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Abstract. The goal of this paper is to bypass the need for labelled
examples in few-shot video understanding at run time. While proven
effective, in many practical video settings even labelling a few examples
appears unrealistic. This is especially true as the level of details in spatio-
temporal video understanding and with it, the complexity of annotations
continues to increase. Rather than performing few-shot learning with
a human oracle to provide a few densely labelled support videos, we
propose to automatically learn to find appropriate support videos given
a query. We call this self-shot learning and we outline a simple self-
supervised learning method to generate an embedding space well-suited
for unsupervised retrieval of relevant samples. To showcase this novel
setting, we tackle, for the first time, video instance segmentation in a
self-shot (and few-shot) setting, where the goal is to segment instances
at the pixel-level across the spatial and temporal domains. We provide
strong baseline performances that utilize a novel transformer-based model
and show that self-shot learning can even surpass few-shot and can be
positively combined for further performance gains. Experiments on new
benchmarks show that our approach achieves strong performance, is
competitive to oracle support in some settings, scales to large unlabelled
video collections, and can be combined in a semi-supervised setting.
Code: https://github.com/PengWan-Yang/self-shot

1 Introduction

The goal of this paper is to decrease the reliance on humans to provide labelled
examples in few-shot video understanding. While impressive few-shot video
classification [38,11,56], localization [26,71,69] and detection [25,70] results have
been reported, in many practical video settings even labelling a few examples may
appear unrealistic. This is especially true as the level of spatio-temporal video
understanding and with it, the complexity of annotations continues to increase.
Consider for example the problem of video instance segmentation [68,9,64], where
datasets for example contain around 1.6K annotated frames for just a single
object class. We deem it unlikely that an interacting user, that is looking to
segment a “query” video with unknown instances, is willing to provide pixel-
precise annotations masks for all objects in a frame for each video in the support
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set, despite this being a setting which is typical for more classical, image-based
few-shot learning scenarios. Thus, rather than relying on a human oracle to
provide a few densely labeled support videos, we propose to automatically learn
to find appropriate support videos given a query.

For this, we introduce the notion of self-shot learning, in which the need
for labelled video clips at test-time is abolished. Instead, one is provided with
a large unlabelled pool of videos from which samples potentially relevant to
the query video can be retrieved and utilized in a strictly unsupervised fashion.
We address this by adapting a simple self-supervised learning method [60] to
generate an embedding space well-suited for unsupervised retrieval of relevant
samples. To showcase this novel setting, we go beyond just bounding box detection
and temporal localization and instead tackle, for the first time, video instance
segmentation in a self-shot (and few-shot) setting, where the goal is to segment
instances at the pixel-level across the spatial and temporal domains.

Overall, we make three contributions in this paper:

1. We propose the setting of self-shot learning. While annotations are used
during training (similar to few-shot), at test-time, new classes are evaluated
without any annotations, but with access to an unlabelled dataset.

2. We investigate this new setting for a particularly annotation-heavy scenario,
that of video instance segmentation, for which we propose new splits to
establish a self-shot (and few-shot) benchmark.

3. Finally, we provide strong baseline performances that utilize a novel transformer-
based model and show that self-shot learning can even surpass few-shot and
can be positively combined for further performance gains.

2 Related work

Video few-shot learning. There is limited related work on the few-shot learning
setup for videos. Initial works have explored few-shot learning for the task of
video classification [38,73]. For example, OSS-Metric Learning [38] measures
similarity of pairs of video to enable few-shot video classification. Yang et al . [67]
introduce few-shot action localization in time, where a few positive labelled and
several negative labelled support videos steer the localization via an end-to-end
meta-learning strategy. Xu et al . [66] and Zhang et al . [71] also perform few-shot
temporal action localization with the assistance of video-level class annotations.
To further free the need for labels, a new research line is emerging, called few-shot
common action localization, where the common action in a long untrimmed
query video is localized in time [26,69] or both in time and in space [25,70] based
on a few support videos containing the same action. Wang et al . [62] segment
objects that simultaneously exist in multiple individual videos. However, all
of the input videos need to contain exactly the same object instances, which
is not necessary in our self-shot setting where relevant support videos can be
self-retrieved. Closest to our work is few-shot spatio-temporal action localization
by Yang et al . [70], who adopt a transformer-based action detection architecture
and extend to localizing actions at pixel level. They propose a mask head upon
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the action detection boxes to perform the binary classification for the pixels
inside each detected box. In this paper, we propose the new task of self-shot video
instance segmentation that operates on objects instead of actions, predicts the
segmentation directly, removes the need for having predefined (labelled) support
videos, and encapsulates the few-shot setting as a special case.

Video zero-shot learning. Various video tasks have been investigated from a
zero-shot perspective. Zhang et al . [72] can localize the unseen activities in time
in a long untrimmed video based on the label embeddings. Spatio-temporal action
localization is also explored in zero-shot setting by linking actions to relevant ob-
jects [34,45,46], or by leveraging trimmed videos used for action classification [35].
Wang et al . [63] achieve zero-shot video object segmentation by proposing a
novel attentive graph neural network which can iteratively fuse information over
video graphs. Lu et al . [44] can distinguish foreground/background in a zero-shot
manner, but it relies on supervised prior knowledge, e.g . class activation maps
obtained from a pre-trained image classifier. Dave et al . [22] can segment the
moving objects in videos, even ones unseen in training. Just like the zero-shot
setting, we also aim to segment unseen object instances in videos, without any
labelled support videos. But we try to leverage self-retrieved (free) support videos
to boost the performance.

Self-supervised learning. Self-supervision has been proposed as a method to
obtain feature representations without labels. This has been accomplished by
geometric pretext tasks [28,50,52], clustering [5,13,14,27] or more recently con-
trastive [36,19,49,17,65] and teacher-student approaches [15,29]. These have also
been extended to the video domain [24,53,54,58,39,4,2,8,30,37]. In this work we
use self-supervised learning to construct an embedding space well-suited for
retrieving semantically relevant videos to support video instance segmentation.
Note that this use of support samples is fundamentally different to how it has
been used in other self-supervised works such as [23] or [55], where they are only
used as random subsets to aid contrastive learning. Instead, support samples
are the goal of our self-shot method. To this end, we compare the use of noise
contrastive methods [65] and the differentiable ranking loss [60] extended to the
video domain.

Video instance segmentation (VIS). VIS [68,9] requires classifying, segmenting,
and tracking instances over all frames in a given video. With the introduction of
the YouTube-VIS dataset, which contains dense pixel-level annotations across
consecutive frames [68], considerable progress has been made in tackling this chal-
lenging task. State-of-the-art methods typically develop sophisticated pipelines
and rely on heavy supervision and complex heuristic rules to associate the in-
stances across frames. As two representative methods, MaskTrack R-CNN [68]
extends the Mask R-CNN model [32] with a pair-wise identity branch to solve the
instance association problem in VIS, while MaskProp [9] introduces a multi-stage
framework [16] for propagating instance masks in time. In contrast, VisTR [64]
builds a DETR-based pipeline [12] for the VIS task in a query-based end-to-end
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fashion, which can supervise and segment the instances across frames as sequences.
In this paper we adopt the spirit of VisTR to treat instance segmentation in
a query video as a sequence prediction problem. Different from the usual VIS
task, our self-support video instance segmentation task focuses on recognizing,
segmenting, and tracking the instances in a query video containing novel classes –
from just a few retrieved support videos and without knowing any annotations.

3 Problem definition and benchmarking

3.1 Task definition

Our goal is video instance segmentation in a query video without having access to
any labelled training examples with the same instances as in the query. Instead,
we consider a self-shot scenario where we have an unlabelled pool of videos that
we can use to help guide the instance segmentation. To that end, we denote a set
of seen classes as S and a disjoint set of unseen classes as U , where S ∩ U = ∅.
Let DS = {(x, y)|x ∈ X , y ∈ YS} represent the set of labelled training data on
seen classes, where x is the pixel-wise feature embeddings from the visual space
X , y is the corresponding pixel-wise label in the label space YS of seen classes.
DU denotes the set of unlabelled videos on unseen classes. Our self-shot learning
shares with few-shot and zero-shot learning the same goal to learn a model from
DS and predict the label of each pixel for videos in DU . However, they differ in
their objective and expected data availability:

Few-shot learning. For each unseen class c ∈ U , a handful of predefined support
videos Vk

c are provided, where k is small. Then for each query video Qc ∈ DU ,
the small set of support videos containing exactly the same class Vk

c function as
guidance videos to predict a segmentation for the unseen object class c.

Zero-shot learning. In the most conventional zero-shot strategy [72,34,46,40], all
class labels C=S ∪ U are provided and mapped through semantic embeddings to
vector representations {vc|c ∈ C}. Then a joint visual-text perspective helps the
model learned on the seen classes generalize to the unseen classes.

Self-shot learning. Instead of predefined supports or semantic class labels, self-shot
learning relies on an unsupervised manner to retrieve support videos {VQc

|VQc
∈

S} for each query video Qc, c ∈ U from a collection of unlabelled videos S. It
leverages the discovered support videos as guidance for predicting an instance
segmentation. Self-shot learning can be viewed as a framework to obtain noisy
few-shot examples without the need for human annotations.

3.2 Datasets

Since self-shot video instance segmentation is a new task, we set up two bench-
marks through the reorganization of two existing (many-shot) video instance
segmentation datasets, namely YouTube-VIS [68] (2021 version) and OVIS [57].
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Self-VIS. YouTube-VIS contains 2,985 videos in the training set where the
instance mask annotations are publicly available. The annotated instances cover
40 instance categories and a minority of the videos have instances of more than
one classes. To build a setting with videos containing one singe instance class, we
discard videos with multiple instance classes and obtain a total of 2,123 videos.
We randomly select 30 classes for training and 10 classes for validation and
testing.

Self-OVIS. Occluded VIS (OVIS) provides 607 videos with annotated in-
stance masks. Among the 25 instance categories in OVIS, 17 are for training and
8 for validation and testing. With more instances of multiple classes per video,
and more frequent occlusions, the setting of OVIS is much harder than the one
of YouTue-VIS. More details are provided in Table A in the Appendix. During
training, the query video and support videos are randomly paired according to
the common instances present, while the pairs are fixed for validation and testing
for reproducibility.

YouTube-8M Segments. The YouTube-8M Segments dataset is a subset of
the YouTube-8M dataset proposed in the same paper [1]. It contains about 237K
5-second videos extracted from around 50K source videos and while it contains
annotations, we do not use any of the labels. Instead, we adopt YouTube-8M
Segments as our unlabelled video database S for self-shot retrieval and call the
self-shot benchmarks

4 Finding support videos through self-shot learning

The purpose of self-shot learning is to retrieve videos from a large, unlabelled
video dataset that will aid in performing inference on the query video, specifically
for the task of instance segmentation in this paper. To this end, we train an
encoder that will yield an embedding space well suited for video retrieval by
adopting components of self-supervised representation learning methods MoCo v1
to v3 [31,18,20], multiple-instance NCE [47] and self-supervised ranking [60].

For self-shot learning, we are given an unlabelled video collection S. Each clip
is encoded by two visual encoders, Φ and Φ̃, where Φ̃ is updated as the exponential
moving-average of Φ as in [31,20]. With this setup we evaluate self-shot retrieval
with two different losses: noise-contrastive instance discrimination and ranking.

The contrastive loss LNCE in our case is given by setting positive pairs to be
different temporal crops of a single video, while negative pairs are constructed
from other instances of the dataset. Let Vi ∈ S denote a single unlabelled video
and let v ∈ Vi denote one of its temporal crops. Then we naturally arrive at the
following multiple-instance NCE [47] formulation:

LNCE(v) = − log

∑
v+ exp⟨Φ(v) · Φ̃(v+)⟩τ∑

(v+∪v−) exp⟨Φ(v) · Φ̃(v+)⟩τ )
, (1)

where ⟨·, ·⟩τ , is a temperature-scaled dot-product, and v+ is the positive set
defined as Vi \ v and v− is the negative set, corresponding to crops from other
videos in S.
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We further experiment with transplanting a differentiable ranking loss from [60],
to the setting of using two encoders. The ranking loss is a less aggressive form
of enforcing self-invariance than the NCE loss, and is given by learning an em-
bedding space in which a set of positive videos is ranked above a set of negative
videos, when comparing distances in feature space. More precisely,

LRank(v) = − log
∑
v+

RΦ(v)(Φ̃(v), Φ̃(v
+))

RΦ(v)(Φ̃(v), Φ̃(v+) ∪ Φ̃(v−))
, (2)

where Ra(b, c) is a differentiable function to rank video b among all videos in the
set {c} with respect to the query video a [10,60].

Once the feature spaces are learned, the final step is retrieving relevant
support videos using only the query itself. For query video q, we use
the self-supervised trained encoder Φ and a simple k-nearest neighbor (kNN)
approach. The self-shot support videos for query q is obtained as:

self-shot(q) = kNN(Φ(q), Φ(S)). (3)

Note that this simple kNN approach allows us to use self-shot learning as a
plug-and-play component, which can be used to replace supervised support videos
or to extend these in a semi-supervised manner. This setup is generally applicable,
we focus on video instance segmentation as testbed in this paper, due to the
hefty annotation demand for supervised settings.

Implementation details. We follow the uniform frame sampling method
in [3] for mapping a video to a sequence of tokens of a Vision Transformer of size
B (ViT-B). In each mini-batch, we use 160 5×224×224 video segments from 32
videos. The patch-size of ViT-B is 16×16. We keep the memory queue [31] and
the length is 1280. We train for 40 epochs with the AdamW optimizer [43], with
an initial learning rating of 10−4, which we decay by 10 at epoch 25. Further
details are provided in the Appendix.

5 A Self-Shot and Few-Shot VIS Transformer

Equipped with self-shot learning, we examine a research problem with a high
annotation cost: video instance segmentation. Hence our goal is to segment
and track the object instances of interest in a query video. We do however not
assume access to training videos labelled with the same instance classes, temporal
boundaries, or mask annotations as support for the query video at test-time. In
essence, the query video is on its own and we are instead given a collection of
unlabelled videos. We seek to find a few unlabelled support videos from this
collection through self-shot learning. While we aim for self-shot learning, few-
shot video instance segmentation using a few support videos has not yet been
investigated either. Hence, we first introduce a baseline sequence-to-sequence
transformer approach to solve video instance segmentation given semantically
similar (support) videos. At the core of our approach is a common instance
segmentation transformer, which contains three stages with three functions: (i)
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Encoder

Encoder

Decoder

Feature extractor

Fuser

Common transformer Instance segmenter

Query video

Support videos

T x d x W x H

T' x d x W x H

T : temporal length of query feature

T' : temporal length of support feature d  : feature dimension

W : feature width H : feature height n  : number of predictions for each query frame

 d x (T·n) d x (T'·W·H)

 d x (T·W·H)

: spatio-temporal positional encoding: background

: the unlabelled pool of videos

Fig. 1: Overview of the self-shot and few-shot VIS transformer. In the feature
extraction stage, given a query video and a handful of (self-shot) support videos, the
backbone extracts features of individual image frames, then the image features are
concatenated in the frame order to form clip-level features for the query and support
videos. In the common transformer, the encoder models the pixel-level similarity for the
query and support features respectively, the fuser leverages the similarity between the
query feature and the support feature, and the decoder learns the similarity between
instances along the time dimension. In the prediction stage, the instance sequences are
inferred in the query video

encoding and extracting of features for query and support videos, (ii) learning
of pixel-level similarities for the query features by leveraging cross-attention,
and (iii) prediction of instance mask sequences across space and time through
decoding. Each step is detailed below.

Feature extraction. We adopt a modified ResNet-50 [33] with a bigger
receptive field for feature extraction, with the complete architecture given in
the Appendix. We let a single query video and a few support videos go through
the backbone to extract the pixel-level image frame feature sequences. Assume
that the query video contains T frames and the support videos contain T ′

frames in total. The backbone generates a lower-resolution activation map for
each frame in the query video and support videos, then the frame features are
concatenated to form video clip level features for the query and support videos.
The query video feature is denoted as fq ∈ RT×d×W×H and the support feature

is fs ∈ RT ′×d×W×H . The weights of the backbone are shared between the query
and support videos.

Stage 1: Spatio-temporal transformer encoder. We first feed the ex-
tracted video features into the transformer encoder structure and flatten the spa-
tial and temporal dimensions of fq and fs in 2D feature maps of size d×(T ·W ·H)
and d×(T ′·W ·H). Since the image-encoder based backbone is permutation-
invariant, we append spatio-temporal positional encodings [7,51] to the inputs as
the instance segmentation task requires precise spatial and temporal information.
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Specially, for all spatio-temporal coordinates of each dimension, we independently
use d/3 sine and cosine functions with different frequencies. We then concatenate
them to get the final d channel encoding. The spatio-temporal positional encod-
ings are added to both the query feature and support feature in each encoder
layer. The output of this transformer encoder structure for the query branch is
Eq ∈ Rd×(T ·W ·H), and the output for the support branch is Es ∈ Rd×(T ′·W ·H).
The encoder weights are also shared.

Stage 2: Query-support fuser. Given encoded query and support videos,
we seek to discover similarities in space and time by integrating the support
branch into the query branch, by utilizing the attention mechanism. Let MA
denote the multi-headed attention with linear projection function Q(·), K(·),
V (·) as described in [61]. We first cross-enhance the fuser inputs Eq and Es

through multi-head attention, as shown in Figure A in the Appendix: fq←s =
LN(Eq +MA(Q(Eq),K(Es), V (Es)), and similarly for fs←q. Here, LN denotes
the layer normalization operation [6]. Next, the support branch is fused into the

query branch to get the fused feature F̃ :

F̃ = LN(fq←s +MA(Q(fq←s),K(fs←q), V (fs←q)). (4)

In addition, a feed-forward network (2-layer MLP) is applied to F̃ in a residual

fashion for increased modelling ability, yielding output of the fuser: F = LN(F̃ +

FFN(F̃ )).
Stage 3: Decoding and predicting. The spatio-temporal decoder aims to

decode the most discriminative pixel features that can represent the instances
of each frame. We introduce a fixed number of input embeddings to represent
the instance features across time and space, which we call instance sequences.
Assuming that the model decodes n instances per frame, the number of instances
for the T frames in the query video is N=n·T . The instance sequences are learned
by the spatio-temporal decoder and take the output of the query-support fuser F
and instance sequences as input, to outputs N instance features, denoted as D,
as shown in Figure 1. Finally, the instance segmenter predicts the mask sequence
for each instance. For each frame in the query video, we feed the instance features
D and the fused feature F into an attention module to obtain the attention maps.
The attention maps are then concatenated with the encoded query feature Eq and
the fused feature F , followed by a deformable convolution layer [21]. In this way,
we obtain the mask features for each instance of the different frames in the query
video. We denote the mask feature for instance i of frame t is gi,t ∈ R1×a×W0×H0 ,
where a is the channel number, W0 and H0 are the feature width and height.
Finally, the instance segmenter uses the accumulated features to output the mask
sequence for each instance (see Appendix for details). and outputs the mask
sequence mi ∈ R1×1×T×W0×H0 for the instance i directly.

Training loss. To score predicted instances with respect to the ground truth, we
introduce an optimal bipartite matching between predicted and ground truth
instances, in the spirit of [12,64] (see Appendix for details). Given the optimal
assignment, the next step is to compute the training loss Ltrain, which is a linear
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combination of a negative log-likelihood for foreground/background prediction, a
box loss and mask loss for the instance sequences:

Ltrain(y, ŷ) =

n∑
i=1

[(− log p̂σ̂(i)(ci))+

Lbox(bi, b̂σ̂(i)) + λmask · Lmask(mi, m̂σ̂(i))],

(5)

here ci=foreground, and σ̂ is the optimal assignment, p̂σ(i)(ci) denotes the prob-
ability of ci with index σ(i), bi denotes the ground truth box sequences. This
training loss is used to train the whole video instance segmentation framework
end-to-end. For the bounding box loss we employ the generalize IoU loss as
prescribed in [59], while we use a linear combination of the dice loss [48] and focal
loss [41] for the mask loss. The full loss equations are provided in the Appendix.
As a result we obtain an end-to-end framework that is guided by support videos
and able to segment instances in a query video.

Implementation details. As the largest video length in Self-VIS is 32, we
take 32 as the query video clip length T . The support video clip length is set to 24.
If the original video is too short or too long, we pad it with the last frame or cut
it at a random position. All videos are resized to a 320×280 resolution before they
are fed into the backbone. The model predicts 10 instances for each query frame,
thus the total instance number is 320. In the common transformer structure,
we use 6 encoder, 3 fuser, 6 decoder layers of width 288 with 8 attention heads.
The model is trained with AdamW [43], setting the initial common transformer’s
learning rate to 10−4, the backbone’s learning rate to 10−5. The model is trained
for 20 epochs, with the learning rate decay by 10 at 14 epochs. We initialize our
backbone with the weights pretrained on the COCO dataset [42]. Further details
are provided in the Appendix.

The main evaluation metric is average precision, with the video Intersection
over Union (IoU) of the mask sequences as threshold. The IoU threshold is set to
0.5 unless specified otherwise.

6 Results

Self-shot evaluation. We first evaluate the potential of self-shot learning on the
introduced video instance segmentation benchmarks. We use the introduced trans-
former and compare to both oracle upper bounds and self-supervised baselines
for obtaining support videos as input to the transformer.

In Table 1, we compare a broad range of feature spaces for providing relevant
support videos given a query video. We first find that utilizing random videos
from the unlabelled dataset as support already provides a non-trivial instance
segmentation performance (row a), but still with a considerable gap to the
oracle baseline where each support video is manually curated to have matching
instance classes with the query video. Self-shot learning brings large benefits
over randomly picking support videos (rows (c)-(f)). We first establish a baseline
of using ImageNet-pretrained features for obtaining relevant support samples
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Table 1: Self-shot evaluation. The unsupervised support videos come from the
Youtube-8M Segments dataset and video instance segmentation performance is evaluated
on the test set of Self-VIS. For comparability, we include baselines using random videos
or fully supervised oracle videos as support. Inference-time support-increase is evaluated
in the 5+(n) columns where extra n support videos are used at inference. The strongest
self-support is competitive with a 1-shot oracle-support

Support

1 5 5+(1) 5+(3) 5+(5)

Retrieval based on
(a) Random videos 44.3 44.9 44.8 45.1 45.1
(b) Oracle/labels 53.2 56.6 56.1 57.6 57.8

Self-shot variants
(c) Inception fixed 46.9 48.3 48.5 48.2 48.4
(d) Inception MoCo 49.4 51.6 51.9 51.7 51.9
(e) Video MIL-NCE 50.1 52.5 52.6 52.9 53.3
(f) Video Rank 51.4 54.3 54.6 55.2 55.4

in row (c), as well as finetuning these features using a non-parametric instance
retrieval loss [65] using MoCo [31] in row (d), which adds around 2.5-3.5% in
performance. Next, we utilize a more sophisticated MIL-NCE loss [47] and a rank-
based retrieval loss [60] to learn video-clip embeddings (see Appendix for details).
With this we find that row (f) in Tab. 1 achieves strong gains of 6-10% in absolute
performance compared to the random baseline and more than 3-7% compared to
frozen ImageNet features and use this for subsequent experiments. Besides the
finding that all features obtained in a self-supervised fashion improve over the
supervised frame-based features ones we also establish that the self-supervised
task does matter too, as we find the ranking loss well-suited for retrieving relevant
support videos. We conclude that the strongest self-support can almost close the
gap with the oracle-support baseline, even though self-shot support videos are
not guaranteed to have matching classes.

Self-shot versus zero-shot learning. To further quantify the effectiveness of
self-shot learning for finding support videos, we compare to zero-shot learning on
two different tasks: video instance segmentation and temporal action localization.
For video instance segmentation, all experiments run on the Self-VIS dataset
and as zero-shot baselines we utilize the methods from Dave et al . [22] and
Lu et al . [44]. Dave et al . can segment moving objects in videos, even the
ones unseen in training. Lu et al . can distinguish foreground/background in
a zero-shot manner. For temporal action localization, we follow the setup of
Yang et al . [69], which also provides the temporal action localization pipeline and
the reorganized dataset derived from Thumos14. Zhang et al . [72] provide the
zero-shot method for temporal action localization. They can localize the unseen
activities in a long untrimmed video based on the label embeddings, which means
class labels are needed during inference. In Table 2, we report the video instance
segmentation and temporal action localization results. We find that on both
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Table 2: Self-shot versus zero-shot learning for video instance segmentation and
temporal action localization. For Temporal action localization, we follow the setup of
Yang et al . [69] on the Thumos14 dataset. The metric is video-mAP with an overlap
threshold of 0.5. We find that our self-shot perspective is better suited for segmentation
and localization in videos than zero-shot baselines

Self-VIS Thumos14

0 1 5 0 1 5

Zero-shot learning [22] 47.4 - - - - -
Zero-shot learning [44] 48.1 - - - - -
Zero-shot learning [72] - - - 43.4 - -
Self-shot learning - 51.4 54.3 - 45.8 47.3
Self-shot learning k+(5) - 54.6 55.4 - 47.7 48.0

Table 3: VIS transformer ablation under self-shot setting. The decoder achieves
competitive performance by itself. It improves when the encoder processes the videos.
A considerable performance gain happens when the fuser passes messages from the
support branch to the query branch. Performance is best with all three modules

Encoder Fuser Decoder
Self-VIS Self-OVIS

1 self-shot 5 self-shots 1 self-shot 5 self-shots

✓ 40.7 40.8 13.7 14.4
✓ ✓ 42.4 42.2 14.3 15.7

✓ ✓ 49.1 51.5 19.6 21.0
✓ ✓ ✓ 51.4 54.3 20.6 23.7

settings our self-shot approach improves over the zero-shot alternatives, indicating
that automatically obtaining support videos in an unsupervised manner and using
them for their respective video task obtains favorable results over a semantic
transfer of information from seen to unseen visual classes. In the Appendix, we
also provide results where we use zero-shot learning to help find support videos,
which is also not as effective as self-shot learning.

Transformer ablation. In Table 3, we show the effect of the three com-
ponents in our video instance segmentation transformer when using both one
and five self-shot support videos. We find that all three components matter for
maximizing segmentation performance. Especially the introduced fuser module
is important and adds 8.4% 1-shot performance compared to the baseline, while
the encoder adds 1.7%. When combined, the encoder yields an additional 2.3%
gain on top of the fuser-only baseline, showing that having sufficient encoding
capacity before fusing leads to better performance. In the appendix we also
establish that the proposed baseline is competitive both against previous works
adapted for the novel video instance segmentation setting, as well as against
established methods for an image segmentation setting. Overall, we conclude
that the proposed transformer is effective for video instance segmentation using
a few support videos.
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Table 4: Video difficulty ablation. (a): Performance when varying the number of
instances on Self-VIS. High scores can be obtained when the common instances are not
too many (no more than 3), segmentation of more than 4 instances in a query video
remains challenging. (b): Performance when varying the number of classes on Self-OVIS.
When the common instances come from multiple classes, segmentation becomes harder

(a) Instance number in query video

Instance number

1 2 3 4 ≥5

1 self-shot 52.1 51.7 49.5 44.7 41.6
5 self-shots 54.8 54.6 52.9 50.2 45.5

(b) Class number in query video

Class number

1 2 3 ≥4

1 self-shot 23.4 20.7 17.1 8.6
5 self-shots 26.2 23.3 19.4 9.4

10 20 50 100 200
Dataset size in thousands (log-scale)

48

50

52

54

56

58

60

m
AP

1 self-shot
1 oracle-support

5 self-shots
5 oracle-supports

Fig. 2: Scalability of self-shot learning. Performance scales positively with the
increase in unlabelled videos available and 5 self-supports outperforms using 1 oracle-
support for >75K videos

Video difficulty ablation. Next, we ablate the effect of the number
of instances and number of classes in the query video on the segmentation
performance in Table 4. As each video in the Self-VIS dataset contains instances
from just a single class, we use this to analyze the stability of our model with
regard to the number of instances. The result is shown in Table 4a, and we find
performance only mildly declines for a moderate increase, up to 3, in number of
instances in the query video. Next, we use the more difficult Self-OVIS dataset
to study the robustness against more diverse videos that contain more instances
from multiple classes. As shown in Table 4b, the method still works well with
more than one instance per video, though performance naturally declines with
this added difficulty for the task.

Scaling unsupervised support. The quality of the self-shot learning is
bounded by the quality of the videos in the unlabelled video collection. In Figure 2
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Fig. 3: Qualitative examples. Three examples of self-shot videos (top) and the
resulting instance segmented query video (bottom)

we show how self-shot video instance segmentation scales with unlabelled dataset
size. We find that at around 75K videos, our self-shot approach with 5 videos
already outperforms the 1-shot oracle-support baseline. While we cannot perform
experiments using even larger dataset sizes, we can see that even at 237K videos,
the performance is still rising steeply on a typical log-datasize scale. Based on
this result, oracle-support from a labelled dataset of limited size might not even
present a top-line for the same number of support videos and as we have shown in
Table 1 can be further boosted with inference-time increase in number of supports.
Thus, this shows that using larger unlabelled video datasets and conducting
retrieval presents an effective method for scalable video instance segmentation.
In Figure 3 we provide qualitative examples of self-shot learning.

Semi-shot learning. In the final experiment, we show results for combining
self-shot and oracle support videos. In this setting, we are given a few oracle
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Table 5: Semi-shot learning. We show that the performance increases when adding
additional self-shot videos to the oracle-support videos, arriving at a semi-shot alterna-
tive. We find that such a hybrid setting can quickly close the gap to few-shot learning
with ground truth support videos, further highlighting the potential of self-shot learning
for video instance segmentation

# Oracle-support

0 1 2 3 4 5

#
S
e
lf
-s
h
o
t 0 53.2 53.9 55.0 55.7 56.6

1 51.4 53.6 54.5 55.1 56.0
2 52.3 54.2 54.8 55.9
3 52.8 54.7 55.2
4 53.6 55.1
5 54.3

support videos and use these to help find more support videos in a self-shot
manner, arriving at a semi-shot alternative. In Table 5, we show using a single
oracle video and 4 self-shot videos boosts performance by 1.9% and achieves
55.1% mAP, thus almost reaching the performance when using 5 oracle-support
videos, all without any further annotation requirements.

7 Discussion

Limitations. While we have proposed and explored the task of self-shot video
instance segmentation, we have done so in a sequential fashion: The support
set generation is detached from the segmentation pipeline. While this allows for
better analysis of the method, performance can likely be further improved by
training in an end-to-end fashion. We are also limited by the unlabelled video
dataset size because of our computational resources. As shown in Figure 2, larger
dataset sizes will likely further highlight the benefit of utilizing self-shot learning.

Conclusions. This paper proposed the task of self-shot learning. We have anal-
ysed and proposed this in the most annotation intense setting, that of video
instance segmentation where existence of oracle support can be considered unreal-
istic. For this we develop a novel transformer based instance segmentation baseline
and outline how to obtain support videos automatically from an unlabelled pool
through self-supervision. Experiments show that our approach achieves strong
performance, can already outperform oracle support in some settings, is scalable,
and can be combined in a semi-supervised setting.
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29. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., Piot, B., Kavukcuoglu, K., Munos,
R., Valko, M.: Bootstrap your own latent: A new approach to self-supervised
learning. In: NeurIPS (2020) 3

30. Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representation
learning. In: NeurIPS (2020) 3

31. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: CVPR (2020) 5, 6, 10

32. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017) 3
33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016) 7
34. Jain, M., van Gemert, J.C., Mensink, T., Snoek, C.G.M.: Objects2action: Classifying

and localizing actions without any video example. In: ICCV (2015) 3, 4
35. Jain, M., Ghodrati, A., Snoek, C.G.M.: ActionBytes: Learning from trimmed videos

to localize actions. In: CVPR (2020) 3
36. Kalantidis, Y., Sariyildiz, M.B., Pion, N., Weinzaepfel, P., Larlus, D.: Hard negative

mixing for contrastive learning. In: NeurIPS (2020) 3
37. Kim, D., Cho, D., Kweon, I.S.: Self-supervised video representation learning with

space-time cubic puzzles. In: AAAI. pp. 8545–8552 (2019) 3
38. Kliper-Gross, O., Hassner, T., Wolf, L.: One shot similarity metric learning for action

recognition. In: International Workshop on Similarity-Based Pattern Recognition
(2011) 1, 2

39. Korbar, B., Tran, D., Torresani, L.: Cooperative learning of audio and video models
from self-supervised synchronization. NeurIPS (2018) 3

40. Li, P., Wei, Y., Yang, Y.: Consistent structural relation learning for zero-shot
segmentation. NeurIPS (2020) 4

41. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV (2017) 9

42. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014) 9

43. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2017)
6, 9

44. Lu, X., Wang, W., Shen, J., Tai, Y.W., Crandall, D.J., Hoi, S.C.: Learning video
object segmentation from unlabeled videos. In: CVPR (2020) 3, 10, 11

45. Mettes, P., Snoek, C.G.M.: Spatial-aware object embeddings for zero-shot localiza-
tion and classification of actions. In: ICCV (2017) 3



Less than Few: Self-Shot Video Instance Segmentation 17

46. Mettes, P., Thong, W., Snoek, C.G.M.: Object priors for classifying and localizing
unseen actions. IJCV (2021) 3, 4

47. Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end
learning of visual representations from uncurated instructional videos. In: CVPR
(2020) 5, 10

48. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 3DV (2016) 9

49. Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant repre-
sentations. In: CVPR (2020) 3

50. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: ECCV. pp. 69–84. Springer (2016) 3

51. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser,  L., Shazeer, N., Ku, A., Tran, D.:
Image transformer. In: ICML (2018) 7
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