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Abstract. Open Set Video Anomaly Detection (OpenVAD) aims to
identify abnormal events from video data where both known anoma-
lies and novel ones exist in testing. Unsupervised models learned solely
from normal videos are applicable to any testing anomalies but suffer
from a high false positive rate. In contrast, weakly supervised methods
are effective in detecting known anomalies but could fail in an open
world. We develop a novel weakly supervised method for the OpenVAD
problem by integrating evidential deep learning (EDL) and normalizing
flows (NFs) into a multiple instance learning (MIL) framework. Specifi-
cally, we propose to use graph neural networks and triplet loss to learn
discriminative features for training the EDL classifier, where the EDL
is capable of identifying the unknown anomalies by quantifying the un-
certainty. Moreover, we develop an uncertainty-aware selection strategy
to obtain clean anomaly instances and a NFs module to generate the
pseudo anomalies. Our method is superior to existing approaches by
inheriting the advantages of both the unsupervised NFs and the weakly-
supervised MIL framework. Experimental results on multiple real-world
video datasets show the effectiveness of our method.

Keywords: Video anomaly detection, weakly supervised learning, open
set recognition, normalizing flows.

1 Introduction

Traditional video anomaly detection aims to detect abnormal events that sig-
nificantly deviate from normal ones. Examples of such abnormal events include
human crimes, natural disasters, and traffic accidents, to name a few. It has been
successfully applied to many real-world applications [32]. However, unseen novel
anomalies may occur after a well-trained supervised model has been deployed
in an open world. Being aware of the unseen anomalies essentially leads to the
Open-set Video Anomaly Detection (OpenVAD) problem (see Figure 1), which
is under-explored in literature despite being critical to real-world applications.

Unsupervised learning is one of the typical ways to handle unseen anomalies
in existing literature [28,29,47,55,16]. They aim to learn representative features
of normal events only from normal videos. However, as unsupervised methods
neglect the anomaly information, they are in general less effective to detect com-
plicated anomalies that are similar to normal samples in the feature space [4].
Besides, (weakly-)supervised methods can use annotated anomaly videos so that
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Fig. 1: OpenVAD Task. We propose to conduct OpenVAD through the weakly-
supervised video anomaly detection in an open world. In training, only a closed-set
of anomaly videos with video-level annotations are observed along with normal videos.
In testing, the model is asked to identify and localize the anomaly events from videos
in an open world where arbitrary unseen anomalies could exist.

their performances are generally better. However, the learned models are lim-
ited to detecting a closed set of anomaly categories and unable to handle the
arbitrary unseen anomalies. Inspired by the recent advances in open set recogni-
tion [36,3,13,2], we propose to perform video anomaly detection in an open world
by extending the existing weakly-supervised video anomaly detection paradigm.
The goal is to achieve accurate anomaly detection in an open set by learning a
model only with video-level annotations from a closed subset of anomaly types.

Most existing works [42,62,51,46] formulate weakly supervised anomaly de-
tection as a multiple instance learning (MIL) problem [10], where a video is
modeled as a bag of instances (e.g., video clips). Due to the lack of fine-grained
instance labels, simply assigning all instances in an abnormal (i.e., positive) bag
with the same anomaly label inevitably incurs severe labeling noise. Such noise
further results in a high false positive rate, i.e., falsely treating normal events
as abnormal ones, when using a trained model for detection. Therefore, it is
essential to select the clean anomaly instances in MIL. Besides, to enable the
MIL model to be aware of the unseen anomaly in testing, the open space risk of
MIL should be bounded while it is under-explored in the existing literature.

To tackle these challenges, we first leverage graph neural networks (GCNs)
and a triplet loss to learn representative instance features. Then, we instantiate
the MIL with evidential deep learning (EDL) [37,39,2] and use the predicted
evidence to help select anomaly instances with high cleanness for robust MIL
training. To bound the open space risk, an unsupervised normalizing flows (NFs)
is learned from normal instances, which allows us to sample pseudo anomaly
samples from the low density area of the instance distribution.

We are among the first few attempts that address video anomaly detection
in the open set setting, where arbitrary unseen anomaly events could appear
in testing. This is fundamentally more challenging than a using fully-supervised
training process as adopted by some existing efforts in [4,34] and some of these
methods are not suitable to tackle high-dimensional video data. Though there
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are few works [23,12] with a similar open set assumption, our task definition is
more realistic in real-world, where the model is weakly-supervised and aims to
identify arbitrary unknown anomaly events in testing. By effectively leveraging
any available anomaly videos through weakly supervised learning in novel ways,
our approach also achieves better detection performance than few existing open
set anomaly detection methods (e.g., [27]) that solely rely on normal videos to
initialize a detection model through unsupervised learning. In summary, the key
contributions are threefold:

– We formulate a novel MIL framework for the OpenVAD problem to detect
both seen and unseen video anomalies in a challenging open-world setting.

– We integrate MIL with a normalizing flow-based generative model and evi-
dential learning for high-quality anomaly instance selection.

– We conduct extensive experiments and the results show significant superior-
ity to existing unsupervised and weak supervised learning approaches.

2 Related Work

Video Anomaly Detection. Existing methods to detect anomalies from videos
can be categorized into two groups: 1) unsupervised learning and 2) weakly
supervised learning. Unsupervised approaches are motivated by the premise
that anomaly events are fundamentally challenging to completely enumerate
and characterize. Therefore, these approaches conduct either dictionary learn-
ing/sparse coding [29,61] or construct a deep auto-encoder [53,8,47]. Unlike unsu-
pervised approaches, weakly supervised approaches [27,42,17,62,51,46] use both
normal videos and anomaly videos for training. They take advantage of normal
videos and leverage additional anomaly videos to train a binary classifier over
the video clips. Among existing weakly supervised approaches, one representa-
tive approach leverages a deep auto-encoder to locate clips in anomaly videos
with low reconstruction scores and then further reduces these scores through
margin learning [27]. Some other approaches [42,17,62] formulate this problem
as multiple instance learning (MIL) problem and build an instance-level clas-
sifier. To train the classifier properly, these MIL models select one or a set of
instances from a positive bag to feed into the classifier and either a fixed number
of instances are selected [42,17] or a predefined threshold is set as the selection
criterion [62]. Previous MIL based approaches achieve superior performance com-
pared to unsupervised counterparts. The core design of these approaches lies in
the measurement of cleanness and the instance selection strategy. In this pa-
per, we empirically show that the top-k strategy is robust, which inspires us
to develop the cleanness measurement and an instance selection strategy by
introducing the evidence based learning method.

Open Set Recognition. Open Set Recognition (OSR) aims to identify the un-
knowns while keeping reasonable closed set performance in the open set test-
ing. Since the unknowns are never seen by the model and are out-of-distribution
(OOD) with respect to the in-distributional (ID) training data, they are referred
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to as “unknown unknown class" in existing literature [14,54]. In contrast, the ex-
act classes of ID data are known and are called “known known classes". The OSR
approaches attempt to classify test samples from “known known classes" and de-
tect test samples from “unknown unknown classes". The most recent work [31]
encourages learning a multi-class classifier to give low activation values for ex-
ternal OOD data and large values for ID data. Some works do not depend on
external OOD data in training by using either specialized loss functions [2,7]
or unknown class generation [63]. Other works [59,3] address the OSR prob-
lem by integrating probabilistic density estimation in the latent feature space
with a multi-class classifier. Our proposed OpenVAD and the traditional OSR
problems can both be regarded as a generalized OOD detection problem [54],
because of the semantic distribution shift between testing and training datasets.
A key distinction of the proposed OpenVAD is that it does not care about if an
anomaly video is from seen or unseen categories in testing. Instead, it focuses on
distinguishing arbitrary anomaly activities from normal ones in an open world.

3 Methodology

Our work aims to handle the OpenVAD problem under a weakly supervised
setting. Specifically, a model is trained using normal videos and a closed set
of untrimmed anomaly videos with video (or bag)-level labels. Each anomaly
video contains at least one anomaly event (i.e., positive instance). The model
is tested in an open world, where unseen anomaly events may occur, and the
model is expected to robustly identify all anomaly clips (i.e., segments of a video)
during testing. Since we only have access to the video-level anomaly class labels,
MIL provides an ideal learning framework to leverage the weakly supervised
learning signals. Specifically, an untrimmed video is regarded as a bag X, which
contains N temporal clips as instances in the bag: X = {x1, . . . ,xN}. The
learning objective of MIL is to train an instance-level binary classifier � : xn !

yn with only bag-level class label Y 2 {0, 1} in the training, while the instance-
level labels yn 2 {0, 1} with yn 2 {y1, . . . , yN} are not available. In MIL, a
positive bag (X,Y = 1) contains at least one positive instance (e.g., anomaly
event), i.e., 9n 2 [1, N ], yn = 1, while a negative bag consists of only negative
instances (e.g., normal event), i.e., 8n 2 [1, N ], yn = 0.

For the OpenVAD problem, the model is expected to handle the semantically
shifted testing data that contains unseen anomaly events. In testing, given an
untrimmed video, the model is expected to identify the anomaly clips, which
could be either seen or unseen anomaly if the video contains any anomaly events.

Overview of the Framework. Our method is developed as a MIL framework, as
shown in Figure 2. The instances are structured as graph data to address the
temporal consistency and feature similarity of video clips. The MIL framework
consists of two graph convolutional networks (GCN) followed by an evidential
deep learning (EDL) head, which are trained by weakly-supervised MIL loss
and triplet loss. The classification confidence and uncertainty are used to select
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Fig. 2: Overview of the OpenVAD Framework. We first integrate two GCNs fea-
ture extractors and the evidential deep learning (EDL) into the multiple instance
learning (MIL), which are learned by LMIL+Ltriplet. Then, the classification con-
fidence and uncertainty from the trained EDL head are used to select instances
with high cleanness. We further utilize the GCNs features of normal video clips
to train a normalizing flow model, from which pseudo anomaly features are gen-
erated. Together with the normal videos, the selected clean anomaly and the
generated pseudo anomaly are gathered to refine the EDL head by LMIL.

clean anomaly instances for robust MIL training. To reduce the open space risk
in OpenVAD tasks, we further utilize normal videos to train a normalizing flow
(NF) model to generate pseudo anomalies. The selected and generated anomalies
are used to fine-tune the EDL classification head. In testing, our model could
correctly identify an unseen anomaly event from untrimmed video data. See
Appendix Section A for the summary of notations.

3.1 Instance Feature Representation Learning

We take advantage of a pre-trained action recognition backbone (e.g., I3D [5])
to extract features of raw video clips, denoted as x. Given the temporal and
visual similarity of close clips in a video, we propose to enhance the feature x by
constructing temporal and feature similarity graphs, respectively. Furthermore,
to enlarge the feature discrepancy between normal and anomaly instances, a
triplet learning constraint is introduced in the feature embedding space.

More specifically, since each bag is formed from a video, there exist natural
dependencies among instances in the bag. Thus, video clips that are located
closely in temporal and feature space should have similar feature representation.
We leverage a graph neural network to model such dependency. Given a graph
defined by the adjacency matrix A and graph node features X (i.e., a bag), the
graph neural network is updated according to the following rule [21]:

H(X,A) = �
⇣
D̂�

1
2 ÂD̂�

1
2XW

⌘
, (1)

where Â = A+ I and I is the identity matrix, D̂ is the degree matrix of Â, and
W is the learnable weights. We employ two GCNs where the adjacent matrix
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A is determined to capture feature similarity and temporal consistency, respec-
tively [51]. The two GCN embeddings are further concatenated to form the final
instance representation. To avoid a cluttered notation, we denote the refined
instance representation as H(x).

The GCNs help to compactly embed the neighbouring instances in the same
bag. When multiple bags are involved, we further employ a triplet loss to achieve
good separability of instances from different classes and compactness of instances
in the same class. A triplet consists of an anchor instance, a paired instance from
the same class as the anchor, and an unpaired instance from a different class from
the anchor, which are sampled from the collection ⌦ (defined in Eq (4)). The
triplet loss is given by

Ltriplet = [dap � dan +m]+ (2)

where m is the margin that controls the desired difference between the paired
distance dap and unpaired distance dan.

In addition to GCNs, the consistency loss function [42,46] and other network
architectures [46] (e.g., LSTM and CNN) also have been investigated to model
the relationship among instances. We choose GCNs because they have been
proved to be effective in close set video anomaly detection tasks [62,51]. However,
the representation learning in the open world is more complex than in a close
set. The triplet loss will make the normal data stay close to each other while
remaining dissimilar to the seen anomaly. This facilitating a normalizing flow
(NF) to learn their distribution in the following stage.

3.2 Uncertainty-aware Multiple Instance Learning

To train an instance-level classifier with only bag-level annotations, a naive solu-
tion is to assign a noisy version of label yn for each instance xn by directly using
the bag-level label, i.e., yn = Y . As a result, most of instances in the positive bag
may be incorrectly labelled (due to normal video clips in anomaly videos) during
model training. These mislabeled instances may degrade the model performance
as the learning targets are noisy. Furthermore, a MIL model instantiated by deep
neural networks (DNNs) is usually sensitive to noisy labels because DNNs are of
high capacity to fit random labels [58]. Therefore, instance selection from posi-
tive bags poses a critical issue that may significantly impact the performance of
a MIL model [51,62].

To address this challenge, top-k methods (e.g., [24]) select the “most positive"
instances from the positive bag in training. Two recent works [46,51] adapt this
technique and achieve decent performance in close set video anomaly detection
tasks. Most top-k methods follow a “sort-then-rank" process, where a critical
step is to determine the cleanness of each instance to evaluate how likely the
instance is a clean positive one (i.e., an anomaly event). In this work, we propose
to quantify the classification uncertainty by evidential deep learning. We then
introduce an instance selection approach based on uncertainty and confidence.
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Given an instance x, we introduce a binary random variable p 2 {0, 1} that
represents the chance that it is an anomaly, which follows a Bernoulli distribu-
tion. Similar to EDL [37], we further introduce a Beta distribution Beta(↵) as
the conjugate prior of the Bernoulli likelihood. In our framework, the learning
objective is to train a DNN to directly predict the Beta distribution parameter
↵ instead of p. According to Subjective Logic and evidence theory [18,38], the
predicted parameters ↵ = (↵+,↵�)> can be regarded as the evidences over the
positive (anomaly) and negative (normal) classes, which can be expressed as

↵ = �(H(x)) + aW (3)

where a = (a+, a�)> is the base rate with a+ = a� = 1/2 and W = 2 in our
binary case; H and � denote GCNs based backbone as the feature extractor and
a DNN as the EDL classification head, respectively. The GCNs encode the rela-
tionship among instances in a bag and output discriminative video clip features.
In practice, the EDL classification head consists of two fully connected layers
and ReLU activation to predict non-negative class-wise logits. The predictions
↵+ and ↵� correspond to the instance class y = 1 and y = 0 respectively, indi-
cating the virtual quantity of evidence to support x to be classified as positive
or negative.

The benefit of placing the Beta prior on the Bernoulli likelihood is that the
prediction uncertainty can be efficiently and accurately quantified according to
recent Dirichlet-based models [22], enabling the MIL model to know what it

does not know. The predicted probabilities are the ratios of the evidence, i.e.,

E[p+] = ↵+/↵0 and E[p�] = ↵�/↵0, where ↵0 = ↵+ + ↵�, and the evidential
uncertainty (or vacuity) is quantified as u = 2/↵0.

Based on the evidential uncertainty above, we propose to train the MIL by
selecting the clean samples, which form a set:

⌦ =
n
xi|p

(i)
+ � ⌧p,↵

(i)
+ � ⌧u

o
, (4)

where p(i)+ and ↵(i)
+ are the confidence score and evidence that support the sample

xi being classified as an anomaly; ⌧p and ⌧u are thresholds to control the size
of the set. The MIL model is trained by minimizing the Type II maximum
likelihood loss (MLL) [37]:

LMIL(x
0

i) =
2X

k=1

h
ŷ(i)k

⇣
log(↵(i)

0 )� log(↵(i)
k )

⌘i
(5)

where the training sample x0

i is from either the selected set ⌦ or the negative
bag N = {xi|yi = 0}, i.e., x0

i 2 ⌦ [ N , ŷ is the one-hot version of the label
y. The benefit of Type II MLL lies in that it not only enforces the predicted
probability to be as close to the ground-truth bag label, but also increases the
evidence for observed data to support better instance selection.

MIL is intrinsically learning using the noisy labels, which is a long-standing
challenge. Recent research approaches this problem generally from sample se-
lection [30,56,57,52], sample re-weighting [50,6], and meta-learning [25,60] per-
spectives. We choose to explore sample selection because it is well-justified and
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empirically works well. The sample selection methods often leverage the mem-
orization effect of DNNs to identify the clean samples, which stems from the
observation that DNNs tend to fit clean samples faster than noisy ones [1]. Here,
⌧p in Eq. (4) is derived from the memorization effect, which encourages ⌦ to
retain those qualified samples, i.e., samples whose predicted probability p+ is
most close to the learning target, y = 1. However, sample selection methods
could severally suffer from the bias confirmation [45] caused by incorrect se-
lection, which is challenging to solve. The proposed uncertainty aware MIL is
distinguished from exiting efforts [51,48,42] for mitigating the bias confirmation
by filtering out fluctuating samples (i.e., those with a small ↵+ less than ⌧u),
which may be incorrectly selected if only p+ is considered.

3.3 Pseudo Anomaly Generation

For the OpenVAD problem, open space risk should be bounded in training so
that the model could be aware of the semantically shifted unseen data. However,
unseen anomaly videos are not available during training under the open set
setting. Inspired by recent generative open set modeling [13,35] and normalizing
flows (NFs), we propose to leverage NFs to generate pseudo anomaly instances
in the latent feature space.

NFs are the flow-based deep generative models that could explicitly learn
the probability density of data [43,44]. It has been shown effective for realistic
data generation, exact posterior inference, and exact density estimation. NFs
consist of composition of invertible learnable functions fl to transform between
a simple distribution p(z) and the complex data distribution p(x), i.e., z = f(x)
and x = f�1(z) where f = f1 � · · · � fL. To enable exact density estimation
and data generation, the invertible transformation is constructed following the
change-of-variable rule:

p(x) = p(z)

����det
✓
@f(x)

@x>

◆���� (6)

where z typically follows a non-informative Gaussian distribution. Eq. (6) is as-
sociated with the determinant of Jacobian, which can be efficiently computed
when a proper bijective function fl is designed to make the Jacobian triangular.
Recent NF models such as RealNVP [11], Glow [19], and IAF [20] use different
coupling layers to address the functional invertibility and computational effi-
ciency of the transformation fl based on deep neural networks. In this paper,
we adopt the IAF model because it is efficient for sampling purpose, which is
critical for pseudo anomaly generation. The coupling layer fl is designed as

xi = zi ⇥ s(z1:i�1) + t(z1:i�1), (7)

where xi and zi are the i-th entries of feature vector x and z, respectively. The
scaling and shifting functions s and t are instantiated by deep neural networks.

To train the flow model, the goal is to maximize the log-likelihood of the
normal video data, which is equivalent to minimizing the following objective:

LNF = ED(X,Y=0) [� log p(H(x))] (8)
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Note that here we learn the flow model f in the latent feature space H(x). This
alleviates the difficulty of directly learning in a high-dimensional space.

The generation is based on the assumption that pseudo anomalies are out-
liers with respect to the normal class. Therefore, a pseudo anomaly instance x̃
should be sampled from the low density region of the probability distribution
of the normal class p(x|y = 0). In this paper, we first use the tractable p(z) to
repeatedly sample the latent feature z̃i. Then, the pseudo samples are generated
by the flow model of the normal class, i.e., x̃ = g(z̃; y = 0) where g(·) = f�1(·).
Finally, only the pseudo samples with low density (i.e., with a small p(x̃|y = 0))
are preserved as pseudo anomaly instances. The following equations summarize
this procedure:

z̃ ⇠ p(z), x̃ = g(z̃; y = 0), Dg = {x̃|p(x̃|y = 0)  ✏} (9)

where p(x̃|y = 0) = p(z)
���det

⇣
@f(x)
@xT

⌘���. The benefit of generating pseudo anomaly
instances from normal class distribution is that the class boundary of the normal
class is constrained by the pseudo anomalies so that the open space risk is well
managed. Regarding the way of generating pseudo anomaly instances, unlike pre-
vious work [35] that generates in the pixel space, we perform generation in the
feature space, similar to [13]. Spawning from the feature space has dual advan-
tages over spawning from the pixel space: 1) the latent space has a much lower
dimension, which allows fast sampling for the NFs, and 2) the latent features
are more discriminative than the raw pixels [9]; thus the generated data are less
likely to be negatively impacted by the background noise in the video data. In
contrast, [13] uses the Gaussian mixtures to model the class-wise in-distribution
data density. We argue that the Gaussian distribution is not flexible to model
the complex in-distribution data. NFs can seamlessly solve this problem owing
to its high capability via a deep composition of the bejiection function f .

NFs have a high capability of density estimation while free of supervision. A
natural question that arises is whether we can directly ensemble the prediction
results of a normalizing flow and a classifier. Ensemble is widely used yet seems
to be simpler than pseudo anomaly generation. However, we remark that the
ensembles can not inherit the benefit from unsupervised learning and (weakly-
) supervised learning paradigms. This is because that NFs cannot detect the
complicated anomaly (e.g., anomaly samples that look similar to normal ones),
which is consistent with the observations in [33]. Our motivation is to only
leverage the strengths (i.e., generating anomaly) and avoid weaknesses (i.e.,
detecting anomaly) of NFs.

3.4 Multi-Stage Model Training and Inference

Since NFs are used for generating pseudo anomaly instances for the target
MIL model, we propose a multi-stage model training scheme. Specifically, we
first train a feature encoder H(·) and an EDL classifier �(·) by minimizing the
weighted sum of MIL loss and triplet loss. Then, the feature encoder H is frozen
and the flow model f(·) is trained in an unsupervised way using only normal
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Algorithm 1 Multi-stage training

Input: Dtrain = {X,Y }, number of epochs for training EDL model (�) and NFs model (f)
TEDL, TNFs, thresholds ⌧p, ⌧p, ✏, loss weight �
Output: feature encoder H, EDL classifier �.
. Stage 1 : Warmup training

Train H and � by minimizing LMIL + �Ltriplet.
. Stage 2 : Freeze H and train f
for t 2 [1, TNFs] do

Fetch m normal videos, i.e., {xi}
m
i=1 ⇠ Dtrain(X,Y = 0).

Update NFs model f by minimizing LNF.
end for

. Stage 3 : Freeze H and f , and fine-tune �
for t 2 [1, TEDL] do

Fetch m normal and anomaly videos from Dtrain.
Construct the clean positive set ⌦ using Eq. (4).
Augment ⌦ by sampling m pseudo anomalies using Eq (9), i.e., ⌦  ⌦ [Dg.
Update EDL model � by minimizing LEDL.

end for

videos. Finally, the EDL classifier is fine-tuned by using the selected positive
instances, the generated pseudo anomaly instances, and the normal videos. Al-
gorithm 1 shows the details of the training process. It is worth to note that
during inference, the flow model does not involve additional overhead we use the
prediction of EDL classifiers to score samples and the anomaly score is defined
as the mean probability of being an anomaly: E[p+] = ↵+

↵0
.

4 Experiments

Since OpenVAD is less explored, no standard evaluation setup is available for this
type of task. To adequately assess the method and inform the practical choice,
we develop a benchmark and test several state-of-the-art methods. Through
comprehensive comparison on various datasets, we demonstrate the effectiveness
of the proposed framework. More experiments details and results can be found in
the Appendix, and the link to the source code is available in https://github.

com/YUZ128pitt/Towards-OpenVAD.git.

4.1 Datasets and Evaluation Setup

We conduct experiments on three video anomaly detection datasets of different
scales. Videos in these datasets are untrimmed, and only video-level labels are
provided during training. The frame-level annotations are used for evaluation
purpose. Detailed information for these three datasets is as follows:

https://github.com/YUZ128pitt/Towards-OpenVAD.git
https://github.com/YUZ128pitt/Towards-OpenVAD.git
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– XD Violence [51]: This dataset contains totally 4,754 videos collected from
movies, online videos, sport streaming, surveillance cameras and CCTVs.
There are five types of anomaly events, and each anomaly video may contain
one or more types of anomalies, including Abuse, Riot, Shooting, Fighting,

Car accident, and Explosion.
– UCF Crime [42]: This dataset contains totally 1,900 videos collected from

surveillance cameras from variant scenes. There 13 different types of violence-
related anomaly videos: Abuse, Burglary, Robbery, Stealing, Shooting, Shoplift-

ing, Assault, Fighting, Arson, Explosion, Arrest, Road Accident, and Van-

dalism. There are 1,610 training videos (of which 810 are anomaly) and 290
test videos (of which 140 are anomaly).

– ShanghaiTech Campus [26]: This dataset consists videos from 13 scenes
with different light conditions and camera angles. Anomaly events are defined
as actions that contain sudden motions, such as chasing and brawling, but
there is no anomaly type labels. We follow the split in [62], in which there
are totally 238 training videos (of which 63 are anomaly) and 199 testing (of
which 44 are anomaly) videos.

Evaluation setup. For the OpenVAD task, we consider a more realistic set-
ting, where testing data contains unseen novel anomalies. To simulate unseen
anomaly, we remove one or more types of anomaly from the training data on
XD Violence and UCF Crime. We vary the size of anomaly training videos to
get comprehensive results under different ratios of unseen anomaly scenarios. For
example, in XD-Violence, there are six types of testing anomalies, and we train a
model with 1, 2, 3, and 4 types of anomaly videos along with normal videos. We
randomly remove a certain number of training anomaly classes and repeat them
three times to reduce the evaluation bias of seen anomaly. These evaluation sets
reflect our assumption about the most realistic video anomaly detection scenario
in an open world. We further test our method with limited number of anomaly
videos on the ShanghaiTech dataset. Since no anomaly labels are provided in
this dataset, we randomly choose a small subset of anomaly videos for model
training. We follow the previous work to use Area under Operating Characteris-
tic curve (AUC-ROC) as the metric on UCF-Crime and ShanghaiTech, and use
Area under Precision and Recall curve (AUC-PR) on the XD-Violence dataset.
Both AUC-ROC and AUC-PR depict the overall performance using a sliding
threshold, and a larger value indicates better performance.

4.2 Comparison with State-of-the-arts

We use the pre-trained I3D classifier [5] to extract features for every non-
overlapped video clip (each clip is a collection of 16 consecutive frames) in a
video. During training, we uniformly sample 200/200/32 (XD-Violence/UCF-
Crime/ShanghaiTech) video clips features to create a bag with the same size.

Our model shares the core design across three datasets and different tasks.
We use two layers of GCNs and construct the EDL model with two fully con-
nected layers stacked with a ReLU activation function. For the NFs, we use the 5
consecutive IAF [20]. See Appendix Section B for more implementation details.
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Table 1: AUC-PR (%) results on XD-Violence for anomaly frame detection with
various number of seen anomaly classes. Methods with (*) in the first column
are unsupervised, while the rest are weakly-supervised.
Num. seen anomaly 0 1 2 3 4

OCSVM [40] (*) 27.25 - - - -

Conv-AE [16] (*) 30.77 - - - -

Wu et al. [51](off-line) - 40.67 50.34 60.53 67.77

Wu et al. [51](on-line) - 39.13 50.20 58.87 64.29

RTFM [46] - 43.54 50.88 58.52 63.65

Ours - 45.65 54.65 64.40 69.61

Results on XD-Violence. Table 1 shows the AUC-PR scores in detecting
anomaly frames in settings where 6 types of anomaly activities appear in testing,
while only 1, 2, 3, or 4 types of them are seen during training. Our method out-
performs both unsupervised and weakly supervised ones in all cases. In particu-
lar, our method achieves a significant performance gain when very few anomalies
are seen, which clearly justifies its capability in the open world setting. Hasan
et al. [16] and OCSVM [40] do not rely on anomaly videos compared to other
methods. Hasan et al. surpasses the OCSVM by around 3% on AUC-PR. How-
ever, weakly supervised methods perform much better when there are anomaly
videos available for training. Even in the extreme case when only 1 out of 6
types of anomalies are seen, the weakly supervised methods can outperform the
unsupervised ones by more than 10%. Moreover, more anomaly videos for train-
ing further boost the performance of weakly supervised methods. Our method
also achieves better a AUC-ROC score than other weakly supervised methods,
indicating that our method makes less false positive predictions (see additional
experimental results in Appendix Section D).

Results on UCF-Crime. Table 2 shows that AUC-ROC scores in detecting
anomaly frames when 13 types of the anomaly appear during testing, only 1,
3, 6, and 9 types of these anomaly are seen. Results in Table 2 show that our
method consistently outperforms all baselines under all training settings. To our
surprise, all weakly supervised methods can achieve relatively good performance
even when a small subset of the anomaly is seen. It could be due to that most
anomalous behaviours are related to human activities, and there is somehow
high correlation among various anomalies, e.g., Abuse, Assault, and Vandalism.
RTFM [46] achieves better performance than Wu et al. [51] when fewer anomaly
classes are seen, which may be owing to its feature magnitude component. Never-
theless, our method achieves the most stable performance under various training
setups, implying that our proposed framework is robust by learning a compact
decision boundary.

Results on ShanghaiTech. Table 3 shows the AUC-ROC under an imbal-
ance scenario: only a few anomalies are available for training. Results indicate
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Table 2: AUC-ROC(%) results on UCF-Crime for video anomaly detection with
various number of seen anomaly classes. Methods with (*) in the first column
are unsupervised, while the rest are weakly-supervised.
Num. seen anomaly 0 1 3 6 9

Sohrabet al. [41](*) 58.50 - - - -

Lu et al. [29](*) 65.51 - - - -

BODS [49](*) 68.26 - - - -

GODS [49](*) 70.46 - - - -

Conv-AE [16] (*) 50.60 - - - -

Wu et al. [51](off-line) - 73.22 75.15 78.46 79.96

Wu et al. [51](on-line) - 73.78 74.64 77.84 79.11

RTFM [46] - 75.91 76.98 77.68 79.55

Ours - 76.73 77.78 78.82 80.14

Table 3: AUC-ROC(%) results on ShanghaiTech for video anomaly detection
with various number of seen anomaly videos. Methods with (*) in the first
column are unsupervised, while the rest are weakly-supervised.
Num.seen anomaly 0 5 10 15 25

Frame-Pred [28](*) 73.40 - - - -

Mem-AE [15] (*) 71.20 - - - -

MNAD [15] (*) 70.50 - - - -

VEC [55](*) 74.80 - - - -

Conv-AE [16](*) 60.85 - - - -

Wu et al. [51](off-line) - 65.83 81.54 83.47 88.81

Wu et al. [51](on-line) - 66.27 81.03 82.42 88.61

RTFM [46] - 70.59 83.42 81.50 86.33

Ours - 80.40 88.24 85.58 93.99

that our method performs better in this challenging setting when only 25 or
fewer anomaly videos are available for training. In that case, our method out-
performs both RTFM [46] and Wu et al. [51] by a large margin. In most cases,
the performance advantage is more significant when fewer videos are available.
This clearly indicates the effectiveness of the proposed method.

4.3 Ablation Study

We conduct ablation study to validate the proposed three components in our
framework, i.e., (i) triplet loss defined in Eq. (2), (ii) evidence criteria defined
in Eq. (4), and (iii) pseudo anomaly generation. Specifically, we incrementally
remove/replace them and compare the performance on XD-Violence, which is
the largest dataset with most videos. When removing the evidence criteria, we
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Table 4: Ablation study results (%) on XD-Violence

Triplet Loss Evidence Criteria Pseudo Anomaly
1 seen anomaly 4 seen anomaly

AUC-PR AUC-ROC AUC-PR AUC-ROC

p p p
45.65 72.50 69.61 88.25

p p
45.26 61.30 69.14 83.57

p
41.79 67.07 68.82 84.78

40.94 66.83 66.61 84.09

set the ⌦ to include all samples. To evaluate the quality of pseudo anomalies,
we replace it with a Gaussian noise.

Table 4 validates the contribution of each proposed technique. It shows that
the combination of the three components achieves the best AUC-PR and AUC-
ROC scores, indicating that all these three components positively contribute
to the performance of our framework. Notably, the triplet loss contributes the
most to the performance gain. This demonstrates the important role of instance
representation learning for video anomaly detection. Besides, we note that the
evidence criteria produce better AUC-PR scores while worse AUC-ROC scores.
This can be explained that the evidence criteria drive the decision boundary
toward the positive side in the feature space as it filters out the noisy labels. As
a result, the false positive predictions are less while the false negative predic-
tions might increase. Lastly, once the pseudo anomaly generation is applied, the
performances of both AUC-PR and AUC-ROC are improved.

5 Conclusion

In this paper, we present a new approach for the OpenVAD problem under weak
supervision, which is a highly challenging task by previous unsupervised and
weakly supervised methods when being used alone. The OpenVAD scenario is
the most realistic scenario in real-world applications, as the anomaly events are
fundamentally difficult to be fully enumerated, characterized, and modeled. To
address the unique challenges, the proposed framework integrates unsupervised
learning (i.e., NFs) and weakly supervised learning (i.e., MIL) in novel ways to
benefit from the advantages of both while not suffering from their individual lim-
itations. Different from existing unsupervised methods, the proposed approach
makes use of any available anomaly videos without expensive labelling costs.
Unlike other weakly supervised methods, our method can detect any type of
seen and unseen anomalies in an open world.
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