
Supplementary Materials
Joint-Modal Label Denoising for Weakly-Supervised

Audio-Visual Video Parsing

Haoyue Cheng1,2 Zhaoyang Liu2 Hang Zhou3 Chen Qian2

Wayne Wu2 Limin Wang1,4B

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 SenseTime Research 3 CUHK - Sensetime Joint Lab 4 Shanghai AI Laboratory
chenghaoyue98@gmail.com zyliumy@gmail.com zhouhang@link.cuhk.edu.hk

qianchen@sensetime.com wuwenyan0503@gmail.com lmwang@nju.edu.cn

The appendix provides more visualizations and analyses to show deep insights
into our method. Sec. 1 exhausts the details of optimizing the network after
performing modality-specific label denoising in each training iteration. In Sec. 2,
we conduct more ablation studies for our method. To further compare JoMoLD
with other methods (i.e., HAN [1] and MA [3] ), Sec. 3 provides more specific
visualization cases.

1 Details of optimizing network F

This section elaborates on the details of optimizing parsing network F .
Data Input. As described in Sec. 3.1 of the main paper, for a given video, pre-
trained off-the-shelf networks extract segment-level audio and visual features
fa = {fa

1 , ..., f
a
t , ..., f

v
T }, fv = {fv

1 , ..., f
v
t , ..., f

v
T }, where t denotes the segment

timestamp and T represents the total number of segments. The fixed local fea-
tures are fed into the network F .
Feature Aggregation. Previous work [1] proves the significance of aggregating
temporal context and leveraging the clues in different modalities. We define a
function Attn to represent the widely used attention mechanism:

Attn(q,K,V) = Softmax(
qKT

d
)V, (1)

where d represents the dimension of vector q. Local features fa
t and fv

t are then
enhanced by the following way:

f̂a
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(2)

The enhanced features f̂a
t , f̂

v
t are context-aware and have better capabilities of

identifying the events occurred at t-segment.
Model Output. The audio-visual video parsing task predicts the event cate-
gories in each segment. In network F , a shared fully-connected layer projects
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enhanced audio and visual features f̂a
t , f̂v

t to label space. As a multi-label multi-
class classification task, the sigmoid function is applied to further output the
probabilities (between 0-1) for all event categories for each segment. We express
this process as the following equation:

pat = Sigmoid(FC(f̂a
t )), pvt = Sigmoid(FC(f̂v

t )), (3)

where pat , pvt ∈ (0, 1)C . During training, since only video-level labels are available,
parsing network F adopts an attentive MMIL Pooling mechanism to obtain
audio-level, visual-level and video-level event probability pa, pv, p ∈ (0, 1)C by
gathering weighted average of segment-level event probabilities:
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(4)

where W a
t ,W

v
t ∈ (0, 1)C and W av

t ∈ (0, 1)2×C are temporal and audio-visual
attention weights respectively. W a = {W a

t }Tt=1,W
v = {W v

t }Tt=1 ∈ (0, 1)T×C are
derived from applying learnable MLPs on f̂a

t , f̂
v
t , and normalized by softmax

function on temporal axis. And W av = {W av
t }Tt=1 ∈ (0, 1)T×2×C are derived

from applying another learnable MLP layer on features f̂a
t , f̂

v
t , then normalized

on modality axis.
Training Losses. We optimize the network in a batch manner. Let B denote
the batch size, and Pa, Pv, P ∈ (0, 1)B×C represent the audio-level, visual-
level and video-level event probabilities of a batch samples. The labels Ya,
Yv ∈ {0, 1}B×C are the refined audio-level and visual-level labels obtained by
modality-specific label denoising. Y ∈ {0, 1}B×C represent the original video-
level labels. We can then optimize network F with audio-level loss La, visual-level
loss Lv, and video-level loss Ls using binary cross-entropy loss:

L = La + Lv + Ls

= − 1

B

B∑
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C∑
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Ya[b, c]log(Pa[b, c])

− 1

B
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− 1

B

B∑
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c=1

Y[b, c]log(P[b, c]).

(5)

2 More Ablation Studies

In this section, we explore more ablation studies to demonstrate the rationality
of our method, which are not displayed in the main paper due to space limitation.
Segment-level metrics are reported.
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Study the Impact of Cross-modal Attention during Calculating Forward
Loss. As stated in Sec. 3.3 of the main paper, we skip cross-modal attention
when calculating forward loss in modality-specific label denoising. Cross-modal
attention interferes with the event predictions of two modalities, and produces
inaccurate modality-specific losses and further inaccurate noisy labels. Results
in Table 2.1 quantify the effectiveness of removing cross-modal attention.

Study the Generality of JoMoLD Equipped with Other Baselines. We mainly
utilizes HAN [1] as the backbone since it’s a widely used baseline. To further
validate the generality, we change different backbones with JoMoLD. We modify
two models from similar tasks as backbones, i.e., 1) AVE [2]: audio-visual event
localization task; 2) and AVSlowFast [4]: audio-visual action recognition task.
Table 2.2 confirms that our approach works well for different baselines.

Study the Impact of Different Batch Sizes. We study the impact of different
batch sizes on the final results in Table 2.3. The results of the models trained on
smaller sizes are slightly lower than that on batch size 128, which is the optimal
setting in our experiments. Two reasons can explain this: 1) Noises might not
be uniformly distributed in a smaller batch; 2) There are more round-off errors
for smaller batch sizes when determining the number of noises in a batch. The
results of model trained on a larger batch size fluctuate within acceptable ranges.

Table 2.1: Study the effectiveness of skipping cross-modal attention.
Forward Loss for Label Denoising Audio Visual Audio-Visual Type@AV Event@AV
Not Skip cross-modal attention 60.3 60.0 55.1 58.9 57.9
Skip cross-modal attention 61.3 63.8 57.2 60.8 59.9

Table 2.2: Study the generality of JoMoLD on other backbones.
Method Audio Visual Audio-Visual Type@AV Event@AV
AVE [2] 49.9 37.3 37.0 41.4 43.6

AVE + JoMoLD 50.8 39.5 39.8 43.4 45.9
AVSlowFast [4] 47.2 50.8 39.8 45.9 47.0

AVSlowFast + JoMoLD 48.9 60.1 43.7 50.9 52.1

Table 2.3: Study the impact of different batch sizes.

Batch size Audio Visual Audio-Visual Type@AV Event@AV
32 61.3 63.1 56.4 60.3 59.6
64 61.4 63.2 57.0 60.5 59.7
128 61.3 63.8 57.2 60.8 59.9
256 61.4 63.6 57.1 60.8 59.5
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3 Additional Qualitative Analyses

In this section, we present additional visualization cases to compare our JoMoLD
with other methods on video parsing and label denoising.

3.1 Visualizations of Video Parsing

We visualize the video parsing results of JoMoLD, HAN [1] and MA [3] on
different examples. “GT” denotes the ground truth annotations. Each video lasts
for 10 seconds. Our method achieves more accurate parsing performance by
acquiring reliable modality-specific supervision during training.

Parsing_69

Visual

Audio

GT

JoMoCD

MA

HAN

Speech

GT
JoMoCD

MA

HAN

Singing

GT

JoMoCD

MA

HAN

Singing

GT

JoMoCD

MA

HAN

Speech

(a)
Parsing_837

Audio

GT

JoMoCD

MA

HAN

GT
JoMoCD

MA

HAN

Singing

Speech

GT
JoMoCD

MA

HAN

Clapping

Visual

GT

JoMoCD

MA

HAN

GT

JoMoCD

MA

HAN

Singing

Speech

(b)



Joint-Modal Label Denoising for Weakly-Supervised AVVP 5Parsing_1169

Visual

Audio

GT

JoMoCD

MA

HAN

GT
JoMoCD

MA

HAN

GT

JoMoCD

MA

HAN

GT

JoMoCD

MA

HAN

Singing

Acoustic_guitar

Acoustic_guitar

Singing

(c)
Parsing_496

Visual

Audio

GT

JoMoCD

MA

HAN

GT
JoMoCD

MA

HAN

GT
JoMoCD

MA

HAN

GT

JoMoCD

MA

HAN

Cello

Cello

Violin_fiddle

Violin_fiddle

(d)
Parsing_472

Visual

Audio

GT

JoMoCD

MA

HAN

GT

JoMoCD
MA

HAN

Helicopter

GT

JoMoCD

MA

HAN

GT

JoMoCD

MA

HAN

Vacuum_cleaner

Helicopter

Vacuum_cleaner

(e)

Fig. 3.1: We visually compare JoMoLD with HAN, MA and ground
truths. In some easier examples, such as 3.1d and 3.1e, we achieve superior de-
tection performance. In some difficult cases, the overall performance of JoMoLD
is still better than HAN and MA.
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3.2 Visualization of Label Denoising

In this section, we show that JoMoLD is superior to MA [3] in most cases when
it comes to determining modality-specific noisy labels.

On the one hand, as MA keeps cross-modal attention when performing modality-
specific label denoising, the two modalities interfere with each other to cause in-
accurate denoising results. While JoMoLD avoids cross-modal interference. On
the other hand, MA adopts the naively trained baseline to determine the noisy
labels. It trains the baseline with original videos but exchanges the audio tracks
of two unrelated videos during label denoising, which leads to the gap between
training and denoising. In contrast, there is no gap for JoMoLD, which con-
sistently processes the original videos when training and denoising. Meanwhile,
JoMoLD adopts a dynamic manner to analyze the loss patterns of two modalities
and remove noisy labels, which has a higher tolerance for denoising errors.
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(a) In this case, we show an example
where MA fails to remove noisy labels,
but our method correctly removes the
noisy labels “Cello” and “Violin_fiddle”
for visual modality.

Dog Speech

Dog                                             Speech
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(b) This case shows another example
where our method correctly removes the
audio noise MA does not filter out the
noisy label. The dog do not bark, so “Dog”
serves as audio noise.

Accordion Speech

Accordion Speech
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(c) In the case, MA mistakenly removes
the correct label but remains the noisy
label. The person in the picture doesn’t
speak and another person is speaking off-
screen. So “Speech” is a visual noise.

Speech              Baby_cry

Speech Baby_cry
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(d) This case presents an example that
our method correctly identifies the noisy
modality but MA treats them both as
noise. A parent is speaking off-screen so
“Speech” is a visual noise.

Fig. 3.2: Label denoising comparison between MA and JoMoLD. We list
four cases to illustrate different kinds of mistakes made by MA and avoided by
our JoMoLD.
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