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Abstract. It is necessary to develop effective face forgery detection
methods with constantly evolving technologies in synthesizing realistic
faces which raises serious risks on malicious face tampering. A large
and growing body of literature has investigated deep learning-based ap-
proaches, especially those taking frequency clues into consideration, have
achieved remarkable progress on detecting fake faces. The method based
on frequency clues result in the inconsistency across frames and make the
final detection result unstable even in the same deepfake video. So, these
patterns are still inadequate and unstable. In addition to this, the in-
consistency problem in the previous methods is significantly exacerbated
due to the diversities among various forgery methods. To address this
problem, we propose a novel deep learning framework for face forgery
detection in cross domain. The proposed framework explores on mining
the potential consistency through the correlated representations across
multiple frames as well as the complementary clues from both RGB and
frequency domains. We also introduce an instance discrimination module
to determine the discriminative results center for each frame across the
video, which is a strategy that adaptive adjust with during inference.

Keywords: Face Forgery Detection, Adaptive Discriminative Centers

1 Introduction

With the rapid developments of face forgery techniques [1, 2, 25, 31, 42, 45], ma-
nipulated media (the images and videos) with highly realistic forged faces can be
easily generated by off-the-shelf softwares. These advanced face forgery technolo-
gies may be abused for malicious purposes, such as generating fake statement
videos, causing trust issues and security concerns of the general public. Alterna-
tively, recent studies begin to focus on various clues, e.g. RGB pattern [11, 15],
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Fig. 1. (a) Probability of the face being fake (red) or real (green). (1)-(3) correspond
to the prediction results from Xception, frequency based Xception and our proposed
CD-Net, respectively. (b) T-SNE embedding visualization. Instances close to the hyper-
plane are easy to be erroneously predicted, since the single classification hyper-plane
may be not appropriate for all instances (in (b-1)). Predictions can be corrected by
adjusting the hyper-plane adaptively for each instance (in (b-2,3)).

temporal feature [4, 34], optical flow [5], frequency [18, 20, 35, 40, 50], local fa-
cial region [10, 47, 55], forgery boundary [27] and biometric signals [12, 13, 37],
to capture more robust features for forgery detection. These approaches achieve
remarkable performance improvements on several public benchmark datasets.

Albeit the promising performance achieved by previous detection models,
they are far from the ultimate solution to the problem. In particular, most exist-
ing deep convolutional neural network (CNN) based solutions suffer from several
distinct limitations.

As shown in Fig. 1(a-1), though Xception-based detection [11] can make a cor-
rect prediction on a given video with voting strategies, it still makes some wrong
predictions on several frames, resulting in low frame-level prediction. Moreover,
the frame-level detection results are highly inconsistent across faces within mul-
tiple frames, even though they share the same identity, accessories, background
and etc.. This means that for DeepFake videos detection, the Xception [11] can-
not give a robust classification performance due to the unstable discriminative
center. Apart from the RGB domain feature, several approaches [35, 40] use
information in the frequency domain to boost the performance on face forgery
detection. Existing methods using features based on frequency patterns are effec-
tive in general image classification [27,49,55] show that such models are able to
find statistical features. There are some artifacts in the existing GAN-based and
graphics-based face synthesis methods [24,44], it is exposed with frequency-aware
clues and the performance of frequency augmented Xception can be improved
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to some extent [40], as shown in Fig.1(a-2). Nonetheless, the frequency features
may be inadequate and there remains significant cross-frame inconsistency in the
predictions. Therefore, we need to improve the cross-frame detection consistency,
especially for faces from the same subject, to further improve the performance
of detection algorithms.

Another limitation of existing works originates from the large intra-class
distance caused by various artifacts on fake faces. We treat the forgery detection
problem as a binary classification problem. It optimizes a one-fold discriminative
plane P decided by the class centers, i.e.positive centerwf and the corresponding
negative center wr. During training, these centers will be optimized to achieve
an optimal discriminative performance. The final optimized classification hyper-
plane based on SoftMax in previous methods is determined by the discriminative
centers. This fixed hyper-plane cannot divide the real and fake faces in all frames
accurately. In particular, those instances near the discriminative plane tend to
be ambiguous for classification, as shown in Fig. 1(b-1). However, to the best
of our knowledge, this discrimination inconsistency has not been addressed in
previous face forgery detection works.

To solve the inter-frame and inter-instance instability of current forgery de-
tection methods, we propose a novel deep architecture focusing on both consis-
tent feature extraction and discriminative center adjusting, named as CD-Net.
The proposed CD-Net consists of two novel components: Dual-domain Intra-
Consistency Module (DICM) and Instance-Discrimination Module (IDM). The
DICM is designed to enhance intra-consistency by promoting the correlation
of features from multiple frames in a video. In contrast with existing methods
where either only the temporal consistency is considered in the final embed-
ding (Two-branch RNN [35], STIL [22]), nor temporal information is utilized in
frequency-based methods (F 3-Net [40]), the proposed DICM utilizes both tem-
poral and frequency information at the feature level. In this way, it can boost the
intra-consistent representations in both the RGB and frequency domains by ex-
tracting communal patterns existed in different frames, as shown in Fig. 1(a-3).
To give a robust classification performance, we further propose a novel compo-
nent Instance-Discrimination Module (IDM) in CD-Net, which aims to make
the predictions adaptive to the features of individual instance and adjust the
discriminative centers based on the features of each individual instance. As far
as we know, there is no similar approach to explore the intra-class distance of
various artifacts and the primary discriminative center of the whole training set
is not suitable for those hard fake instances. As shown in Fig. 1(b-2,3), IDM
extracts the offsets from the instance feature and adjust centers for real&fake
instances to get the instance-adaptive discriminative centers w∗

r and w∗
f . Helped

with the instance-level offsets, the false predictions can be corrected with the
adjusted discriminative hyper-plane determined by w∗

r and w∗
f .

To validate the effectiveness of the proposed CD-Net for face forgery detec-
tion, we experiment on two different backbones under both the in-domain and
out-domain settings. Experimental results show that the proposed method can
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achieve state-of-the-art performance on various datasets, showing a promising
result for face forgery detection. Our contributions are summarized as follows:
1) We introduce a Dual-domain Intra-Consistency Module (DICM) to improve
consistency and stability of instance representation, which is extracted based on
multiple frames in various domains, i.e.RGB and frequency patterns.
2) We introduce an Instance-Discrimination Module (IDM) to adjust the dis-
criminative centers. It can dynamically adjust the position of the hyper-plane
according to the input instance, which can help to improve the detection perfor-
mance further.
3) We verify that our approach can achieve state-of-the-art performance on sev-
eral widely-used datasets under both in-domain and out-domain settings.

2 Related Works

Spatial-Based Forgery Detection. Early approaches mainly focus on exam-
ining the appearance features in the spatial domain such as RGB or HSV color
spaces. A few studies [27, 33, 55] extract color-space features for classification.
GramNet [33] extracts global textures to tackle the distortion perturbations.
Face X-ray [27] explores the detection task on locating the boundary of face
forgery. PCL [55] employs 1x1 convolution module and extracts the relation-
ship between each pixel in spatial. However, these approaches only utilize the
RGB/spatial information, and some important features are difficult to be dis-
covered with CNN models, especially on fake media with fewer artifacts. These
clues are generally better revealed in the frequency domain, this is often the case
with heavily compressed frames.
Frequency-Based Forgery Detection. Recently there is a growing number of
studies [10,35,40,49,50] focus on frequency features. F 3-Net [40] uses frequency-
aware image decomposition and local frequency statistics to mine forgery pat-
terns while Two-branch RNN [35] uses the Laplacian of Gaussian operator and
merges information extracted from both the RGB domain and the frequency
domain. Nevertheless, the frequency information extractors used in these ap-
proaches are limited to each face itself, without considering faces of the same
person in other frames of the video, and the correlation of features extracted
from multiple frames in network backbone is absent.

3 CD-NET

In this section, we describe the proposed CD-Net in detail. As shown in Fig.2,
given a sequence of extracted faces from the input video and its corresponding
frequency maps extracted via DCT and IDCT transforms, the proposed DICM
performs element-wise summation over frequency and RGB features for robust
classification. Last, the dual-domain features are merged and fed into the IDM
module to dynamically adjust the hyper-plane by the bias and output the final
fake score of the input sequence.
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Fig. 2. The overview of the CD-Net. From left to right are the input modules,
Dual-domain Intra-Consistency Module (DICM) and Instance-Discrimination Module
(IDM). The DICM takes RGB features and frequency features as input to obtain stable
dual-domain feature for IDM classification. The IDM adaptively adjusting discrimina-
tive centers based on the individual instance. The “Repeat this part three times”
represents the concatenation of three identical modules. ⊗ and ⊕ are element-wise
multiplication and summation respectively.

3.1 Dual-domain Intra-Consistency Module

Forgery face videos are usually generated in a frame-by-frame manner. In other
words, each fake frame is generated individually, which may result in artifacts in
temporal dimension. However, most previous studies [33, 35, 40, 55] only adopt
features from the current face frame in the backbone, without considering other
frames in the video, which leads to inadequate forgery-patterns and introduces
inconsistency in predictions. Though some methods [28] propose to model the
sequence smoothness along the temporal dimension, their applications are lim-
ited in frame-level detection. We argue that for a robust model, the fake faces’
features of the same identity in multiple frames should be consistent with each
other. For this, instead of focusing on the modeling in temporal dimension, we
propose a Dual-domain Intra-Consistency Module (DICM) to extract consistent
representations in both the RGB and the frequency domain from the input mul-
tiple n frames to inter-act with each other. The architecture of DICM is shown
in the Fig.2. Three DICM modules are cascaded in our CD-Net.

In order to improve the robustness of classification through frequency and
RGB information, we extract features in a dual-domain way. For the frequency
domain, given the features {FH

1 ,F
H
2 , · · · ,FH

n} of the input multiple faces where n
is the number of frames (n = 3 in our experiments), it will be fed into the Intra-
Consistency Module (ICM) to extract generalized communal frequency maps
SH. Specifically, we first perform element-wise summation over the frequency
features from the sequence to acquire the common feature SH, to enhance the
features activated by most frames and weaken the noise features. Formally, we
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have:

SH =

n∑
i

fH
↓ (FH

i ), (1)

where fH
↓ is an 1 × 1 convolution to reduce the dimension. Note that we adopt

face recognition models to ensure that the faces of one input sequence are of the
same identity.

After that, we use a channel-wise SoftAttention to extract the attention em-
bedding ĀH

i from frequency feature to each instance, inspired by [53]. Followed
by the Global Average Pooling (GAP) layer and the fully-connected (FC) layer,
the global contextual information with embedded channel-wise statistics of the
frequency feature SH is gathered into the feature MH ∈ Rn×C , where C is
the number of channels in FH

i . We further transform the MH to the feature
AH ∈ Rn×C with each row represents the global contextual information for a
single frame. The MH is reshaped to feature AH ∈ Rn×C with each row repre-
sents the global contextual information for a single frame. Since the communal
feature required by each instance is different, a SoftMax function is performed
on AH

i to get the channel-wise SoftAttention embedding ĀH
i . The architecture

for extracting the RGB feature is the same as the frequency branch. Formally,
the c-th channel of ĀH

i is calculated as:

ĀH
i (c) =

exp(AH
i (c))∑n

j exp(A
H
j (c))

, (2)

This channel-wise attention is performed on the dual-domain feature SH and S to
extract robust supplementary feature for each instance to enhance the prediction
stability. The original feature and the robust supplementary feature are summed
together as the refined output F̄H

i :

F̄H
i = fH

↑ (SH ⊗ ĀH
i )⊕ FH

i , (3)

where ⊗ and ⊕ are element-wise multiplication and element-wise summation
respectively. fH

↑ is the 1× 1 convolution for restoring the dimension to the size
of the original input.

To make full use of the frequency information together with the RGB infor-
mation, the frequency communal feature SH is merged to the RGB communal
feature S. Other parts of the architecture for extracting the RGB feature is the
same as the frequency branch. The merge operation concatenates SH and S on
channel, and then pass the concatenated features through the fully-connected
layer to downsample to origin channel. The merged feature utilizes both RGB
maps and frequency maps, which is then used to enhance the stability of the RGB
features learned from different instances as mentioned above. Finally, the output
of DICM is the concatenate of the refined frequency squence {FH

1 ,F
H
2 , · · · ,FH

n}
and refined RGB squence {F1,F2, · · · ,Fn}.
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Fig. 3. Toy examples under the normalized SoftMax in (a) and Instance-Discrimination
SoftMax in (b). We perform this on 30 real videos and 30 fake videos. The “Video
IDs” represents different video markers, and the “Classification score” represents the
prediction score get from the classification centers. From (a), the clusters are all around
score 0. But from (b), the clusters will be sparser and the classification is more robust.

3.2 Instance-Discrimination Module

Apart from the prediction inconsistency of features, discriminative centers based
on the whole training set is another problem for face forgery detection. The dis-
criminative centers need to cover all data, so as to be adaptable to on unseen
data. However, the original center based on the whole training set is not suit-
able for the requirement, especially when there are ambiguous cases near the
classification hyper-plane.

We propose a novel Instance-Discrimination Module to adaptively adjust the
discriminative center based on the instance itself to make robust and efficient
predictions.

The input to IDM x is the Max-Pooling output of DICM, which is an em-
bedding feature vector. And the corresponding label as y (real or fake), then the
conditional probability output (fake score) P (Y = y|x) by a deep neural network
can be estimated via the SoftMax operator after FC layer:

P (Y = y|x) =
exp(w⊤

y x)∑N
j exp(w⊤

j x)
, (4)

where [w1, · · · ,wN ] ∈ Rd×N is the weight tensor of the last fully-connected
layer. N denotes the number of classes (N is 2 in our task). d is the dimension
of embeddings.

The normalized SoftMax is:

P (Y = y|x) =
exp(τ

w⊤
y

∥w⊤
y ∥2

x
∥x∥2

)∑N
j exp(τ

w⊤
j

∥w⊤
j ∥2

x
∥x∥2

)
, (5)

where τ is a scaling factor. Different from Eq. 4, [w1, · · · ,wN ] can be viewed
as the discriminative centers, this is because the embedding x will calculate its
cosine distance with w0 and w1. The w0 and w1 can be considered as posi-
tive discriminative center (wr) and negative discriminative center (wf). Some
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previous approaches [16, 39] use a fixed positive margin like Equ.5 on all in-
stances to make predictions closer to the correct center and away from other
centers. Nonetheless, the fixed positive margin is not optimal for all instances
and sometimes a negative margin is better for hard cases [32].
Instance-Discrimination SoftMax. Due to the large intra-class variances in
large-scale face datasets, the learned discriminative centers can not appropriately
represent some instances distributed differently from the most instances (i.e.,
instances with few visible artifacts). In this paper, we propose the IDM to adap-
tively adjust the discriminative centers based on the instance itself. The architec-
ture of IDM is illustrated in Fig. 2(a). Two fully-connected layers gathered with
Batch Normalization and ReLU are utilized to extract bias embeddings br and
bf for classification centers wr and wf , respectively. Our Instance-Discrimination
SoftMax is formalized as:

P (Y = y|x) =
exp(τ

w⊤
y +b⊤

y (x)

∥w⊤
y +b⊤

y (x)∥
2

x
∥x∥2

)∑N
j exp(τ

w⊤
j +b⊤

j (x)

∥w⊤
j +b⊤

j (x)∥
2

x
∥x∥2

)
, (6)

and the corresponding loss L(x, y) = −logP (Y = y|x). The IDM adjust dis-
criminative centers based on each individual instance. To give insight into it, we
compare the difference of Cosine Similarity between normalized SoftMax (TNorm)
and Instance-Discrimination SoftMax (TIDM), specifically,

TNorm =
w⊤

∥w⊤∥2

x

∥x∥2

, TBias =
b⊤(x)

∥b⊤(x)∥2

;

TIDM =
w⊤ + b⊤(x)

∥w⊤ + b⊤(x)∥2

x

∥x∥2

=
w⊤

∥w⊤ + b⊤(x)∥2

x

∥x∥2

+
b⊤

∥w⊤ + b⊤(x)∥2

x

∥x∥2

=

∥∥∥w⊤
∥∥∥
2

∥w⊤ + b⊤(x)∥2

( w⊤

∥w⊤∥2

x

∥x∥2

)
+

∥∥∥b⊤(x)
∥∥∥
2

∥w⊤ + b⊤(x)∥2

( b⊤(x)

∥b⊤(x)∥2

x

∥x∥2

)

=

∥∥∥w⊤
∥∥∥
2

∥w⊤ + b⊤(x)∥2

TNorm +

∥∥∥b⊤(x)
∥∥∥
2

∥w⊤ + b⊤(x)∥2

TBias

= αTNorm − ϵ,

(7)

where α =
∥w⊤∥

2

∥w⊤+b⊤(x)∥2
serves as temperature on TNorm. TBias is the Cosine Simi-

larity between bias embedding and discriminative center. ϵ = − ∥b⊤(x)∥
2

∥w⊤+b⊤(x)∥2
TBias

can be viewed as the adaptive margin performed on each instance.
From Equ.7, we can find that the proposed TIDM consists of both original

similarity TNorm and the adaptive margin ϵ. Different from the fixed positive
margin in previous work [16], ϵ can be either positive or negative, and is derived
from the instance feature. Note that previous studies [16, 26, 39] only apply the
margin on the the discriminative center corresponding to ground-truth, however,
single-side margin is unreasonable for adaptive margin learning. In our Instance-
Discrimination SoftMax, the adaptive margin ϵ is used in both real center and
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fake center to achieve the balance in the training period and force the network to
learn effective bias on each center. Besides, the adaptive margin ϵ is used in both
training and testing as a learned offset on discriminative centers in IDM rather
than only applied in training to simply improve the intra-class compactness like
previous work [16, 26]. ϵ can be viewed as the adaptive margin performed on
each instance.

The final discriminative center is the summation of primary center and the
predicted center bias. In contrast, when directly extracting discriminative cen-
ters from the instance feature, that is essentially the same with baseline which
regresses the logits with FC. In IDM, center bias is utilized to adjust primary
discriminative centers, which forces the center bias to learn the relationship be-
tween instance feature and primary discriminative centers. We give a comparison
of toy examples of Instance-Discrimination SoftMax and normalized SoftMax
in Fig.3, in which we use the same instance feature. The proposed Instance-
Discrimination SoftMax can be treated as adaptive margins (either positive or
negative) for instances, promoting the optimal performance on all cases.

4 Experiments

4.1 Setting

Datasets. We conduct experiments on several widely-used datasets, includ-
ing FaceForensics++ (FF++) [42], DeeperForensics [25], Celeb-DF v2 [31] and
Deepfake Detection Challenge (DFDC) dataset [17]. Both GAN-based (such as
DeeperForensics [25]) and graphics-based (such as FF++ NeuralTextures [46])
forgery datasets are considered. We follow previous settings used in their corre-
sponding datasets and compare with other methods respectively.
Metrics. We use the Area Under the Receiver Operating Characteristic Curve
(AUC) and Accuracy score (Acc) as our evaluation metrics following previous
methods [27, 35, 40]. In our experiments, AUC is used as the main metric since
it is not affected by class imbalance and threshold. Although Acc is widely-
used in face forgery detection, we assume that Acc is improper for this task,
mainly caused by the sensitivity on class imbalance and the choice of threshold
as mentioned in [35]. For fair comparison, Acc is calculated with the threshold of
0.5 without any threshold adjusting tricks. The video-level results are calculated
by averaging all frame-level results by default.

To quantify the stability of the proposed method, two metrics are utilized in
experiments, namely Proportion of Unstable Predictions (PUP) and Correction
Rate (CR). PUPθ represents the proportion of unstable videos with the max
score gap among frames higher than θ. Smaller PUPθ indicates better stability.
CR represents the proportion of same-video frame pairs which are originally get
different predictions in baseline and are corrected after applying other methods.
Higher CR indicates better ability on improving stability.
Implementation Details. In our experiments, Xception [11] pre-trained on
the ImageNet dataset is used as the backbone. When training with IDM, we
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Table 1. In-domain quantitative results on FF++ dataset with all quality settings. LQ
indicates low quality (heavy compression), HQ indicates high quality (light compres-
sion) and RAW indicates videos with raw resolution. The bold results are the best. The
reported approaches are spited based on whether utilizing 3D Convolution in backbone.
The Acc of F 3-Net [40] with threshold of 0.5. The † implies re-implementation.

Methods
AUC Acc AUC Acc AUC Acc
(LQ) (LQ) (HQ) (HQ) (RAW) (RAW)

Steg.Features [21] - 55.98% - 70.97% - 97.63%
LD-CNN [14] - 58.69% - 78.45% - 98.57%
Constrained Conv [6] - 66.84% - 82.97% - 98.74%
CustomPooling CNN [41] - 61.18% - 79.08% - 97.03%
MesoNet [3] - 70.47% - 83.10% - 95.23%
Face X-ray [27] 0.616 - 0.874 - 0.987 -
Two-branch RNN [35] 0.911 86.34% 0.991 96.43% - -
Xception [11] 0.925 84.11% 0.963 95.04% 0.992 98.77%

STIL† [22] 0.948 86.31% 0.986 98.57% 0.993 99.04%

PCL&I2G† [55] 0.939 87.02% 0.990 98.85% 0.997 99.78%
F 3-Net (Xception) [40] 0.933 86.89% 0.981 97.31% 0.998 99.84%
CD-Net (Xception) 0.952 88.12% 0.999 98.75% 0.999 99.91%

I3D [8] - 87.43% - - - -
3D ResNet [23] - 83.86% - - - -
3D ResNeXt [51] - 85.14% - - - -
3D R50-FTCN [56] 0.966 92.35% 0.995 98.59% 0.997 99.84%
Slowfast [19] 0.936 88.25% 0.982 96.92% 0.994 99.34%
F 3-Net (Slowfast) [40] 0.958 92.37% 0.993 98.64% 0.999 99.91%
CD-Net (Slowfast) 0.985 93.21% 0.999 98.93% 0.999 99.91%

firstly fix the IDM to train the rest parameters with cross-entropy loss [54]
until converged. Then we unfreeze the IDM and fine-tune the whole network.
To demonstrate the generalization of the proposed methods, we also conduct
experiments to validate the effectiveness of DICM and IDM on an exsiting video-
based backbone, i.e.SlowFast R-101 [19] pre-trained on Kinetics-700 [7]. The
DICM directly uses the frames in the slow pathway of SlowFast to extract the
communal feature. IDM is attached at the end of SlowFast similar to Xception.

4.2 Comparison with previous methods

Face Forgery Detection. The results on FF++ are listed in Tab.1. Our CD-
Net outperforms all the previous methods on all quality settings, i.e., LQ (c40,
compressed with the quantization of 40), HQ (c23, quantization of 23) and
RAW respectively. Benefited from the consistent representations on forgery pat-
terns and instance-adaptive discriminative centers, our Xception-based model
performs much better than other image-based approaches, with 0.952 in AUC
and 88.12% in Acc respectively, which is even better than most video-based ap-
proaches. When utilizing the same backbone (i.e., Slowfast [19]), our CD-Net
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Table 2. Out-domain Video-level evaluation on DFDC [17] and Celeb-DF v2 [30]. The
CD-Net1,2,3 represents the backbone of CD-Net are Xception-raw, Xception-c23 and
Xception-40 respectively. The best results are bolded. † implies re-implementation.

Methods DFDC Celeb-DF v2 Methods DFDC Celeb-DF v2

Two-Branch [35] - 0.767 PCL&I2G [55] 0.675 0.900
CNN-aug [50] 0.721 0.756 3DR50-FTCN [56] 0.740 0.869
CNN-GRU [43] 0.689 0.698 Multi-task [38] 0.681 0.757
FWA [29] 0.695 0.673 PatchForensics [9] 0.656 0.696

Face X-ray [27] 0.655 0.795 STIL† [22] 0.661 0.715
VA-LogReg [36] 0.680 0.651 DSP-FWA [29] 0.630 0.693
Xception-raw [11] 0.709 0.655 CD-Net1 0.783 0.877
Xception-c23 [11] 0.717 0.635 CD-Net2 0.770 0.885
Xception-c40 [11] 0.709 0.655 CD-Net3 0.753 0.921

gains significant improvement compare with F 3-Net (Slowfast), with 0.984 and
93.13% of AUC and Acc in comparison to 0.958 and 92.37%, in LQ task. We
further calculate the confidence intervals of the AUC and Acc in Tab.1 over three
repeating runs (the last three checkpoints) to verify that our model is a reliable
model rather than randomly obtained. The confidence intervals are pretty small
and our CD-Net is stably better than previous approaches on all quality settings
even in the case of the lower bound of the score.

The comparison between our method and frequency information based meth-
ods [35,40] is shown in Tab.1. Although the frequency-based methods are greatly
improved compared to the other, our method still has outstanding performance
than them, which achieves the best Acc and AUC at any resolution on FF++
dataset than frequency-based methods (e.g., LQ (AUC): 88.12% v.s. 86.89%).
Meanwhile, our method also has advantages over temporal-based methods [56]
(e.g., LQ (AUC): 88.12% v.s. 86.31%). Our DICM is more robust as it depends
on the RGB and frequency feature existed in multiple frames other than the tem-
poral cues, which boosts the consistency of predictions from different frames.

Generalization out domain. To validate the effectiveness of the proposed
method, we perform the out-domain experiments on DFDC [17] and Celeb-
DF v2 [31] with the models trained on FF++ (c23) datasets. The results are
listed in Tab.2. Following the previous studies [22, 55, 56], the video-level AUC
scores on DFDC and Celeb-DF v2 are presented in experiments. We copy the
result from the papers [25, 48, 55, 56], and we also re-implementate the results
without open release code († in the Tab.2) to complete the missing values. For
our CD-Net, we conduct experiments on FF++ with different resolutions and
the results are listed in the Tab.2. Even when compared with strong state-of-
the-art methods, i.e.PCL&I2G [55] and 3D R50-FTCN [56], our method still has
advantages on Acc score (0.783v.s.0.740) and AUC score(0.921v.s.0.900) in terms
of different resolutions. The CD-Net1 (Xception-c40) based CD-Net achieves the
best performance on DFDC since the heavily compressed data boost the model
to acquire more generalized patterns. Our CD-Net outperforms the Xception
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Table 3. Ablation study of our method on FF++ c40 (low quality) with AUC metric
to evaluate the effects of components. PUPθ represents the proportion of videos with
the frame-level score gap higher than θ, the smaller the better. CR represents the
proportion of corrected unstable frame pairs in baseline, the bigger the better.

ID DICM IDM AUC PUP0.7 PUP0.5 PUP0.3 CR

1 - - 0.925 66.1% 66.1% 67.4% -
2

√
- 0.944 29.0% 41.7% 48.9% 78.82%

3 -
√

0.938 35.7% 60.9% 66.6% 55.35%
4

√ √
0.952 26.1% 39.4% 48.7% 80.67%

baseline on all quality settings with much higher AUC score on Celeb-DF v2
and better Acc score on DFDC, demonstrating the robustness of our CD-Net on
the unseen data.

4.3 Ablation Study

Effectiveness of DICM & IDM. To evaluate the effectiveness of the proposed
DICM and IDM, we quantitatively evaluate our model and its variants: 1) the
naked Xception as the baseline (ID 1), 2) Xception with DICM, 3) Xception with
IDM, 4) Xception with both DICM and IDM (CD-Net). Both the AUC score and
the prediction stability are reported in Tab.3. Smaller PUPθ represents better
stability with a small prediction score gap among frames. Higher CR corresponds
to better ability on improving stability.

As shown in Tab.3, even if only utilizing DICM (ID 2) or IDM (ID 3), signif-
icant improvement on detection performance is achieved with AUC score 0.944
and 0.938 respectively. When using both DICM and IDM (ID 4), our method
achieves the best performance with 0.952 AUC, much better than the 0.925 of
baseline. Furthermore, as shown in the ROC curves in Fig. 4(a), CD-Net achieves
the best performance with higher true positive rate, demonstrates the effective-
ness in mining consistent representations on forgery patterns. The results of
stability are positively related with detection performance where higher AUC
corresponds to lower PUP and higher CR. The PUP0.7 of CD-Net is smaller
than half of the baseline with 26.1% in comparison to 66.1%, and 80.67% incon-
sistent frame pairs in baseline are corrected by CD-Net.
DICM. To demonstrate the benefits of utilizing correlation among frames on
both frequency and RGB in DICM, we evaluate the proposed DICM and its
variants by removing or replacing some components, i.e., 1) the proposed DICM
without frequency component, denoted as DICM w/o frequency (ID 1), 2) the
proposed DICM without using correlation among frames, denoted as DICM w/o
correlation (ID 2). All the experiments are under the same hyper-parameters for
fair comparisons. The performance of each variants is listed in left part of Tab.4.
To demonstrate the improvement in DICM is not introduced by simply using
multiple frames, we conduct experiments on multiple frames with other compo-
nents, i.e., 1) Xception using 3D convolution (Conv) to correlate features among
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Fig. 4. (a) ROC Curve of the models in ablation studies. (b) The visualization of feature
map extracted by Xception (1) and the proposed “Xception + DICM” (2). (c) The
proportion of corrected instances after applying IDM relative to the total instances.

Table 4. The left part is the ablation study of DICM on FF++ c40 (low quality) to
evaluate the effects of DICM. The right part is ablation study of DICM on FF++ c40 to
evaluate the effects of IDM. The “+” in the table indicates different ways of combining
Xception, for example, the “+ DICM” means the method of Xception+DICM.

ID Methods (Xception) AUC ID Methods (Xception) AUC

1 +DICM w/o frequency 0.938 1∗ +Softmax 0.925
2 +DICM w/o correlation 0.932 2∗ +Norm Softmax [52] 0.924
3 +3D Conv 0.931 3∗ +ArcFace [16] 0.923
4 +DICM w/ Original Image 0.941 4∗ +SoftTriple [39] 0.926
5 +DICM w/ Low-frequency 0.939 5∗ +IDM w/ Bias on Embed. 0.929
6 +DICM 0.944 6∗ +IDM 0.938

different frames, denoted as “+ 3D Conv” (ID 3). The 3D Conv based model (ID
3) utilizes the similar architecture with singe Intra-consistency Module (ICM)
by replacing the summation and SoftAttention with 3D Conv, and the number
of parameters in 3D Conv is 27 times of ICM when the count of frames is 3.
It shows the efficiency and effectiveness of our DICM. And we further demon-
strate the importance of frequency feature as supplementary for RGB domain
by quantitatively evaluating the DICM with different kinds of information, i.e.,
low-frequency, frequency and original image. The model with frequency compo-
nents (ID 6) achieves the best scores, which indicates that frequency is more
complementary with others.

To better understand the effectiveness of DICM, the visualization of feature
maps extracted by Xception and the “+ DICM” are shown in Fig.4(b). Benefited
from the communal patterns existed in various frames, these mispredictions in
Fig.4 (b-1) have been corrected. Besides, in Fig.4(b-2), predictions achieve a
consistent representation for explicitly utilizing the correlation among frames.
IDM. For better conditioning on the discriminative centers based on instance
itself, our IDM is performed gathered with normalized Softmax. To demonstrate
the effectiveness of the proposed IDM, we conduct experiments to compare with
other classification module, i.e., 1) Xception with Softmax (ID 1∗), 2) Xception
with normalized Softmax (ID 2∗), 3) Xception with ArcFace [16] (ID 3∗), 4)
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Xception with SoftTriple [39] (ID 4∗). The result is listed in the right part of
Tab.4. There is nearly no performance difference between the Softmax and the
normalized Softmax, while our IDM gains a significant improvement with 0.938
in AUC. There are also some previous studies using the metric learning during
the training period, such as ArcFace [16] uses a fixed positive margin and Soft-
Triple [39] uses multiple centers for classification. The proposed IDM achieves
excellent performances comparing with these previous metric-based models. The
fixed positive margin is not suitable for all instances in ArcFace while the mul-
tiple centers used in SoftTriple need the prior knowledge to pre-set the center
number and an additional regulation is used to merge centers. The IDM is more
versatile than the above-mentioned empirical methods and achieves excellent
performances on the FF++. The average ratio between the center bias and the
primary discriminative center 1 : 2.51, which demonstrates the importance of
center bias on adjusting centers.

To adjust the distance of the instance relative to the discriminative centers,
the bias can be either trained to modify the discriminative centers or the instance
itself. However, when adjusting the discriminative centers, the model can modify
both the distance between the instance relative to the discriminative centers and
the distance on the internal of discriminative centers. The latter one could be
served as the temperature to pull or push discriminative centers close or away
from each other. We perform experiments to utilize the bias on the instance
embedding, as shown in right of Tab.4(ID 5∗), the result of “+IDM w/ Bias
on Embedding” is 0.929 AUC score, slightly better than baseline while worse
than using bias on the discriminative centers, demonstrating the advantage of
adjusting on discriminative centers.

We further analyze the specific influence of IDM on different predicted score
ranges in the test set. As shown in Fig.4(c), horizontal axis represents the pre-
dicted (by baseline without IDM) score range, and vertical axis shows the pro-
portion of corrected instances relative to the total instances after applying IDM.
The major corrected instances score range from 0.4 to 0.7 and are close to the
original discriminative hyper-plane. Benefited from the instance-adaptive adjust-
ing on discriminative centers in IDM, the ambiguous predictions can be corrected
to maintain consistent performance on various instances.

5 Conclusions

In this paper, we propose an innovative face forgery detection framework CD-Net
that repair defects of the inconsistency of forgery patterns and the suboptimal
discriminative centers existed in current approaches. The proposed framework is
composed of two components: DICM and IDM. The DICM utilizes the communal
feature existed in multiple frames in both frequency domain and RGB domain to
promote the stability and consistency. The IDM is capable of adaptively adjust-
ing discriminative centers based on the individual instance feature. Extensive
experiments demonstrate the effectiveness and significance of our approaches in
in-domain detection, robustness on distortions and the unseen data.
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