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1 Further Details

1.1 Datasets

Dataset statistics. We report the statistics of the self-shot video instance
segmentation datasets in Table A. We list the class names for the train, validation
and test sets in Table B.

Table A: Overview of the self-shot video instance segmentation datasets.
Self-VIS contains a few instances for a single class per video, while Self-OVIS contains
videos with more instances of multiple classes

Self-VIS Self-OVIS

Video statistics
mean length (frame) 30.2 69.4
mean class number 1 1.6
mean instance number 1.7 5.9
number of train videos 1,651 449
number of val+test videos 472 158

Class statistics
number of train classes 30 17
number of val+test classes 10 8

1.2 Self-shot construction

Ranking loss. Ra(b, c) in Equation 2 in the paper is a differentiable function to
approximately rank video b among all videos in the set {c} with respect to the
query video a. It was first introduced for images in [14].

Ra(b, c) = 1 +
∑

ĉ∈{c},ĉ̸=b

1

1 + exp(−daĉb/2)
, (A)
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Table B: Subset labels on self-shot video instance segmentation datasets.
Performance numbers in the paper refer to models evaluated on the test splits. Note
that we do not use the labels in our experiments

Self-VIS Self-OVIS

Training TennisRacket, Snowboard, Surfboard, Ear-
lessSeal, Horse, Boat, Mouse, Tiger, Frog, Ele-
phant, Truck, Owl, Airplane, Zebra, Train, Deer,
Fish, Leopard, Turtle, Fox, Duck, Snake, Skate-
board, Rabbit, Cat, Sedan, Parrot, GiantPanda,
Ape, Person

Fish, Vehical, Sheep, Zebra,
Bird, Poultry, Elephant, Mo-
torcycle, Dog, Monkey, Boat,
Turtle, Cow, Parrot, Giraffe,
Tiger, GiantPanda

Validation
and testing

Eagle, Cow, Motorbike, Bear, Dog, Shark, Gi-
raffe, Monkey, Lizard, Hand

Person, Horse, Bicycle, Rabbit,
Cat, Airplane, Bear, Lizard

daĉb =
a · ĉ

∥a∥ · ∥ĉ∥
− a · b

∥a∥ · ∥b∥
. (B)

With this approximation we are able to design the differentiable ranking loss
LRank of Equation 2.

1.3 Self-shot VIS transformer

Feature extraction. We adopt a modified ResNet-50 [5] with a bigger receptive
field for feature extraction. Specifically, we remove the last stage of the ResNet-50
and take the outputs of the fourth stage as final outputs. We further modify the
3×3 convolution in the fourth stage to a dilated convolution with a stride of 2
instead of 1 to increase the receptive field. Finally, a learned 1×1 convolution is
applied to reduce the channel dimension. During training, the modified layers
are initialized with Xavier [3] init, all other backbone parameters are initialized
with a COCO-pretrained ResNet-50.

Query-support fuser. The query-support fuser can effectively leverage
the similarity between the query and support videos, the detailed structure of
which is shown in Figure A. First, the query and support representations are
enhanced by each other simultaneously through multi-head attention. Then, the
support branch is fused into the query branch by the multi-head cross-attention
mechanism. Finally, a feed-forward neural network (FFN) module in the form
of a residual is performed to augment the fitting ability. To better understand
the effectiveness of the fuser module, we visualize the attention heatmaps before
and after the fuser module in Figure B. The figure shows that the proposed fuser
module is able to better highlight the instances of interest in the query video
with the aid of supports.

Instance segmenter. The instance segmenter predicts the mask sequence
for each instance. To predict mask sequences that are informed across time, we
predict the masks based on the accumulation of mask features per instance. For
each frame in the query video, we feed the instance features D and the fused
feature F into an attention module to obtain the attention maps. Then the
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Fig.A: Structure of query-support fuser. First, the query and support represen-
tations are enhanced by each other simultaneously through message passing. Then,
the support branch is fused into the query branch by the multi-head cross-attention
mechanism. Finally, a feed-forward neural network (FFN) module in the form of a
residual is performed to augment the fitting ability. Q, K, V denote different roles in
the multi-head attention mechanism

attention maps are concatenated with the encoded query feature Eq and the
fused feature F , followed by a deformable convolution layer [2]. In this way, we
obtain the mask features for each instance of different frames in the query video.
Assume that the mask feature for instance i of frame t is gi,t ∈ R1×a×W0×H0 ,
where a is the channel number, W0 and H0 are the feature width and height.
Then we concatenate the mask features of T frames in the query video to form the
Gi ∈ R1×a×T×W0×H0 . The instance segmenter takes the instance mask features
Gi as input, and outputs the mask sequencemi ∈ R1×1×T×W0×H0 for the instance
i directly. The instance segmenter consists of three 3D convolutional layers and
group normalization layers [15] with ReLU activation function, yielding T mask
predictions for each instance i.

Optimal bipartite matching. Let ŷ={ŷ}ni=1 denote the predicted instance
sequences, and y the ground truth set of instance sequences. Assuming n is larger
than the number of instances in the query video, we consider y also a set of
size n by padding with ∅ (background). To find a bipartite matching between
the two sets we search for a permutation of n elements σ with the lowest cost.
As computing the instance mask sequence similarity directly is computationally
intensive, we replace the mask sequence with the box sequence to perform the
matching. Following the same practice of [1,16], we get the normalized center
coordinates, height and width of the boxes and the binary foreground/background
labels. The matching function is defined as [1]:

Lmatch(yi, ŷσ(i)) = −p̂σ(i)(ci) + Lbox(bi, b̂σ(i)), (C)

where ci=foreground, p̂σ(i)(ci) denotes the probability of ci with index σ(i), bi

denotes the ground truth box sequences, and b̂σ(i) denotes the predicted box
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Before	fuser After	fuser

Fig. B: Attention heatmap visualization before and after the fuser module. For
both examples, the left and right show the attention heatmaps before and after the
fuser module. The heatmap results show the fuser module can better highlight the
individual instances in the query video with the aid of supports.

sequences with index σ(i). Based on the above criterion, a one-to-one matching of
the sequences is found by the Hungarian algorithm [6], following prior work [13,1].

Components of training loss. For the bounding box loss Lbox, we use a
linear combination of the sequence level L1 loss and the generalized IoU loss [11]:

Lbox(bi, b̂σ̂(i)) =
1

T

T∑
t=1

[λiou · Liou(bi,t, b̂σ̂(i),t)

+ λL1∥bi,t − b̂σ̂(i),t∥1],

(D)

The mask loss is defined as a combination of the dice loss [10] and focal
loss [7]:

Lmask(mi, m̂σ̂(i)) =
1

T

T∑
t=1

[Ldice(mi,t, m̂σ̂(i),t)

+ Lfocal(mi,t, m̂σ̂(i),t)],

(E)
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2 Further results

2.1 Few-shot experiments with oracle supports

Ablation of transformer depth. We ablate the effect of the layer depth of
the encoder, fuser and decoder modules in Table C under the one- and five-shot
setting on Self-VIS. We find the increase in performance is steady across all three
modules when adding further capacity and use the setting of 6 encoder layers, 3
fuser layers and 6 decoder layers for all other experiments.

Table C: Ablation of transformer depth of the encoder, fuser and decoder on
Self-OVIS under the one- and five- shot setting. The default layer number is 6,3,6 for
encoder, fuser and decoder (highlighted in gray). When we ablate the layers of one
module, the other two modules have default layers. Performance improves gradually
with more layers in the modules

(a) Encoder size

Encoder layers

2 4 6 8

One-shot 51.7 52.4 53.2 53.2

Five-shot 55.1 56.1 56.6 56.4

(b) Fuser size

Fuser layers

1 2 3 4 5

One-shot 51.3 52.5 53.2 53.4 53.5

Five-shot 54.0 55.8 56.6 56.9 57.1

(c) Decoder size

Decoder layers

2 4 6 8

One-shot 49.4 51.8 53.2 53.6

Five-shot 53.1 55.7 56.6 56.8

Benefit of positional encoding. We report results in Table D. Including
the spatio-temporal positional encoding is always beneficial, ideally in both the
support and query encoder. Not passing any spatio-temporal positional encoding
to the features leads to an mAP drop of 3.8 under the one-shot and an mAP
drop of 4.3 under the five-shot setting.

Table D: Positional encoding analysis. Adding a positional encoding for both the
query and the support yields best performances

Positional encoding Few-shot setting

support query one-shot five-shot

49.4 52.3
✓ 50.3 53.7

✓ 52.4 55.9
✓ ✓ 53.2 56.6

Comparison against related methods. As the task of few-shot VIS is
novel, we cannot compare with existing methods that are not designed for this
setting. We nevertheless try and thus adapt existing methods intended for other
tasks. Michaelis et al . [9] provides a strong baseline for few-shot image instance
segmentation based on Mask R-CNN [4] (FMRCNN). They generate many



6 P. Yang et al.

segmentation proposals for the query image and match the proposals with the
support image to find the fitting ones. To build a baseline for few-shot VIS, we
first extract the frame features for the support and query videos by our backbone.
Then we compute the average of the support frame features as in prototypical
networks [12]. Finally, with the averaged support feature, the instance segmenter
can predict the instance masks for each query frame. We also compare against
Yang et al . [16], which is a transformer-based approach for few-shot common
action detection (FST). They propose a dedicated encoder-decoder structure to
learn the commonality and predict a spatio-temporal localization. We transplant
their transformer structure in our pipeline by replacing our common transformer.
We compare to both baselines under one- and five-shot settings on Self-VIS and
Self-OVIS in Table E. Our approach achieves the best results with large margins
on both datasets and settings.

Table E: Few-shot video instance segmentation on Self-VIS and Self-OVIS. We
constructed two baselines [9,16] from author-provided code. Our common transformer
obtains favourable results under one- and five- shot settings on both datasets

Self-VIS Self-OVIS

1 5 1 5

SMRCNN [9] 43.2 44.7 16.8 17.7
FST [16] 48.5 51.7 20.5 22.3
This paper 53.2 56.6 22.0 24.9

Video instance segmentation from images. Besides using videos, we
can also perform few-shot video instance segmentation using only images as
support. This is a novel and more challenging setting, as the model cannot
exploit temporal information from the support videos. In Table F, (img→vid),
we perform few-shot video instance segmentation task with support images that
are only a single middle frame for each support video using the Self-VIS dataset.
We again compare against other methods and find that our approach performs
better under both the one- and five- shot setting on this new task. Extending
this task even further, we also consider the problem of few-shot image instance
segmentation: Given a few support images containing the same object instances,
find and segment the common object instances in a query image. As shown
in Table F, (img→img), our method can even generalize to this task on the
challenging COCO dataset [9,8] where the backbone network is pretrained on
ImageNet dataset, outperforming the other methods.

2.2 Self-shot experiments

Transformer ablation. In the Table 3 of the paper, we show the effect of the
three components in our proposed transformer under few-shot setting with oracle
supports. Here we show in Table G the results of the transformer ablation under
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Table F: Generalisation to images. We report few-shot instance segmentation
performance on the video and images when only image support input is provided. For
video evaluation we use Self-VIS and for image evaluation MS-COCO from [9]. For
MS-COCO we evaluate mAP at IoU level of 0.5 as in [9]

img→vid img→img

1 5 1 5

SMRCNN [9] 41.8 44.1 14.2 16.3
FST [16] 43.3 46.4 15.1 17.7
This paper 48.7 52.0 15.6 18.4

Table G: VIS transformer ablation under self-shot setting. Besides the trans-
former ablation under the few-shot setting reported in the paper (Table 3), we also
report the effectiveness of the three modules in the proposed transformer under the
self-shot setting.

Encoder Fuser Decoder
Self-VIS Self-OVIS

1 self-shot 5 self-shots 1 self-shot 5 self-shots

✓ 40.7 40.8 13.7 14.4
✓ ✓ 42.4 42.2 14.3 15.7

✓ ✓ 49.1 51.5 19.6 21.0
✓ ✓ ✓ 51.4 54.3 20.6 23.7

self-shot setting and observe that the proposed transformer is also effective for
video instance segmentation with self-shot supports.

Self-shot versus zero-shot learning. As a supplement to the experiments
in Table 2 in the paper, we construct another two zero-shot baselines by randomly
cropping segments in time or in space from the query video as supports. Results
in Table H show that self-shot supports from a unlabelled pool of videos are
more effective than the supports from the query video itself. This demonstrates
that sample diversity in the support helps improve performance.

Further examples. In Figure C, we provide further qualitative examples of
self-shot learning.
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Table H: Self-shot versus zero-shot learning for video instance segmentation and
temporal action localization. The experiment setups follow Table 2 in the paper. We
build two simple zero-shot baselines by adapting the temporal or spatial segments of
the query video as supports. We find that self-shot supports are more effective than
segments from the query video itself

Self-VIS Thumos14

1 5 1 5

Zero-shot learning (temporal segments) 44.0 46.6 40.7 41.9
Zero-shot learning (spatial segments) 44.9 47.8 41.1 42.4
Self-shot learning 51.4 54.3 45.8 47.3
Self-shot learning k+(5) 54.6 55.4 47.7 48.0

Fig.C: Qualitative examples. Three examples of self-shot videos (top) and the
resulting instance segmented query video (bottom). The first and second rows are
successful cases while the third example is failure case
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