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Abstract. We introduce an audiovisual method for long-range text-to-
video retrieval. Unlike previous approaches designed for short video re-
trieval (e.g., 5-15 seconds in duration), our approach aims to retrieve
minute-long videos that capture complex human actions. One challenge
of standard video-only approaches is the large computational cost asso-
ciated with processing hundreds of densely extracted frames from such
long videos. To address this issue, we propose to replace parts of the
video with compact audio cues that succinctly summarize dynamic audio
events and are cheap to process. Our method, named EclipSE (Efficient
CLIP with Sound Encoding), adapts the popular CLIP model to an au-
diovisual video setting, by adding a unified audiovisual transformer block
that captures complementary cues from the video and audio streams. In
addition to being 2.92× faster and 2.34× memory-efficient than long-
range video-only approaches, our method also achieves better text-to-
video retrieval accuracy on several diverse long-range video datasets such
as ActivityNet, QVHighlights, YouCook2, DiDeMo, and Charades. Our
code is available at https://github.com/GenjiB/ECLIPSE

1 Introduction

Fueled by the growing availability of video data, the last few years have wit-
nessed remarkable progress in text-to-video retrieval [1,2,3,4,5,6,7,8]. However,
modern video retrieval systems are predominantly designed for very short videos
(e.g., 5-15 seconds in length). In contrast, the majority of real-world videos often
capture complex human actions, which may last several minutes or even hours.
For example, consider yourself performing a complex activity of making Japanese
Souffle Pancakes, which may take a couple of hours. In a scenario when you for-
get some of the steps in the recipe, it would be helpful to retrieve a relevant
several-minute-long video segment demonstrating how to perform those steps.
However, the traditional short-range video retrieval models would struggle with
this task due to their inability to analyze longer videos. Combining the strengths
of audio and video modalities, we aim to address this limitation by proposing an
efficient audiovisual text-to-video retrieval system focused on long-range videos.

https://github.com/GenjiB/ECLIPSE
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Fig. 2. Comparison of different high-level frameworks for long-range text-to-video re-
trieval. Most traditional text-to-video retrieval methods (Leftmost Column) are de-
signed for short videos (e.g., 5-15 seconds in duration). Adapting these approaches
to several-minute long videos by stacking more input frames (Middle Column) is
impractical due to excessive computational cost. Instead, our proposed framework op-
erates on sparsely sampled video frames and dense audio cues, which are cheaper to
process (Rightmost Column). In addition to being more efficient, our framework also
achieves higher text-to-video retrieval accuracy than standard video-only approaches.
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Fig. 1. Our audiovisual framework
scales to long videos more efficiently
than dense video-only approaches.

Among prior vision-and-language meth-
ods [2,1,9,10,11,12,13,14], CLIP [15] stands
out as one of the most widely adopted
models. Several recent approaches ex-
tended CLIP to video [16] by indepen-
dently processing individual video frames
and then averaging their predictions
across time. However, these approaches
are often impractical in the long-range
video setting because of the large com-
putational cost required to process hun-
dreds of densely extracted video frames
(See Figure 1). Furthermore, while video
modality is rich in the information it
stores, it also has high informational re-
dundancy (i.e., the video content often
changes little in neighboring frames). In contrast, audio can compactly capture
information related to human actions [17,18], objects [19,20,21], scenes [22,23]
and other complex events [24] while also being cheaper to process [25] than the
raw video. For instance, consider a video of a person frying the eggs in a pan.
In this example, most of the relevant visual information (e.g., kitchen stove,
pan, eggs, etc.) can be captured in just a few video frames, while the temporal
dynamics in the scene can be succinctly encoded in the audio stream (e.g., the
sounds of the eggs sizzling in a pan, etc.).
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Based on this motivation, we introduce EclipSE, an Efficient CLIP with
Sound Encoding. Instead of processing many densely-extracted frames from a
long video (the middle column in Figure 2), our framework leverages comple-
mentary audio and video cues by operating on sparsely sampled video frames
accompanied by dense audio (the rightmost column in Figure 2). We demon-
strate that compared to dense video-only approaches, our framework is not only
more efficient but it is also more accurate.

Our approach adapts CLIP to long-range videos by incorporating a dual-
pathway audiovisual attention block into every layer of the Transformer back-
bone. Such a cross-modal attention mechanism allows our model to (i) incorpo-
rate long-range temporal cues from the audio stream into the visual representa-
tion, and (ii) conversely inject rich visual features from the video modality into
audio representation for improved audio feature expressivity. Such bi-directional
exchange of information ensures that both modalities benefit from each other
in order to maximize the performance of the downstream application (i.e., long-
range text-to-video retrieval). Additionally, we demonstrate that our audiovisual
attention block can be easily incorporated into pretrained transformer models
such as CLIP [15] without re-training the new model from scratch.

We validate EclipSE on several diverse long-range video retrieval bench-
marks and show that it achieves state-of-the-art results on ActivityNet [26],
QVHighlights [27], DiDeMo [28], YouCook2 [29], and Charades [30] while being
2.92× faster and 2.34× memory-efficient than long-range video-only methods.

In summary, our contributions are threefold. First, we propose EclipSE,
an audiovisual adaptation of CLIP that leverages complementary video and au-
dio cues for long-range video retrieval. Second, we demonstrate that compared
to long-range video-only approaches, our audiovisual framework leads to bet-
ter video retrieval results at a reduced computational cost. Lastly, we provide
comprehensive ablation studies investigating the success factors of EclipSE .

2 Related Work

Text-to-Video Retrieval. The association of text descriptions and videos
provides rich supervisory signals for developing robust text-to-video retrieval
systems. Self-supervised learning approaches in this area achieve impressive
results using contrastive loss [3,31,32,33,34,35,36], masked language modeling
[37,38,39,40,41], or masked feature prediction [42]. Additionally, several prior
methods propose to incorporate rich audio/speech information for video-and-
text representations learning, either by fusing cross-modal signals [6,43,44] or
masking inputs from different modalities during training [7,45]. Furthermore,
with large-scale pre-training on millions of image and text pairs, CLIP [15] has
achieved impressive results on a wide array of vision-and-language tasks. Re-
cently, CLIP-based approaches [46,47,16,48,49,13,14,50,51] have also been used
in video by aggregating image-level outputs across different time steps.

Unlike these prior methods, which are designed for short-range videos (e.g.,
5-15s), we aim to design an audivosual framework for retrieving long videos (e.g.,
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several minutes in length). Compared to the existing CLIP-based approaches,
which are difficult to adapt to long videos due to the large computational cost of
processing many densely-extracted video frames, we propose to leverage compact
audio cues in order to reduce the need for the costly video modality. This enables
efficient adaptation of CLIP to long video retrieval.

Audiovisual Learning. Audio and video synchronization is commonly used
for self-supervised audio-visual learning [52,53,54,19,22,55,23,56,57,58,59]. Aside
from self-supervised learning, many recent methods were proposed for audio-
visual event classification [60,25,17,24,61]. Furthermore, the recent popularity of
Transformers [62,63,64,65] have enabled a wide array of architectures for jointly
modeling audio and video data [66,67,68,69,70,71,72]. Compared to these prior
approaches, our approach focuses on efficient long-range text-to-video retrieval.
Specifically, we aim to leverage audio cues in order to reduce the computational
cost of processing long videos.

Long Sequence Modeling. Recent work in the natural language processing
(NLP) domain [73,74,75] proposed to approximate the self-attention operator for
long sequence modeling. While these approaches are effective in NLP, they are
still very costly in the video domain due to the high dimensionality of video
inputs. Furthermore, as demonstrated by recent work in the video domain [75],
such approximation techniques lead to a substantial accuracy drop while produc-
ing limited efficiency gains for video recognition tasks. Additionally, we note that
these approximation mechanisms are often incompatible with pretrained vision-
and-language models such as CLIP (due to different network architectures).

3 EclipSE: Efficient CLIP with Sound Encoding

Our goal is to design an efficient framework that leverages audiovisual cues for
long-range text-to-video retrieval. Instead of processing many densely-extracted
frames from a long video, which is costly, our framework operates on sparsely
sampled video frames accompanied by dense audio. We adapt CLIP to long-
range videos by adding a dual-pathway audiovisual attention block into every
layer of the Transformer backbone. Our video retrieval framework consists of
three high-level components: (i) multimodal input embeddings, (ii) an audiovi-
sual backbone for processing video and audio modalities, and (iii) a contrastive
video-to-text matching objective. Below we provide more details behind each of
these components. We also illustrate our framework in Figure 3.

3.1 Obtaining Multimodal Input Embeddings

Video, Audio and Text Inputs. Our framework takes audio, video, and
text modalities as its inputs. For video modality, we consider video clips X ∈
RT×H×W×3 consisting of T RGB frames of size H×W , sampled uniformly from
the whole input video. For audio, we use T audio spectrograms Z ∈ RT×M×C ,
each spanning t seconds and centered around each of T video frames. Here, M
and C depict spatial spectrogram dimensions. Lastly, the text is represented as a
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sequence y = (y1, . . . , yL) where yi represents a distinct word in the textual video
description and L is the length of the description (i.e., the number of words).

Video Patch Decomposition. Following the ViT [63], we decompose each
frame into N non-overlapping patches, each of size P × P , and flatten these
patches into vectors x(p,t) ∈ R3P 2

where p = 1, . . . , N denotes spatial locations
and t = 1, . . . , T indicates a frame index.

Video Patch Embeddings. Video patches from each frame x(p,t) are lin-
early mapped into vectors v(0)

(p,t) ∈ Rd, for p = 1 . . . N , and t = 1 . . . T . Afterward,
we also augment each visual token with spatiotemporal position information as
is done in [76]. A specialized CLS token v

(0)
cls is prepended to the visual sequence

of each frame. Finally, the embeddings V(0) ∈ RT×(N+1)×d are used as visual
inputs to our EclipSE model.

Audio Embeddings. Given an audio spectrogram Zt ∈ RM×C , an audio
encoder maps it into audio embeddings A

(0)
t ∈ Rd for each timestep t = 1 . . . T

where as before, T denotes the number of video frames. We note that the audio
encoder can be either a CNN [77,78,79] or a Transformer [80,81]. Afterward, the
audio embeddings A(0) ∈ RT×d are fed into EclipSE together with the visual
tokens V(0) ∈ RT×(N+1)×d.

Text Embeddings. We use a pretrained CLIP [15] text encoder to embed
a textual video description y = (y1, . . . , yL) into a textual embedding g ∈ Rd

where g corresponds to the CLS token of a given text sequence.

3.2 Audiovisual Attention Block

Although videos contain rich information, they are also redundant and costly
to process. In contrast, audio is more compact and cheaper. Thus, we propose
an audiovisual attention block that gradually incorporates relevant audio cues
into the visual representation. Our audiovisual attention block consists of three
distinct attention schemes: (i) spatial visual attention, (ii) audio-to-video atten-
tion, and (iii) video-to-audio attention. We next describe each of these attention
schemes in more detail.

Multi-Head Self-Attention. All of our three attention schemes are imple-
mented using a standard multi-head self-attention:

MHA(Q,K,V) = Softmax

(
QK⊤
√
d

)
V, (1)

where Q,K,V are the query, key and value matrices obtained using learnable
projection weights WQ,WK ,WV ∈ Rd×d respectively. With this formal de-
scription of the MHA function, we can now proceed to the definitions of the
three attention schemes in our audiovisual attention block.

Spatial Attention. In order to preserve the pretrained network structure of
CLIP, we use an identical spatial attention scheme as in CLIP. Intuitively, spatial
attention enables our model to obtain discriminative frame-level representation
by aggregating relevant information from the visual tokens in the individual
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Fig. 3. We adapt CLIP [15] to long-range text-to-video retrieval by adding an effi-
cient audiovisual attention block into the Transformer architecture. First, we obtain
fixed dimensional text, audio, and visual feature embeddings. Afterward, the visual
and audio embeddings are fed into our EclipSE audiovisual backbone, which injects
relevant audio information to video and vice-versa. This is accomplished using a dual-
pathway audiovisual attention block (illustrated on the right), which is stacked on top
of each other F times. Afterward, the audiovisual video segments are aggregated using
temporal pooling, and the model is optimized by maximizing the similarity between
audiovisual and textual embeddings using a contrastive loss function.

video frames. We can implement this scheme using our previously defined MHA
function as:

S
(ℓ)
t = MHA(V

(ℓ−1)
t ,V

(ℓ−1)
t ,V

(ℓ−1)
t ) +V

(ℓ−1)
t . (2)

Here, S(ℓ)
t ∈ R(N+1)×d is our newly computed spatial self-attention representa-

tion for frame t, and V
(ℓ−1)
t is a visual patch representation for frame t from

the previous transformer layer l − 1, which is used as input to the transformer
layer l. Note that in the spatial self-attention, the multi-head self-attention is
applied independently for each of T video frames. As discussed above, this en-
ables us to preserve the network structure of the original CLIP model, which is
essential for good text-to-video retrieval performance. For brevity, we omit the
layer normalization operation, which is applied to V

(ℓ)
t before feeding it to the

spatial attention block. The right part of Figure 3 provides a visual illustration
of where spatial attention fits within our audiovisual attention block.

Audio-to-Video Attention (A2V). To efficiently incorporate temporal
audio cues into static video frame representation, we use an audio-to-video (A2V)
attention mechanism, which is also illustrated in the right part of Figure 3 (la-
beled as Cross-Attn A2V module). This operation can be written as:
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V
(ℓ)
t = MHA(S

(ℓ−1)
t ,A(ℓ−1),A(ℓ−1)) + S

(ℓ−1)
t . (3)

Here, A(ℓ−1) ∈ RT×d depicts our previously defined audio representation at layer
l− 1, and S

(ℓ−1)
t ∈ R(N+1)×d denotes a spatial video representation at timestep

t computed using our previously defined spatial attention block. Intuitively, the
new visual representation V

(ℓ)
t is computed as a weighted summation of the audio

features, which enables the model to incorporate long-range audio cues into the
visual features. Furthermore, because the audio representation is compact, the
operation above can be implemented efficiently.

Video-to-Audio Attention (V2A). Conversely, to inject rich visual in-
formation into compact audio features, we use a video-to-audio (V2A) attention
mechanism (illustrated in Figure 3 as Cross-Attn V2A module). We implement
this attention scheme as:

A
(ℓ)
t = MHA(A

(ℓ−1)
t ,S

(ℓ−1)
t ,S

(ℓ−1)
t ) +A

(ℓ−1)
t . (4)

At a high level, the operation above computes a new audio feature representation
for each timestep t as a weighted combination of all the visual token features at
timestep t. This allows us to improve the richness of the audio representation.

Final Audiovisual Representation. Following CLIP4Clip [16], we stack
our audiovisual attention block F times (F typically being set to 12). Afterward,
we perform temporal pooling over the CLS tokens across all video frames, to
obtain the final audiovisual representation f ∈ Rd.

3.3 Loss Function

We use the same contrastive video-to-text matching loss as in [16]. Specifically,
we compute the similarity between text and video using a normalized dot product
between the two embeddings f and g. We consider the matching text-video pairs
in a given batch as positive samples and all the other pairs in that same batch as
negative samples. To train our model, we minimize the sum of the video-to-text
and text-to-video matching losses [16].

3.4 Implementation Details

Our EclipSE follows CLIP4Clip [16] setting where text encoder and visual en-
coder are initialized with CLIP weights [15]. Specifically, we initialize the spatial
attention weights with the weights from CLIP. We also use CLIP weights to
initialize both of our cross-modal attention blocks. We attach zero-initialized
linear projection layers to the outputs of both cross-modal attention blocks so
that the initial outputs of these blocks would be set to zero. Unless otherwise
noted, for all of our experiments, we use a ViT-B/32 with uniformly sampled
32-frame inputs spanning the whole input video. The visual frames are extracted
at 3 fps. We implement EclipSE using Pytorch [82] and conduct the training
on four NVIDIA A6000 GPUs. For a fair comparison with the baselines, we set
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the batch size to 64. For audio encoder, we use ResNet-18 [83] pre-trained on
VGGSound [79]. We sample 10-second audio clips in the neighborhood around
the sampled video frame and process the raw audio into a spectrogram as is done
in [79]. We train our model with Adam optimizer [84] and set the learning rate
to 1e − 7 for text encoder and spatial attention in Eq. 2. The frame-level CLS
tokens are averaged to obtain the final video embedding.

Furthermore, the maximum text input is set to 64 tokens for DiDeMo and
QVHighlight, and 128 for ActivityNet Captions and YouCook2.

4 Experimental Setup

4.1 Downstream Datasets

We evaluate EclipSE on five diverse long-range datasets: ActivityNet Cap-
tions [26], QVHighlights [27], DiDeMo [28], YouCook2 [29], and Charades [30].

ActivityNet Captions [26] consists of 20,000 YouTube human activity
videos, each annotated with temporally localized sentence descriptions, with a
total of 100,000 sentences. The average video length is 180 seconds, which makes
this dataset well suited for verifying our model’s ability to retrieve long-range
videos. We follow [16,85,6,2] to evaluate paragraph-to-video retrieval, where we
concatenate all the sentence descriptions to form a paragraph. Since there is no
test set provided, we evaluate the video retrieval results on the val1 split.

QVHighlights [27] contains 3,164 videos (10,148 clips) from YouTube, cov-
ering a wide range of topics, including everyday activities in lifestyle vlog videos
to social and political activities in news videos. Each video is temporally an-
notated with multiple text queries describing distinct spans of the video. The
average video length is around 8 minutes. The original dataset is created for mo-
ment localization and highlight detection. Here we re-purpose it for text-to-video
retrieval by evaluating it in paragraph-to-video retrieval setup as ActivityNet
Captions. We use the standard splits for training, validation, and testing.

DiDeMo [28] contains 10,464 Flickr videos with 40,543 temporally localized
sentences. The average video length is 30 seconds. Similar to ActivityNet Cap-
tion, we evaluate paragraph-to-video retrieval on DiDeMo. We use the standard
splits for training, validation, and testing.

YouCook2 [29] consists of 2,000 videos capturing 89 complex recipes with
total duration of 176 hours. The average video length is 5.26 minutes. Each video
is annotated with multiple temporally localized captions. Similar to ActivityNet
Captions, we evaluate all methods in the paragraph-to-video retrieval setting.
We use standard splits for training, validation, and testing.

Charades [30] contains 9,848 videos with the corresponding textual descrip-
tions. The average video length is about 28 seconds. We use standard train and
test splits for training and testing.

4.2 Evaluation Metrics

We use standard video retrieval evaluation metrics [9,16] such as text-to-video
R@1, R@5, R@10, and mean rank (MnR) to validate the effectiveness of our



ECLIPSE 9

Table 1. ActivityNet Captions. We compare EclipSE with previous video re-
trieval methods. In the column Pretrain, C,G,H,W,CW,V denote COCO Captions [86],
Visual Genome Captions [87], HowTo100M [88], WIT [15], CC3M [89]+WebVid2M [3]
and VGGSound [79] datasets respectively. The performance is evaluated using text-
to-video retrieval R@1, R@5, R@10 and MnR metrics. EclipSE achieves the best re-
ported accuracy on this benchmark. We also note that using a stronger visual backbone
(i.e., ViT-B/16 vs. ViT-B/32) also leads to better video retrieval performance.

Method Pretrain Frames R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓

CE [43] - - 18.2 47.7 − 23.1
ClipBERT [9] C+G 40 21.3 49.0 − −
TT-CE [1] - 64 23.4 57.2 − −
MMT [6] H - 28.7 61.4 − 16.0
FiT [3] CW 32 28.9 57.8 71.2 −
SSB [31] H - 29.2 61.6 − −
HiT [2] H - 29.6 60.7 − −
CLIP4Clip [16] (ViT-B/32) W 64 40.7 71.8 83.4 8.2
EclipSE (ViT-B/32) W+V 32 42.3 73.2 83.8 8.2
EclipSE (ViT-B/16) W+V 32 45.3 75.7 86.2 6.2

EclipSE model. Since our model is built on CLIP, which is pretrained on a large-
scale image-and-text dataset [15], the comparisons with some of the previous
methods are not directly applicable. Therefore, in all of our evaluations, we use
a publicly available state-of-the-art CLIP4Clip [16] video retrieval system as our
primary baseline.

5 Results and Analysis

5.1 ActivityNet Captions

Comparison to the State-of-the-Art. In Table 1, we report the results of
our method on ActivityNet Captions. These results indicate several interest-
ing findings. First, we notice that the gap between CLIP-based methods (i.e.,
CLIP4Clip, EclipSE) and other previous approaches is significant (> 10% in
R@1 metric). This result justifies our motivation to build on the powerful CLIP
model. Second, our results indicate that EclipSE outperforms CLIP4Clip by
a substantial margin (1.6% in R@1), which suggests the usefulness of temporal
audio cues. Third, we also note that unlike CLIP4Clip, which operates on 64
frame inputs, EclipSE achieves higher accuracy while processing fewer frames
(i.e., 32). Lastly, we show that using a stronger visual backbone (i.e., ViT-B/16
vs. ViT-B/32) leads to improved video retrieval performance.

Accuracy vs. Number of Frames. We next investigate the trade-off be-
tween video retrieval accuracy and the number of input frames. In Figure 4,
we plot the long-range text-to-video retrieval accuracy (i.e., R@1) as a func-
tion of the number of input frames. Based on these results, we observe that
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EclipSE consistently outperforms CLIP4Clip in 8, 32 and 96-frame regimes.
Furthermore, we notice that EclipSE achieves higher accuracy than CLIP4Clip
even when operating on a much smaller number of video frames (e.g., 32 vs 96).
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Fig. 4. We compare EclipSE with
CLIP4Clip with a varying number
of frames. Our method outperforms
CLIP4Clip while using the same num-
ber or even fewer frames.

Computational Cost Analysis. We
note that compared to the video-only ap-
proaches, our proposed EclipSE uses an
additional audio modality. However, we
would also like to emphasize that we use
audio to improve the efficiency of the
costly video-only approaches rather than
merely improving the absolute video re-
trieval accuracy. In Table 2, we com-
pare the computational cost of a 96-frame
CLIP4Clip with our 32-frame EclipSE.
Based on these results, we observe that
EclipSE uses 2.3× less GPU memory,
runs 2.92× faster, and achieves better ac-
curacy (42.3 vs. 41.7) than CLIP4Clip.
This suggests that replacing the costly
video modality with the audio makes our
retrieval framework more efficient and
also improves its accuracy.

5.2 Results on Other Long-range Datasets

Next, we validate our approach on four other long-range video datasets: QVHigh-
lights [27] (QVH), DiDeMo [28], YouCook2 [29] (YC2), and Charades [30]. Since
long-range video retrieval is a relatively unexplored subarea of research, we
note that QVHighlights, YouCook2, and Charades are not formally used for the
long-range video retrieval task. However, all three of these datasets contain (i)
long videos and (ii) multiple annotated text descriptions of short-term segments
within each long video. Thus, to re-purpose these datasets for long-range text-to-
video retrieval, we follow the protocol of ActivityNet Captions [26]. Specifically,
we concatenate the textual descriptions of all short-term segments in a given

Table 2. We compare the computational cost of a 32-frame EclipSE with a 96-frame
CLIP4Clip [16] on ActivityNet Captions. Both methods are built using a ViT-B/32
architecture. Despite using fewer frames, EclipSE outperforms CLIP4Clip. Addition-
ally, our method uses 2.3× less GPU memory, runs 2.92× faster and is generally more
efficient as indicated by the number of GFLOPs (i.e., 827 vs 1251).

Method Num.
Frames

Inference
GFLOPs ↓

GPU Mem.
(in MB) ↓

Samples
per Sec. ↑

T2V
R@1 ↑

CLIP4Clip 96 1251 24,802 17.39 41.7
EclipSE 32 827 10,637 50.93 42.3
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Table 3. Our results on QVHighlights [27] (QVH), YouCook2 [29] (YC2), Cha-
rades [30] and DiDeMo [28] using the R@1 T2V metric. A 32-frame EclipSE with
a ViT-B/32 backbone outperforms prior approaches while also being more efficient.

Method Pretrain Frames QVH DiDeMo YC2 Charades GFLOPs

ClipBERT [9] C+G 32 43.2 20.4 29.8 6.7 -
FiT [3] CW 32 55.0 35.8 32.2 11.9 1426
CLIP4Clip [16] W 96 70.2 42.5 37.6 13.9 1251
EclipSE W+V 32 70.8 44.2 38.5 15.7 827

long video and treat it as a paragraph-to-video retrieval task similar to [26]. In
our comparisons, we also include other recent video retrieval methods such as
ClipBERT [9], Frozen in Time (FiT) [3], and CLIP4Clip [16].

In Table 3, we show that a 32-frame EclipSE with a ViT-B/32 backbone
outperforms prior methods on all four datasets. Additionally, we point out that
our method is more efficient than both FiT [3] and CLIP4Clip [16] (827 vs. 1251
vs. 1426 in GFLOPs).

Potential Overlap between Audio and Video Datasets. Next, we want
to verify that the videos used to pretrain our audio encoders were not present in
the test sets of the video retrieval benchmarks. Upon our investigation, we found
that the overlap between VGGSound, which was used to pretrain our best audio
model, and ActivityNet Captions was small, i.e., 42 out of 4, 926 videos (0.8%).
Furthermore, there were no overlaps between the VGGSound and all of the other
datasets. To validate that our original conclusions on ActivityNet still hold,
we conducted additional experiments on the deduplicated ActivityNet dataset
where the overlapping test videos were removed. We used the same CLIP4Clip
and EclipSE methods as in Table 1. We report that EclipSE achieved 42.3%
T2V R@1 accuracy while CLIP4Clip obtained 40.8%. Both of these results are
almost identical to the results in Table 1 (i.e., 42.3% and 40.7% respectively).

5.3 Ablation Studies

Next, we investigate how different design choices of our model affect the long-
range video retrieval accuracy on the ActivityNet Captions dataset [26].

Audiovisual Block Design. First, we validate the effectiveness of our au-
diovisual attention block by comparing it to (i) a joint audiovisual attention that
processes concatenated video and audio tokens, (ii) the variant of our model that
only uses audio-to-video (A2V) attention (Eq. 3) and (iii) our final model that
uses both audio-to-video (A2V) and video-to-audio (V2A) attentions (Eq. 3 and
Eq. 4). For efficiency, all models are trained using 8-frame inputs.

From the results in Figure 5a, we observe that using a bi-directional audiovi-
sual attention (i.e., both audio-to-video (A2V) and video-to-audio (V2A)) leads
to the best R@1 text-to-video retrieval accuracy on ActivityNet.

Different Audio Encoders. Next, we study how different audio encoders
affect the video retrieval performance of our model. Specifically, we experiment
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Fig. 5. (a) In the left subfigure, we study different audiovisual block design. Joint AV
refers to standard self-attention applied to concatenated audio and video tokens. A2V
refers to a single cross-modal audio-to-video attention block (Eq. 3). Lastly, A2V+V2A
depicts our dual-pathway attention block design (Eq. 3 and Eq. 4). Based on these
results, we observe that dual-pathway attention achieves the best performance. For
efficiency, we use 8 frame inputs for these experiments. (b) In the middle subfigure, we
also investigate different audio encoders applied to different duration audio segments.
These results indicate that (i) longer audio typically improves the performance, (ii)
EclipSE is robust to different audio encoders. (c) In the right subfigure, we study
video retrieval accuracy as a function of the number of audiovisual attention blocks.
Based on these results, we observe that injecting our proposed audiovisual attention
block into every layer of our 12-layer EclipSE model leads to the best performance.

with CNN-based audio encoders such as VGGish [78] and VGGSound [79], and
also a transformer-based audio encoder AST [81]. Our results in Figure 5b sug-
gest that our framework is robust to the choice of an audio encoder, as all three
audio encoders produce a similar performance.

Audio Duration. Additionally, we investigate how audio duration affects
the accuracy of a long-range video retrieval task. In Figure 5b, we experiment
with audio spectrograms of 10, 20, and 30 seconds. Our results indicate that
longer audio duration leads to better performance. However, the performance
gain is relatively small (i.e., 0.5% in R@1), suggesting that 10s audio spectro-
grams are typically sufficient to capture relevant audio cues.

The Number of Audiovisual Attention Blocks. In Figure 5c, we also
study the video retrieval performance (using R@1) as a function of the number
of audiovisual attention blocks in our 12-layer EclipSE model. Using k audio-
visual attention blocks implies that these k audiovisual blocks are injected into
the first k layers of the network while the remaining 12 − k layers only con-
sider visual information. Our results indicate that video retrieval performance
decreases when we use fewer audiovisual attention blocks. In other words, our
method achieves the best video retrieval accuracy when the audiovisual attention
block is inserted into every layer of our EclipSE architecture.

The Importance of CLIP Pretraining. To highlight the importance of
CLIP pretraining, we compare CLIP pretraining with the ImageNet-21k pre-
training. We use the ViT-B/32 architecture for these experiments. We report that
compared to the ImageNet-21k pretraining, CLIP pretraining leads to 27.1%,
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A woman is seen speaking to the camera while standing around a group of exercise equipment. The woman shows how to

adjust the exercise equipment then climbs on top and begins using it. The woman continues riding on the bike while

speaking to the camera and climbing off in the end.
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The person steps up to the window with the violin. The person starts playing the violin near the window. The image of the
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Fig. 6. Here, we illustrate our qualitative retrieval results on ActivityNet Captions [26].
We compare our audiovisual EclipSE model with a video-only CLIP4Clip [16]. For
a given a textual query (depicted in a green block), we visualize each method’s top-
1 retrieved video. Our results indicate that the video-only CLIP4Clip struggles with
retrieval when textual queries include audio event descriptions, e.g., “a woman speaking
to the camera", “a person playing the violin," etc. (see bolded text). In these cases,
CLIP4Clip fails to retrieve the correct video instances, whereas EclipSE effectively
leverages audiovisual cues for a successful retrieval.

34.6%, 24.2%, 42.5% better T2V R@1 retrieval accuracy on ActivityNet, DiDeMo,
YouCook2, and QVHighlights respectively. These results suggest that CLIP pre-
training is essential for good downstream video retrieval performance.

Single Modality Baselines. We also report the results of (i) 180-second
audio-only, (ii) 64-frame video-only, and (iii) our 32-frame audiovisual meth-
ods. On ActivityNet Captions, the three approaches achieve 2.7%, 40.7%, and
42.3% R1 T2V retrieval accuracy respectively. These results indicate that jointly
modeling audio and video achieves the best accuracy. We also note that while
audio alone obtains poor accuracy, audio effectively complements video in our
audiovisual approach. We observe similar trends on all other datasets too.

5.4 Qualitative Results

Video Retrieval Results. In Figure 6, we also illustrate some of the qualita-
tive video retrieval results on ActivityNet Captions [26]. Specifically, for a given
textual query (illustrated in the green blocks in Figure 6), we visualize the top-1
retrieved video by our audiovisual EclipSE and the video-only CLIP4Clip base-
line. Based on these results, we observe that the video-only CLIP4Clip method
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The person steps up to the window with the violin. The person starts playing the violin near the window. The image of the person

changes to a digitally animated screen.
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man chopping wood. We see an older man using a chainsaw on the tree. We see a dog playing in the yard. We see a pile of logs

in the yard. We see the closing title screen.

Localized

Sound

Fig. 7. Here, we illustrate qualitative sound localization results of our method. Note
that our EclipSE is not explicitly trained for the sound localization task. In other
words, EclipSE learns implicit associations between objects and sounds while being
optimized with respect to the video retrieval task.

struggles to retrieve videos for textual queries that include audio-based event
descriptions. For instance, in the first example of Figure 6, the textual query
mentions an audio-based event of “a woman speaking to the camera" (see bolded
text). Furthermore, the textual query in the second example also involves a sound
event of “a person playing the violin."

Since CLIP4Clip, does not have any audiovisual modeling capabilities, it fails
to retrieve the correct video in these cases. In contrast, EclipSE retrieves the
correct videos in all three illustrated cases, thus, highlighting the importance of
incorporating video and audio cues for effective long-range video retrieval.

Sound Localization Results. In Figure 7, we also demonstrate quali-
tative sound localization results of our method. By computing the similarity
between audio features and visual patches, we can obtain saliency maps that
are indicative of sound sources in the video. Note that our method does not
require any additional sound localization training objective. In other words,
EclipSE successfully learns associations between sound sources and objects
(e.g., a woman talking, a man playing the violin, a man using a chainsaw) as a
byproduct of being trained for the video retrieval task.

6 Conclusions

In this paper, we present a novel audiovisual framework, EclipSE, for long-
range video retrieval. By replacing costly and redundant parts of the video, with
compact audio cues, EclipSE efficiently processes long-range videos while also
obtaining better performance than standard video-only methods. Our audiovi-
sual framework is (i) flexible, (ii) fast, (iii) memory-efficient, and (iv) it achieves
state-of-the-art results on five diverse long-range video benchmarks. In the fu-
ture, we plan to extend our method to other multimodal video understanding
tasks such as video question answering and video captioning.
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