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The Appendix is organized as follows. In Section A, we summarize the major
notions used in the paper. In Section B, we provide the implementation details. In
Section C, we provide additional results. In Section D, we show some qualitative
examples.

A Notations

The main notations are divided into four major types: Data, Model, Loss, and
Hyperparameters, and summarized in Table 1.

Table 1: Summary of notations
Type Notation

Data
Bag feature X, Bag label Y , instance feature x, instance label y

Adjacent matrix A

Model

GCNs H(·)

EDL �(·)

NFs f(·)

Loss

Triplet loss Ltriplet

MIL loss LMIL

NFs loss LNF

Hyperparameters

Loss weight �

Triplet loss margin m

thresholds ⌧u, ⌧p, ✏ for constructing ⌦

B Implementation Details

The hyperparameters are chosen as follows: m is set as 0.3 across three datasets,
and � is set as 0.001, 0.0001, 0.0001 for XD-Violence, UCF-Crime, and Shang-
haiTech, respectively. To be adaptive during the training process, ⌧p, ⌧u, and
✏ are chosen based on the i-th largest value in a candidate pool during every
iteration. Generally, ⌧p and ⌧u are set to make ⌦ retain a moderate portion
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of instances in every bag, and ✏ is set to make the pseudo anomalies with low
probability density. In practice, on XD-Violence, ShanghaiTech, UCF-Crime, ⌧p
is set as the 50-th, 30-th, 3-rd largest p+, and ⌧u is set as the the 150-th, 150-th,
and 24-th largest ↵+ in a bag. ✏ is set as the 4750-th largest p (x̃|y = 0) in a
pseudo anomaly pool of size 5000. We gradually perform sample selection, i.e.,

increasing ⌧p from smallest to the assigned value during a warmup stage (⌦
evolves from all instances to the most confident clean subset). We perform early
stopping to avoid overfitting whenever needed. We optimize the model via the
Adam optimizer equipped with cosine annealing learning rate scheduling. We
use Python 3.9.7 and PyTorch 1.10.0 to build the test platform, running it on
NVIDIA RTX A6000 GPUs. Whenever public results are available, we directly
use them for comparison.

C Additional Results

In this section, we present more experimental results along with an additional
ablation study to further justify the key components of the proposed framework.

C.1 AUC-ROC on XD-Violence

We show the AUC-PR scores on the XD-Violence in the main paper because it is
used in previous works [51,46] for this dataset. In combination with the AUC-PR,
we provide the AUC-ROC scores in Table 2, which are collected under the same
setting. It can be seen that our method achieves the highest AUC-ROC scores
among the weakly supervised methods under all settings, and the conclusion
using two metrics are consistent.

Table 2: AUC-ROC (%) results on XD-Violence for anomaly frame detection
with various number of seen anomaly classes.

No. seen anomaly 1 2 3 4

Wu et al. [51](off-line) 67.05 71.88 73.06 85.32

Wu et al. [51](on-line) 66.13 72.32 72.49 83.49

RTFM [46] 66.54 70.78 76.70 82.41

Ours 72.50 77.51 84.57 88.25

C.2 Additional Ablation Study

In Table 3, we provide additional ablation study results on the XD-Violence
under the close set setting. For the ablation study, the NFs and NFs (w/o Triplet)
denote using the NFs to score a sample during testing, and NFs (w/o Triplet)
mean that we remove the Triplet loss. To explore the impact of feature encoder,
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Table 3: Ablation study results for anomaly frame detection on XD-Violence in
close-world Setting (NUM ANOMALY=ALL).

AUC-PR AUC-ROC

Wu et al. [51](off-line) 75.80 93.07

Wu et al. [51](on-line) 72.92 92.02

RTFM [46] 69.40 88.09

NFs(w/o Trip) 52.10 77.40

NFs 73.13 89.77

Ours(w/o GCNs) 69.39 89.14

Ours(w top-k) 77.43 92.66

Ours 77.91 93.23

we replace the GCNs with two FC layers, denoted as the Ours (w/o GCNs).
Finally, we provide results of the top-k selection by setting ⌦ = {xi|pi > ⌧p}.

Table 3 shows the results of two weakly supervised baselines, NFs, and ours,
under a close set setting. To use the NFs for anomaly detection, we leverage its
density estimation capability to score a sample, i.e., a sample with low density
is considered to be likely to be an anomaly, similar to the usage of NFs with Cho
et al. [9]. Results show that the triplet loss contributes a lot to the performance
of NFs, proving its important role in facilitating the learning process of NFs (See
the NFs vs NFs w/o Trip). Besides, when the GCNs is equipped with triplet loss
for representation learning, NFs can achieve comparable performance with the
Wu et al. [51] and RTFM [46]. Nevertheless, our approach outperforms the NFs
by a large margin, justifying the advantage of our usage of NFs over the previous
use (pseudo anomaly generation vs density estimation).

Results also show that the choice of feature encoder significantly impacts the
anomaly detector; the performance drops a lot when replacing the GCNs with
FC layers (See ours vs ours w/o GCNs). We also compare our evidence-based
instance selection with the top-k strategy. Based upon top-k, which solely uses
the predicted probability p+ to perform selection, our instance selection method
adds the evidence ↵+ to improve its robustness. The relation between p+ and
↵+ is determined by E[p+] = ↵+

↵++↵�
, where p+ and ↵+ denote the probability

of being positive and evidence of supporting a positive prediction, respectively.
After acquiring the evidence, we use ⌧↵ to filter out samples that are likely
the false anomaly. Comparison between ours and top-k shows that adding the
evidence could improve the robustness of the latter. We remark that existing
literature also uses u to estimate the predictive uncertainty rather than using
↵+. However, using ↵+ achieves similar, but superior, effect compared with u
because u is upper bounded by 2

⌧↵
: u = 2

↵++↵�
< 2

↵+


2
⌧↵

. Among the samples
with low u, using ↵+ would prefer the desired confident anomaly ones.
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D Qualitative Results
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Fig. 1: Visualized results on XD-Violence for seen anomaly frame detection in
(a) a Shooting video and (b) a normal video. The top row in each example shows
raw frames from the video, and the bottom row shows the predicted anomaly
score (blue curve) with ground-truth anomaly regions (orange window). Model
is trained with Fighting, Shooting, Abuse, Explosion and normal videos. Riot

and Car accident are set aside as unseen anomalies.

We plot the results of a model trained with 4 types of anomalies on the
XD-Violence dataset. Figure 1 shows that our model fully captures the anomaly
region (i.e.,Shooting) as they have been seen during training. For the unseen
anomaly frames, which are more challenging, Figure 2 shows that our model
performs well on detecting them, especially the Riot. Our model misses in de-
tecting some Car accident events as they last briefly. We also note that our model
gives relatively high anomaly scores to some normal frames in anomaly videos,
but the margin between anomaly and normal ones is still noticeable. This can



Towards Open Set Video Anomaly Detection 23

Car accident Car accidentCar accident

(a) Car accident

Riot RiotNormal

(b) Riot

Fig. 2: Visualized results on XD-Violence for unseen anomaly frame detection in
(a) a Car Accident video and (b) a Riot video. The top row in each example shows
raw frames from the video, and the bottom row shows the predicted anomaly
score (blue curve) with ground-truth anomaly regions (orange window). Model
is trained with Fighting, shooting, Abuse, Explosion and Normal videos. Riot

and Car Accident are set aside as unseen anomalies.
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be explained that these frames show a sign of violence and are ambiguous, while
they are labelled as normal by the human annotator. These observations validate
the effectiveness of our model for the proposed OpenVAD task, i.e., detecting
arbitrary anomalies.
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