrian. The view field is a square with dimension renv based on the current
velocity vector (green arrow). The current velocity is along the diagonal of the orange
box. (c) The environment is segmented into walkable (red) and unwalkable (blue) areas.
Within the view field of the pedestrian in (b), the yellow pixels are the environment
pixels that repel the pedestrian. ω, rcol and renv are hyperparameters.

where τ is learned through a neural network (NN) parameterized by ϕ1.
Inter-agent Repulsion. Pedestrians often steer to avoid potential collisions

and maintain personal space when other people are in the immediate neighbor-
hood (Fig. 4 a). Given an agent j in Ωt

n of agent n and her state qtj , agent j
repels agent n based on rnj = ptn − ptj :

Fnj
col = −∇rnj

Unj (∥rnj∥) , where Unj (∥rnj∥) = rcolknje
−∥rnj∥/rcol (6)

where we employ a repulsive potential field Unj (∥rnj∥) modeled by a monotonic
decreasing function of ∥rnj∥. Then the repulsive force caused by agent j ∈ Ωt

n

to agent n is the gradient of Unj . Previously, simple functions such as symmetric
elliptic fields were employed for Unj [20]. Here, we model Unj as a time-varying
field parameterized by knj which is learned via a neural network. Instead of
directly learning knj , we set knj = a ∗ sigmoid(NNϕ2

(qtn, q
t
j,j∈Ωt

n
)) + b. a and b

are hyperparameters to ensure that the learned knj value is valid. If we have m

agents at time t in Ωt
n, the net repulsive force on agent n is: Fn

col =
∑m

j=0 F
nj
col.

Environment Repulsion. Besides collisions with others, people also avoid
nearby obstacles. We model the repulsion from the environment as:

Fenv =
kenv

∥ptn − pobs∥
(

ptn − pobs
∥ptn − pobs∥

) (7)

where pobs is the position of the obstacle and kenv is a learnable parameter. NSP-
SFM learns kenv directly via back-propagation and stochastic gradient descent.
Since the environment is big, we assume the agent mainly focuses on her view
field (Fig. 4 b) within which the environment (Fig. 4 c) repels the pedestrian.
We calculate pobs as the center of the pixels that are classified as obstacles in
the view field of an agent. kenv is shared among all obstacles. So far, we have
introduced all the interpretable parameters θ = {τ, knj , kenv} in Equation 1.
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Dynamics Stochasticity α(t, qt:t−M ). Trajectory prediction needs to ex-
plicitly model the motion randomness caused by intrinsic motion stochasticity
and observational noises [62,63]. We employ a more general setting by assuming
the noise distribution can have arbitrary shapes and is also time varying, unlike
previous formulations such as white noise [19] which is too restrictive. Generally,
learning such functions requires large amounts of data, as it is unconstrained.
To constrain the learning, we further assume the noise is Normally distributed
in a latent space, rather than in the data space.

Given a prediction p̄t+1 without dynamics stochasticity and its correspond-
ing observation pt+1, there is an error αt+1 = p̄t+1 − pt+1. To model the ar-
bitrary and time-varying shape of the distribution of αt+1, we assume it de-
pends on the brief history pt:t−M which implicitly considers the environment
and other people. Then the conditional likelihood of αt+1 is: P (αt+1|pt:t−M ) =∫
P (αt+1|pt:t−M , z)P (z)dz, where z is a latent variable. Assuming a mapping

Q(z|αt+1, pt:t−M ) and z being Normally distributed, minimizing the KL diver-
gence between Q, i.e., the variational posterior, and P (z|αt+1, pt:t−M ) leads to
a conditional Variational Autoencoder (CVAE) [54].

Our overall loss function is defined as L = ltraj + lcvae where:

ltraj =
1

N(T −M)

N∑
n=1

T∑
t=M+1

∥ptn − p̄tn∥22

lcvae =
1

N(T −M)

N∑
n=1

T∑
t=M+1

{∥αt
n − α̃t

n∥22

+ λDKL(Q(z|αt
n, p

t:t−M )||P (z|αt
n, p

t:t−M ))} (8)

N is the total number of samples, M is the length of the history, and T is the to-
tal length of the trajectory. ltraj minimizes the difference between the predicted
position and the ground-truth, while lcvae learns the distribution of randomness
α. During training, in each iteration, we assume the first M + 1 frames of the
trajectory are given and run the forward pass iteratively to predict the rest of
the trajectory, then back-propagate to compute the gradient to update all pa-
rameters. During the forward pass, we use a semi-implicit scheme for stability:
ṗt+1 = ṗt + △tp̈t and pt+1 = pt + △tṗt+1. We employ a progressive train-
ing scheme for the sub-nets. We first train Goal-Network with ltraj only, then
fix Goal-Network and add Collision-Network and Fenv for training using ltraj .
Finally, we fix Goal-Network, Collision-Network and Fenv, add α for training
under lcvae. We find this progressive training significantly improves the conver-
gence speed. This is because we first train the deterministic part with the main
forces added gradually, which converges quickly. Then the stochasticity part is
trained separately to capture complex randomness. Please see the supplementary
material for implementation details.
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3.3 NSP vs. Deep Neural Networks

One big difference between NSP and existing deep learning is the deterministic
system embedded in NSP. Instead of learning any function mapping the input to
the output (as black box deep learning does), the deterministic system acts as a
strong inductive bias and constrains the functional space within which the target
mapping should lie. This is because a PDE family can be seen as a flow connect-
ing the input and the output space [2], and the learning is essentially a process of
finding the most fitting PDE within this flow. In addition to better data-fitting
capability, this strong inductive bias also comes with two other advantages. First,
the learned model can help explain motions because the PDE we employ is a
physics system where the learnable parameters have physical meanings. Second,
after learning, the PDE can be used to predict motions in drastically differ-
ent scenes (e.g., with higher densities) and generate more plausible trajectories
(e.g., fewer collisions). This is difficult for existing deep learning as it requires
to extrapolate significantly to unseen interactions between pedestrians.

4 Experiments

4.1 Datasets

We employ six widely used datasets in human trajectory prediction tasks: the
Stanford Drone Dataset [46], ETH Hotel, ETH University [43], UCY Univer-
sity, Zara1, and Zara2 datasets [28]. Stanford Drone Dataset (SDD): SDD
contains videos of a university campus with six classes of agents with rich in-
teractions. SDD includes about 185,000 interactions between different agents
and approximately 40,000 interactions between the agent and the environment.
ETH/UCY Datasets: The datasets consist of human trajectories across five
scenes recording the world coordinates of pedestrians. Following previous re-
search [37,38], we adopt the standard leave-one-out evaluation protocol, where
the model is trained on four sub-datasets and evaluated one. Since our goal sam-
pling network and Fenv need to work in the pixel space, we project the world
coordinates in ETH/UCY into the pixel space using the homography matrices
provided in Y-net [37]. When computing the prediction error, we project the
predictions in the pixel space back into the world space. Finally, for SDD and
ETH/UCY, we follow previous work [37,47] to segment trajectories into 20-frame
samples and split the dataset for training/testing. Given the first 8 (M = 7)
frames, we train NSP to predict the remaining 12 frames for each trajectory.

4.2 Trajectory Prediction

Average Displacement Error (ADE) and Final Displacement Error (FDE) are
employed as previous research [1,18,38,37]. ADE is calculated as the l2 error
between a predicted trajectory and the ground truth, averaged over the entire
trajectory. FDE is calculated as the l2 error between the predicted final point
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and the ground truth. Following prior works, in the presence of multiple possi-
ble future predictions, the minimal error is reported. We compare our NSP-SFM
with an extensive list of baselines, including published papers and unpublished
technical reports: Social GAN (S-GAN) [18], Sophie [48], Conditional Flow VAE
(CF-VAE) [9], Conditional Generative Neural System (CGNS) [29], NEXT [33],
P2TIRL [14], SimAug [31], PECNet [38], Traj++ [49], Multiverse [32], Y-Net [37],
SIT [55], S-CSR [76], Social-DualCVAE [16] and CSCNet [70]. We divide the
baselines into two groups due to their setting differences. All baseline methods
except S-CSR report the minimal error out of 20 sampled trajectories. S-CSR
achieved better results by predicting 20 possible states in each step, and it is
the only method adopting such sampling to our best knowledge. We refer to the
former as standard-sampling and the latter as ultra-sampling. We compare NSP-
SFM with S-CSR and other baseline methods under their respective settings.

Standard-sampling results are shown in Table 1. On SDD, NSP-SFM out-
performs the best baseline Y-Net by 16.94% and 10.46% in ADE and FDE,
respectively. In ETH/UCY, the improvement on average is 5.56% and 11.11% in
ADE and FDE, with the maximal ADE improvement 12.5% in UNIV and the
maximal FDE improvement 27.27% in ETH. We also compare NSP-SFM with
S-CSR in Table 2. NSP-SFM outperforms S-CSR on ETH/UCY by 70% and
62.5% on average in ADE and FDE. In SDD, the improvement is 35.74% and
0.3% (Table 2). S-CSR is stochastic and learns per-step distributions, which en-
ables it to draw 20 samples for every step during prediction. Therefore, the min
error of S-CSR is much smaller than the other baselines. Similarly, NSP-SFM
also learns a per-step distribution (the α function) despite its main behavior be-
ing dictated by a deterministic system. Under the same ultra-sampling setting,
NSP-SFM outperforms S-CSR.

4.3 Generalization to Unseen Scenarios

We evaluate NSP-SFM on significantly different scenarios after training. We
increase the scene density as it is a major factor in pedestrian dynamics [41].
This is through randomly sampling initial and goal positions and let NSP-SFM
predict the trajectories. Since there is no ground truth, to evaluate the predic-
tion plausibility, we employ collision rate because it is widely adopted [34] and
parsimonious: regardless of the specific behaviors of agents, they do not pene-
trate each other in the real world. The collision rate is computed based on the
percentage of trajectories colliding with one another. We treat each agent as
a disc with radius r = 0.2 m in ECY/UCY and r = 15 pixels in SDD. Once
the distance between two agents falls below 2r, we count the two trajectories
as in collision. Due to the tracking error and the distorted images, the ground
truth r is hard to obtain. We need to estimate r. If it is too large, the collision
rate will be high in all cases; otherwise the collision rate will be too low, e.g.,
r = 0 will give 0% collision rate all the time. Therefore, we did a search and
found that the above values are reasonable as they keep the collision rate of the
ground-truth data approximately zero. We show two experiments. The first is
the collision rate on the testing data, and the second is scenarios with higher
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Table 1. Results on ETH/UCY and SDD based standard-sampling. NSP-SFM outper-
forms all baseline methods in both ADE and FDE. 20 samples are used in prediction
and the minimal error is reported. M = 7 in all experiments. The unit is meters on
ETH/UCY and pixels on SDD.

Methods Metrics ETH Hotel UNIV ZARA1 ZARA2 AVG SDD

S-GAN [18]
ADE 0.81 0.72 0.60 0.34 0.42 0.58 27.23
FDE 1.52 1.61 1.26 0.69 0.84 1.18 41.44

Sophie [48]
ADE 0.70 0.76 0.54 0.30 0.38 0.54 16.27
FDE 1.43 1.67 1.24 0.63 0.78 1.15 29.38

CF-VAE [9]
ADE N/A N/A N/A N/A N/A N/A 12.60
FDE N/A N/A N/A N/A N/A N/A 22.30

CGNS [29]
ADE 0.62 0.70 0.48 0.32 0.35 0.49 15.6
FDE 1.40 0.93 1.22 0.59 0.71 0.97 28.2

NEXT [33]
ADE 0.73 0.30 0.60 0.38 0.31 0.46 N/A
FDE 1.65 0.59 1.27 0.81 0.68 1.00 N/A

P2TIRL [14]
ADE N/A N/A N/A N/A N/A N/A 12.58
FDE N/A N/A N/A N/A N/A N/A 22.07

SimAug [31]
ADE N/A N/A N/A N/A N/A N/A 10.27
FDE N/A N/A N/A N/A N/A N/A 19.71

PECNet [38]
ADE 0.54 0.18 0.35 0.22 0.17 0.29 9.96
FDE 0.87 0.24 0.60 0.39 0.30 0.48 15.88

Traj++ [49]
ADE 0.39 0.12 0.20 0.15 0.11 0.19 N/A
FDE 0.83 0.21 0.44 0.33 0.25 0.41 N/A

Multiverse [32]
ADE N/A N/A N/A N/A N/A N/A 14.78
FDE N/A N/A N/A N/A N/A N/A 27.09

Y-net [37]
ADE 0.28 0.10 0.24 0.17 0.13 0.18 7.85
FDE 0.33 0.14 0.41 0.27 0.22 0.27 11.85

SIT [55]
ADE 0.38 0.11 0.20 0.16 0.12 0.19 N/A
FDE 0.88 0.21 0.46 0.37 0.27 0.44 N/A

Social ADE 0.66 0.34 0.39 0.27 0.24 0.38 N/A
DualCVAE [16] FDE 1.18 0.61 0.74 0.48 0.42 0.69 N/A

CSCNet [70]
ADE 0.51 0.22 0.36 0.31 0.47 0.37 14.63
FDE 1.05 0.42 0.81 0.68 1.02 0.79 26.91

NSP-SFM ADE 0.25 0.09 0.21 0.16 0.12 0.17 6.52
(Ours) FDE 0.24 0.13 0.38 0.27 0.20 0.24 10.61

densities. While the first is mainly to compare the plausibility of the prediction,
the second is to test the model generalizability. For comparison, we choose two
state-of-the-art baseline methods: Y-net and S-CSR. Y-net is published which
achieves the best performance, while S-CSR is unpublished but claims to achieve
better performance.

Table 3 shows the comparison of the collision rate. NSP-SFM outperforms
the baseline methods in generating trajectories with fewer collisions. Y-net and
S-CSR also perform well on the testing data because their predictions are close
to the ground-truth. Nevertheless, they are still worse than NSP-SFM. Next, we
test drastically different scenarios. We use ZARA2 and coupa0 (a sub-dataset
from SDD) as the environment and randomly sample the initial positions and
goals for 32 and 50 agents respectively. Because the highest number of people
that simultaneously appear in the scene is 14 in ZARA2 and 11 in coupa0, we
effectively increase the density by 2-5 times. For NSP-SFM, the initial and goal
positions are sufficient. For Y-net and S-CSR which require 8 frames (3.2 Sec-
onds) as input, we use NSP-SFM to simulate the first 8 frames of each agent,
then feed them into both baselines. Table 4 shows the results of three experi-
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Table 2. Results on ETH/UCY (left) and SDD (right) based on ultra-sampling. 20
samples per step are used for prediction and the overall minimal error is reported.
NSP-SFM outperforms S-CSR on both datasets in ADE and FDE.

Methods Metrics ETH Hotel UNIV ZARA1 ZARA2 Avg SDD

S-CSR [76]
ADE 0.19 0.06 0.13 0.06 0.06 0.10 2.77
FDE 0.35 0.07 0.21 0.07 0.08 0.16 3.45

NSP-SFM
ADE 0.07 0.03 0.03 0.02 0.02 0.03 1.78
FDE 0.09 0.07 0.04 0.04 0.04 0.06 3.44

Fig. 5. Red dots are observed, green dots are our prediction and black dots are the
ground-truth. Blue dots are pedestrians. Fgoal, Fcol and Fenv are shown as yellow, light
blue and black arrows for a person. The orange areas are the view field for avoiding
collisions with other people (left) and the environment (middle). They provide plausible
explanations of individual behaviors such as steering. Left and middle show the major
influence of different forces. Right shows motion randomness captured by our model.

ments. Since the density is significantly higher than the data, both Y-net and
S-CSR cause much higher collision rate. While NSP-SFM’s collision rate also oc-
casionally increases (i.e. SDD) compared with Table 3, it is far more plausible.

4.4 Interpretability of Prediction

Unlike black-box deep learning methods, NSP-SFM has an embedded explain-
able model. While predicting a trajectory, NSP can also provide plausible ex-
planations of the motion, by estimating the ‘forces’ exerted on a specific person.
This potentially enables NSP-SFM to be used in applications beyond prediction,
e.g. behavior analysis [71]. Figure 5 Left shows that a person, instead of directly
walking towards the goal, steered upwards (the green trajectory in the orange

Table 3. Collision rate on testing data in ETH/UCY and SDD. NSP-SFM universally
outperforms all baseline methods.

Methods ETH Hotel UNIV ZARA1 ZARA2 Avg SDD

Y-net 0 0 1.51% 0.82% 1.31% 0.73% 0.47%

S-CSR 0 0 1.82% 0.41% 1.31% 0.71% 0.42%

NSP-SFM 0 0 1.48% 0 0.66% 0.43% 0.42%
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Table 4. Collision rates of the generalization experiments on ZARA2 (Z) and coupa0
(C). NSP-SFM shows strong generalizability in unseen high density scenarios.

Methods Z(1) Z(2) Z(3) Z(avg) C(1) C(2) C(3) C(avg)
Y-net 1.8% 2.2% 2.0% 2.0% 2.8% 2.9% 3.8% 3.2%
S-CSR 3.2% 2.4% 1.8% 2.5% 2.5% 1.7% 1.9% 2.0%
NSP-SFM 0.2% 0.2% 0 0.1% 0.6% 0.6% 0.6% 0.6%

Table 5. Ablation study on SDD. (w/o) means without CVAE and (w) means with
CVAE. Fgoal is goal attraction only and NSP-SFM is all three forces.

SDD Fgoal(w/o) NSP-SFM(w/o) NSP-SFM(w)

ADE 6.57 6.52 1.78
FDE 10.68 10.61 3.44

area). This could be explained by the strong repulsive force (the light blue ar-
row) which is generated by the potential collisions with the agents in front of
this person, in line with existing studies [41]. Similar explanations can be made
in Figure 5 Middle, where all three forces are present. Fenv (the black arrow)
is the most prominent, as expected, as the person is very close to the car. The
repulsive force (light blue arrow) also plays a role due to the person in front of
the agent (the blue dot in the orange area).

Figure 5 Right shows an example where motion randomness is captured by
NSP. In this example, there was no other pedestrian and the person was not
close to any obstacle. However, the trajectory still significantly deviates from a
straight line, which cannot be fully explained by e.g. the principle of minimal
energy expenditure [60]. The deviation could be caused by unobserved factors,
e.g. the agent changing her goal or being distracted by something on the side.
These factors do not only affect the trajectory but also the dynamics, e.g. sudden
changes of velocity. These unobserved random factors are implicitly captured by
the CVAE in NSP-SFM. More results are in the supplementary material.

We emphasize that NSP-SFM merely provides plausible explanations and by
no means the only possible explanations. Although explaining behaviors based on
physics models has been widely used, there can be alternative explanations [65].
Visualizing the forces is merely one possible way. Theoretically, it is also possible
to visualize deep neural networks, e.g. layer activation. However, it is unclear
how or which layer to visualize to explain the motion. Overall, NSP-SFM is
more explainable than black-box deep learning.

4.5 Ablation Study

To further investigate the roles of different components, we conduct an ablation
study on SDD with three settings: Fgoal(w/o) with goal attraction only, i.e. omit-
ting other components such as Fcol, Fenv and dynamics stochasticity; NSP-SFM
(w/o) without dynamics stochasticity; and NSP-SFM (w) the full model. The
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Fig. 6. Red, green and cyan dots are observations, prediction and ground-truth respec-
tively. From left to right: ground truth, Fgoal(w/o), NSP-SFM(w/o) and NSP-SFM(w).

results are shown in Table 5. Interestingly, Fgoal(w/o) can already achieve good
results. This is understandable as it is trained first in our progressive training
scheme and catches most of the dynamics. NSP-SFM (w/o) further improves the
performance. The improvement seems to be small but we find the other repul-
sive forces are crucial for trajectories with irregular geometries such as avoiding
obstacles. Further NSP-SFM (w) significantly improves the results because it
enables NSP to learn the dynamics stochasticity via a per-step distribution. We
show one example in Figure 6 in all settings. More ablation experiments can be
found in the supplementary material.

5 Conclusions, Limitations, and Future Work

In this paper, we have proposed a new Neural Differential Equation model for tra-
jectory prediction. Through exhaustive evaluation and comparison, our model,
Neural Social Physics, has proven to be more accurate in trajectory prediction,
generalize well in significantly different scenarios and can provide possible ex-
planations for motions. The major limitation of NSP lies in the physics model,
which overly simplifies people into 2D particles. In real-world scenarios, people
are much more complex, and their motions can be influenced by other factors
such as their affective states or interact with dense scenarios [6,7]. It would be
useful to extend our NSP framework by incorporating these ideas and handle
complex systems such as fluids/fields/agent-based modeling can be adopted to
replace the components in Equation 3. In the future, we would like to extend
the current framework to model high-density crowds, where continuum models
or reciprocal velocity obstacles need to be used. We would also like to incorporate
learning-based collision detection techniques into this framework [56,57].
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estimation and comparative evaluation of crowd simulations. Computer Graphics
Forum 33(2), 303–312 (2014)

70. Xia, B., Wong, C., Peng, Q., Yuan, W., You, X.: Cscnet: Contextual semantic con-
sistency network for trajectory prediction in crowded spaces. Pattern Recognition
p. 108552 (2022)

71. Zeng, W., Chen, P., Nakamura, H., Iryo-Asano, M.: Application of social force
model to pedestrian behavior analysis at signalized crosswalk. Transportation re-
search part C: emerging technologies 40, 143–159 (2014)



Human Trajectory Prediction via Neural Social Physics 19

72. Zhang, Z., Jimack, P.K., Wang, H.: MeshingNet3D: Efficient generation of adapted
tetrahedral meshes for computational mechanics. Advances in Engineering Soft-
ware 157-158 (Jul 2021)

73. Zhang, Z., Wang, Y., Jimack, P.K., Wang, H.: Meshingnet: A new mesh generation
method based on deep learning. In: Computational Science – ICCS 2020. pp. 186–
198. Springer International Publishing, Cham (2020)

74. Zhong, Y.D., Dey, B., Chakraborty, A.: Symplectic ode-net: Learning hamiltonian
dynamics with control. arXiv preprint arXiv:1909.12077 (2019)

75. Zhou, B., Wang, X., Tang, X.: Random field topic model for semantic region anal-
ysis in crowded scenes from tracklets. In: CVPR 2011. pp. 3441–3448. IEEE (2011)

76. Zhou, H., Ren, D., Yang, X., Fan, M., Huang, H.: Sliding sequential cvae with
time variant socially-aware rethinking for trajectory prediction. arXiv preprint
arXiv:2110.15016 (2021)

77. Zubov, K., McCarthy, Z., Ma, Y., Calisto, F., Pagliarino, V., Azeglio, S., Bottero,
L., Luján, E., Sulzer, V., Bharambe, A., Vinchhi, N., Balakrishnan, K., Upad-
hyay, D., Rackauckas, C.: Neuralpde: Automating physics-informed neural net-
works (pinns) with error approximations. CoRR abs/2107.09443 (2021)


	Human Trajectory Prediction via Neural Social Physics

