
Real-time Online Video Detection with
Temporal Smoothing Transformers

Yue Zhao1 and Philipp Krähenbühl1

University of Texas at Austin, Austin TX 78712, USA
{yzhao,philkr}@cs.utexas.edu

Abstract. Streaming video recognition reasons about objects and their
actions in every frame of a video. A good streaming recognition model
captures both long-term dynamics and short-term changes of video. Un-
fortunately, in most existing methods, the computational complexity
grows linearly or quadratically with the length of the considered dy-
namics. This issue is particularly pronounced in transformer-based ar-
chitectures. To address this issue, we reformulate the cross-attention in a
video transformer through the lens of kernel and apply two kinds of tem-
poral smoothing kernel: A box kernel or a Laplace kernel. The resulting
streaming attention reuses much of the computation from frame to frame,
and only requires a constant time update each frame. Based on this
idea, we build TeSTra, a Temporal Smoothing Transformer, that takes
in arbitrarily long inputs with constant caching and computing overhead.
Specifically, it runs 6× faster than equivalent sliding-window based trans-
formers with 2,048 frames in a streaming setting. Furthermore, thanks
to the increased temporal span, TeSTra achieves state-of-the-art results
on THUMOS’14 and EPIC-Kitchen-100, two standard online action de-
tection and action anticipation datasets. A real-time version of TeSTra
outperforms all but one prior approaches on the THUMOS’14 dataset.

Keywords: Online action detection, action anticipation, transformer,
temporal smoothing kernel

1 Introduction

The problem of online action detection [10] and anticipation [29] aims to deter-
mine what action is happening or will happen shortly at each time step without
seeing the future. The challenge for online action detection is (1) how to ef-
fectively retain both the long-term trends and short-term cues when encoding
the history and (2) how to efficiently compute at each time step in the stream-
ing setting when the history gets longer. Recurrent models such as LSTM [22]
and GRU [7] excel at updating the output recurrently but do not benefit from
increasing sequence length due to the training difficulty [49]. Attention-based
models [43], like Long Short-Term Transformer (LSTR) [53], are capable of han-
dling sequences up to 8 minutes long with impressive prediction results. However,
in the streaming setting, the attention computation of the long-term memory

https://orcid.org/0000-0003-2753-5921
https://orcid.org/0000-0002-9846-4369

2 Y. Zhao and P. Krähenbühl

𝑂(𝑇2)

𝑂(𝑇2)

𝑂(𝑇)

𝑂(𝑇)

𝑂(1)

𝑂(𝑁)

𝑂(1)

𝑂(1)

……

Runtime

Memory

Self Attention Cross Attention

Streaming Attention

FIFO Attention Exp. Smoothing Attn.

𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇 𝑡 = 𝑇 − 𝑁 𝑡 = 𝑇 𝑡 = 𝑇

……

Query
{𝐪𝑚}

Fig. 1: A comparison of traditional attention computation (left) in streaming videos
and our streaming attention (right). Unlike traditional approaches, our approach has a
constant runtime per frame. Exponential smoothing attention has a constant memory
footprint as well

has to be recomputed for each streaming window considered. Therefore, the
computational cost per frame is proportional to the sequence length.

In this paper, we propose an effective and efficient approach, Temporal Smooth-
ing Transformers (TeSTra), to encode sufficiently long history with constant in-
ference cost at each time step. TeSTra relies on an efficient attention that reuses
much of the attention computation between consecutive frames. We reformulate
attention through a kernel perspective [38,42] and explore two temporal kernels:
a Box kernel and a Laplace kernel. Both kernels lead to an efficient streaming
attention computation. A box kernel results in a First In First Out (FIFO) at-
tention computation with a constant runtime update, but linear memory costs.
A Laplace kernel results in an exponential smoothing attention with constant
runtime and memory costs. Fig. 1 shows a comparison of traditional attention
for streaming videos and our streaming attention. Both formulations exploit the
fact that in streaming recognition queries used in cross attention are learned
parameters and fixed during inference. During training, we use windowed atten-
tion in its original matrix multiplication form (with explicitly computed kernels).
This allows us to enjoy all the GPU parallelism of modern transformer training.
At test time, we switch to efficient streaming implementations.

To show the effectiveness of TeSTra, we conduct extensive experiments on
standard benchmarks for online action detection and anticipation, namely THU-
MOS’14 [24] and EPIC-Kitchen-100 [9]. TeSTra achieves state-of-the-art perfor-
mance on both benchmarks. Running at 142.8 FPS alone, TeSTra can serve as a
building block for streaming video recognition with low latency. When we include
an accelerated optical flow computing method and an image-based feature ex-
tractor, the overall system can run as fast as 41.1 FPS and achieves 67.3% mAP

Real-time Online Video Detection with Temporal Smoothing Transformers 3

on THUMOS’14, outperforming all but one prior approaches. Code is publicly
available at https://github.com/zhaoyue-zephyrus/TeSTra/.

2 Related Work

Online Action Detection and Anticipation. Online action detection [10],
also known as early action detection [21], aims to detect the start of an action
in a video stream as soon as it happens. Much of prior work builds ever longer-
term temporal reasoning using various recurrent units or networks [11,13,52].
Xu et al. [52] perform online detection (classification) on current frame and
prediction the near-future actions simultaneously. StartNet [18] decomposes the
online detection into two stages: action classification and start localization. The
recently proposed LSTR [53] enlarges the effective temporal context to as long
as 512 seconds by adopting the highly flexible cross-attention mechanism in
Transformer [43]. However, the induced computation cost is proportional to the
temporal span. In contrast, our streaming attention incurs the same constant
runtime cost independent of temporal span.

Action anticipation [19], or forecasting [29], aims to predict the action before
it occurs. Vondrick et al. [44] propose to anticipate by regressing the representa-
tions of future frames from past ones. Zeng et al. [57] and Rhinehart et al. [37]
use inverse reinforcement learning to perform forecasting at multiple levels. For
egocentric videos anticipation may additionally incorporate the camera wearer’s
trajectory [35], eye gaze [32], hand-object interaction [30], and environment af-
fordance [34]. In this paper, we handle the problem by taking longer history into
account, which is a general approach to both third-person and egocentric videos.

Transformers and its Efficient Variants. Since the Transformer architec-
ture was introduced in [43], much work has gone into improving the efficiency
of dot-product attention. Low-rank approximation on attention matrix [6,47]
factorizes the attention matrix into two lower-rank matrices. Different efficient
learnable sparsity patterns, such as locality-sensitive hashing [28], differentiable
sorting [40] or fixed patterns [5,56], reduce the total number of attention op-
erations. Query-based cross attention mechanisms compress longer-term input
into a fixed-size representation via memory [36,31] or recurrence [8]. Based on a
kernel-reformation [42], Katharopoulos et al. [27] propose linear attention by de-
composing the kernel function κ(qm,kn) between a query-key pair into a product
between the feature mapping of query and key, i.e. ϕ(qm)⊤ ·ϕ(kn). In computer
vision, Transformers are made more efficient by (1) leveraging hierarchy using
shifted local window [33] and pooling attention [14], (2) applying axial attention
on separate dimensions [45], and (3) using asymmetric attention (cross attention)
to squeeze high-dimensional inputs into tighter latent variables [26]. In speech
recognition, transformers are tailored to streaming decoding by integrating re-
currence [60] or memory [51]. In this paper, we follow the kernel interpretation of
Tsai et al. [42], and show how to efficiently update streaming attention kernels.

Efficient Video Processing. Videos are notoriously expensive to process.
TSN [46] suggests sampling frames sparsely and running 2D CNNs on the se-

https://github.com/zhaoyue-zephyrus/TeSTra/

4 Y. Zhao and P. Krähenbühl

lected frames. MVCNN [58] and CoViAR [50] directly learn video representation
from compressed videos. X3D [15] and CSN [41] reduce computation FLOPs by
leveraging channel-wise separable convolution. However, 3D CNN takes video
clips as input whose span can be 2−3 seconds, therefore may not be the best so-
lution in a low-latency application. Par-Inception [3] tackles the latency issue by
introducing depth-parallelism to the vanilla I3D [4] at increased implementation
difficulty. Most of the previous methods focus on trimmed videos whose duration
is often in several seconds while our method focuses on streaming videos whose
length can be as long as hours. However, many of these 3D CNNs may form a
good backbone to our system.

3 Preliminaries

Attention. The attention mechanism [43] is a weighted addition of the input
features. The weights are guided by the similarities between the key and query
elements on an input sequence:

Attention(Q,X) = Softmax

(
QK⊤
√
C

)
·V = Softmax

(
Q · (XWk)

⊤
√
C

)
·XWv,

(1)

where Q ∈ RM×C is a set of M queries, X =
[
· · · xn · · ·

]⊤ ∈ RN×d is the
sequence of N input tokens, Wk/v ∈ Rd×C is the weight to map the input to

key/value vector and C is the feature dimension of x⊤
nWk. For self-attention

computes queries from the inputs sequence Q = XWq (M = N in this case).
Cross-attention uses a queries Q that do not relate to the input sequence X
(generallyM ̸= N in this case). Cross-attention is commonly used in the encoder-
decoder architecture [43]. Cross-attention with M ≪ N is also used to efficiently
encode large amounts of data into a fixed-size representation [26,53].

Attention as kernels. The distance computation in attention is similar to the
mechanism of kernel learning [38]. Tsai et al. [42] reformulated Eq. (1) from the
perspective of kernels:

Attention(qm, {xn}) =
∑N

n=1 κ(qm,kn)vn∑N
n=1 κ(qm,kn)

, (2)

where κ(·, ·) : RC×RC → R+ is a generalized kernel function, which depicts the
similarity between the pair of input vectors. Eq. (1) is equivalent to Eq. (2) for

a kernel κ(qm,kn) = exp(
q⊤
mkn√
C

). In the next section, we show that this kernel

perspective leads to an efficient streaming formulation of attention in the context
of streaming video recognition.

Real-time Online Video Detection with Temporal Smoothing Transformers 5

4 Efficient Attention on streaming input

We use cross-attention to summarize a large stream of past frames into a fixed
size context representation. We use a fixed number learned queries and variable
number of keys and values from past frames as input. See Fig. 1 for an example.

In streaming tasks, we are constantly receiving input and want to generate
the corresponding output on the fly. Examples include simultaneous interpreta-
tion or online detection in broadcast videos. Let x[1:t] = {x1,x2, · · · ,xt} denote
a sequence of encoded past video frames for the current time-step t. The encoder
may use an image-based [20,25] or short-clip-based [4,15] CNN. Top-performing
video models [53] summarize large parts of the video through cross-attention
on either the entire sequence, i.e. Attention(q1 . . .qM ,x[1:t]) or a chunk of in-
put by sliding a N -sized temporal window, i.e. Attention(q1 . . .qM ,x[t−N+1:t]).
Mathematically, this attention operation is captured in Eq. (2). Here, a small
number of queries {q1 . . .qM} summarize a large temporal context. Queries com-
bine learned parameters {λ1 . . .λM} with a temporal embedding ωt of the cur-
rent frame: qm = λm + ωt. Keys {k1 . . .kt} combine a frame-level embeddings
fn = W⊤

k xn with a temporal embedding ωt: kn = fn + ωn. Values {v1 . . .vt}
use the same frame-level features vn = W⊤

v xn. In this setup, keys and values
of past frames remain unchanged, learned queries are constant during inference,
only the temporal query embedding changes frame to frame. This changing tem-
poral embedding does change the attention kernel κ for each new frame. This
means in a streaming setting, we have no choice but to recompute the entire at-
tention operation frame after frame. This recomputation grows linearly with the
size N of the temporal context considered. Next, we show how a reformulation
of the attention mechanism leads to a much more efficient streaming evaluation.

Streaming Attention. Note, that both queries and keys combine a temporal
and feature-level embedding in their distance kernel κ(qm,kn) = κ(λm+ωt, fn+
ωn). In Streaming Attention, we simple split this kernel into temporal and feature
component: K(ωt, ωn)κ(λm, fn). The Streaming Attention operation reduces to

Stream-Attention(qm,x[1:t]) =

∑t
n=1 K(ωt, ωn)κ(λm, fn)vn∑t
n=1 K(ωt, ωn)κ(λm, fn)

. (3)

Most of the features and kernels used in this attention block remain constant
throughout the streaming setting. Moving from timestep t to t+1 only changes
the temporal kernelK(ωt, ωn) toK(ωt+1, ωn) and adds one more element (ft+1,vt+1).
Because of the change in the temporal kernel, a naive evaluation of streaming
attention (3) still requires a linear runtime in the size of the temporal context.
However, the right choice of a temporal kernel can alleviate this. Here, we explore
two kernels: A box (or uniform) kernel KB(ωt, ωn) = 1[t−n<N] and a Laplace
kernel KL(ωt, ωn) = exp(−λ(t − n)) for λ > 0. Each of these kernels leads to
an efficient streaming attention mechanism. A box kernel results in first-in-first-
out (FIFO) attentionw while a Laplace kernel leads to exponential smoothing
attention. Fig. 2 provides an overview of both kernels.

6 Y. Zhao and P. Krähenbühl

𝜓 𝑡 = 𝜓 𝑡 − 1 + 𝜅 𝐪𝑚, 𝐤𝑡 − 𝜅 𝐪𝑚, 𝐤𝑡−𝑁

𝐾𝐵 𝜔𝑡, 𝜔𝑛 = 1[𝑡−𝑛<𝑁]

𝜙 𝑡 = 𝜙 𝑡 − 1 + 𝜅 𝐪𝑚, 𝐤𝑡 𝐯𝑡 − 𝜅 𝐪𝑚, 𝐤𝑡−𝑁 𝐯𝑡−𝑁

(a) Box kernel

𝜓 𝑡 = 𝑒−𝜆 ⋅ 𝜓 𝑡 − 1 + 𝜅 𝐪𝑚, 𝐤𝑡

𝐾𝐿 𝜔𝑡, 𝜔𝑛 = 𝑒−𝜆(𝑡−𝑛)

𝜙 𝑡 = 𝑒−𝜆 ⋅ 𝜙 𝑡 − 1 + 𝜅 𝐪𝑚, 𝐤𝑡 𝐯𝑡

(b) Laplace kernel

Fig. 2: A visualization of a box kernel (a) and Laplace kernel (b) and their streaming
computation

FIFO Attention. Let us define the numerator and denominator of Eq. (3) to
be two intermediate variables

Stream-Attention(qm,x[1:t]) =
ϕ(t)

ψ(t)
. (4)

Both ϕ(t)=
∑t

n=1KB(ωt, ωn)κ(λm, fn)vn and ψ(t)=
∑t

n=1KB(ωt, ωn)κ(λm, fn)
are updated by the following recursion as the streaming attention progresses:

ϕ(t+ 1) = ϕ(t) + κ(λm, ft)vt − κ(λm, ft−N)vt−N

ψ(t+ 1) = ψ(t) + κ(λm, ft)vt − κ(λm, ft−N),
(5)

where κ(λm, ft−N) = 0 and vt−N = 0 for t ≤ N , ϕ(0) = 0 and ψ(0) = 0.
Like a FIFO queue, we keep track of ϕ(t) and ψ(t) and update them by

subtracting the quantity contributed by the input at time (t − N) and adding
up the one at time t in the long run. Therefore, we call this formulation FIFO-
Attention. The advantage of FIFO-Attention is that the computational cost be-
comes O(MC) for M queries and values of C channels. Neither the effective
window size N nor the actual time-step t influences the runtime. However, the
subtraction operation in Eq. (5) requires us to keep a window of features and ker-
nel values in memory. Hence, the memory complexity is still O(N). The Laplace
kernel addresses this issue.

Exponential Smoothing Attention. The Laplace kernel KL allows for an
even more efficient recursive update:

ϕ̃(t) = e−λϕ̃(t− 1) + κ(λm, ft)vt

ψ̃(t) = e−λψ̃(t− 1) + κ(λm, ft),
(6)

where ϕ̃(0) = 0 and ψ̃(0) = 0. The parameters λ controls the temporal ex-
tent of the attention. The above operation (6) is known as exponential smooth-
ing [23]. Therefore we name this attention Exponential Smoothing Attention, or
ES-Attention for short. Both ES- and FIFO-Attention reduce to the same opera-
tion if λ = 0 and the windows size N → ∞. The time complexity of ES-Attention

Real-time Online Video Detection with Temporal Smoothing Transformers 7

1 ×
ES

Attn

𝑀

…
…

𝑁

…
…

𝑀

…
…

𝑀′

…
…

ℓ𝑒𝑛𝑐 ×
Cross
Attn

𝑀′

…
…

ℓ𝑑𝑒𝑐 ×
Cross
Attn

C
la

ssifica
tio

n

… …

Live streaming video

Current FutureHistory

𝐿

…
…

𝐿𝑎

…
…

…

co
n

ca
t

Long-term Memory Short-term Mem. Duration to Anticipate

…
…

Encoder Decoder

Fig. 3: Overview of our streaming attention architecture TeSTra. The basic setup
follows LSTR [53]: A long-term memory compresses a long temporal history into M
representative queries. A short-term attention mechanism uses the compressed memory
and a short history of frames to compute current and future actions. The main advan-
tage of TeSTra is that the long-memory incurs only constant cost, and thus allows for
much more efficient long-term reasoning

is also constant in the temporal window considered O(MC). More importantly,
the space complexity reduces from O(N) to O(1) since we only maintain ψ̃, ϕ̃
and no longer keep values in our window around. Exponential smoothing instead
slowly reduces the influence of older keys and values in the attention.

Video recognition with streaming attention. The streaming attention can
replace the vanilla cross-attention in current Transformer architectures with min-
imal modification. Specifically, we follow LSTR architecture [53] for all our ex-
periments, due to its state-of-the-art performance on online action detection.
The overall architecture of TeSTra is sketched in Fig. 3. Given a sequence of en-
coded vectors x[1:t] = {x1,x2, · · · ,xt}, where t refers to the current time stamp,
we divide the historic frames into two parts: short-term memory x[t−L+1:t] if
size L ≤ 32 and long-term memory which contains the rest of distant inputs,
namely x[1:t−L]. The architecture follows an encoder-decoder [43,53] design. The
encoder module encodes the long-term memory into M = 16 query features. The
decoder uses the query features and short-term memory to predict current and
anticipated actions.

The encoder has two stages of memory compression. First, it uses an ES-
Attention-based Transformer decoder unit [43] to compress the long-term mem-
ory into M latent vectors Z using learnable queries Q.

Q′ = Attention(Q,Q),

Z′ = ES-Attention(σ(Q′),X[1:t−L]),

Z = FFN(σ(Z′)),

(7)

8 Y. Zhao and P. Krähenbühl

Masked
MH-SA

Multi-head
ES-Attn

Add & LN

Add & LN

FFN

Add & LN

…

𝑛

𝐾𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 𝑡, 𝑛

𝑡𝑡 − 𝑁

𝑡𝑡 − 𝑁

Temporal Smoothing Kernel

MatMul

Scale (1/ 𝐶)

MatMul

Softmax

Add

𝑄 𝐾 𝑉log 𝑀𝐸𝑆

MatMul

𝑘𝑡

Scale (1/ 𝐶)

Exp

AddScale (𝑒−𝜆)

𝑄

MatMul

𝑣𝑡

Add Scale (𝑒−𝜆)

Division (𝜙/𝜓)

𝝍(𝒕) 𝝓(𝒕)

Fig. 4: The basic building blocks of TeSTra. Left: the Transformer Encoder with ES-
Attention; Middle: Multi-head ES-Attention at training time; Right: Multi-head ES-
Attention at inference time

where σ denotes the nonlinear mapping which is composed of a skip connection
with Q followed by a LayerNorm [1]. Next, the compressed vectors are further
cross-attended by M ′ learnable queries through ℓenc decoder units into Zℓenc .
Strictly speaking, it should be possible to learnQ′ directly. However, the training
dynamics of transformer work out better using a self-attention block first. Fig. 4
shows an overview of the encoder.

The decoder uses the short-term memory as queries to attend the compressed
memory and retrieve relevant information through a stack of ℓdec decoder units.

X′
[t−L+1:t] = Attention(X[t−L+1:t],X[t−L+1:t]),

O′ = Attention(X′
[t−L+1:t],

[
Zℓenc

∥X[t−L+1:t]

]
),

O = FFN(σ(O′)),

(8)

In Eq. (8), we construct the key/value tokens by concatenating [· ∥ ·] both the
compressed long-term memory and short-term memory to incorporate all the
known historic information. This proves to be effective for action anticipation,
where the closer memory is more important to indicate the upcoming action.
The L output vectors are then passed through a linear layer to produces the
scores s[t−L+1:t] ∈ RL×(K+1) over K action classes plus one non-action (back-
ground) class 1. At inference time, we take the score st to be online detection
result. In action anticipation, the frames in the anticipating duration are not ob-
servable. We thus attach La learnable tokens after short-term memory predict
La anticipated actions s[t+1:t+La].

Training TeSTra. At inference time, we naturally apply the recursion in Eq. (6)
in the streaming setting. During training, however, it is computationally ineffi-
cient to feed all historic inputs and update them recursively on a modern GPU
architecture. To handle this, we cut the video into a clip xt−L−N+1:t. Multiple

1 st ∈ RK if the background class is absent.

Real-time Online Video Detection with Temporal Smoothing Transformers 9

clips share the same length N and thus can be packed into a batch. Furthermore,
instead of recursion, we compute the attention in matrix form:

ES-Attentiontrain(Q
′′,X) = Softmax

(
log(MES) +

Q′′K⊤
√
C

)
·V, (9)

MES =

e−λ(N−1) e−λ(N−2) · · · 1
e−λ(N−1) e−λ(N−2) · · · 1

...
...

...
e−λ(N−1) e−λ(N−2) · · · 1

 , (10)

where log(·) takes the element-wise logarithm of a matrix and the exponential
smoothing matrix MES ∈ RM×N is a Vandermonde matrix. Since we train
on the windowed input and test on un-windowed streaming input, we select a
decay factor λ and window size N such that e−λ(N−1) is sufficiently small. This
minimizes the effect of a potential train-test gap. Fig. 4 shows the difference
between training and inference for streaming attention.

We use the cross-entropy loss to predict both current and anticipated actions.
Following [53,19], we predict actions for all frames in short-term memory for a
stronger supervisory signal. We use a causal attention mask [43] on the short-
term memory to avoid future actions from influencing our predictions.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on THUMOS’14 [24] and Epic-Kitchen-100
(EK100) [9]. THUMOS’14 contains 413 untrimmed videos annotated with 20
actions. We train our model on the validation set (200 videos) and evaluate
on the test set (213 videos). Epic-Kitchen-100 contains 100 hours of egocentric
videos with 90K action segments. The narrations are mapped into 97 verb classes
and 300 noun classes. We follow the train/val split given by Furnari et al. [16].

Evaluation Metrics. For THUMOS’14, we measure the performance of both
online action detection and anticipation with per-frame mean average precision
(mAP). Anticipation mAP uses an anticipation period τo which varies from
0.25s to 2.0s with a stride of 0.25s. Online detection mAP is as a special case of
anticipation mAP at τo = 0. EK-100 uses mean Top-5 Verb/Noun/Action Recall
to measure anticipation performance per instance with a predefined τo = 1s [9].

Implementation Details. On THUMOS14, we pre-process the videos into 24
FPS, extract the two-stream deep features pretrained on ActivityNet or Kinetics
following Xu et al. [53]. The visual stream is a ResNet-50 [20] while the motion
stream uses BN-Inception [25]. On EK100, we pre-process the videos into 30 FPS
and fine-tune the two-stream TSN [46] on EK100 action classification task with
ImageNet-pretrained parameters, following Furnari et al. [16]. Our model is not
restricted to using 2D CNNs as backbone. Efficient 3D CNN such as X3D [15]
is also applicable but the longer input span might cause higher latency.

10 Y. Zhao and P. Krähenbühl

MixClip (cutting, courgette) :

(washing, carrots) :

(pour-onto-pan, courgette) :

Action instances from
different videos

Non-action instances

Fig. 5: Illustration of MixClip. In the example sequence, we have 4 action instances and
2 of them are replaced by another clip that comes from another video but is annotated
with the same action category

The training procedure of TeSTra on THUMOS’14 follows Xu et al. [53] for
fair comparison. Specifically, we train TeSTra with batch size of 16 for 25 epochs
using Adam optimizer with a weight decay of 5e-5 and a base learning rate of 7e-
5. We apply a cosine annealing schedule with linear warm-up, i.e. the learning
rate linearly increases from 0 to 7e-5 in the first 10 epochs and then decays
following a cosine function.

MixClip. The model takes as input both short clips as working memory and
frames in the longer history as long-term memory. The duration of long history is
significantly larger (often 10×) than the short clip. This means that two neigh-
boring clips of interest share a large portion of historical frames. This causes
the model to overfit to those scene-related cues and fail to generalize to unseen
scenarios. To resolve this, we propose a simple augmentation technique called
MixClip which increases the diversity of long history by composing short clips
from different recordings into each other.

Assume that the long memory is composed of a sequence of action instances

{(t(s)i , t
(e)
i , ai)}, where t

(s)
i , t

(e)
i denotes the start and end time while ai denotes

the action label. With probability pmc, each of the action instances may be
replaced with another instance with the same label from a different video. This
input feature sequence is randomly cropped if the new instance’s duration longer.
Otherwise, the input feature sequence is padded to ensure that the length of
history is unchanged for ease of implementation. Fig. 5 gives an illustration.

MixClip is inspired by some popular augmentation techniques widely used
in image classifications, such as CutOut [12], Mixup [59], and CutMix [54].

5.2 Main Results

THUMOS’14. We conduct both online action detection and anticipation ex-
periments on THUMOS’14. In both tasks, the backbone network from which the
feature is extracted is pretrained on either ActivityNet v1.3 [2] or Kinetics [4].

Real-time Online Video Detection with Temporal Smoothing Transformers 11

Table 1: Result of online action detection on THUMOS’14. denotes optical flow
computed by NVIDIA Optical Flow SDK, a faster alternative to TV-L1 [55]. More
detailed runtime analysis will be provided in Sec. 5.4

(a) Using ANet-pretrained feature

Method mAP

RED [17] 45.3
IDN [13] 50.0
TRN [52] 47.2
OadTR [48] 58.3
LSTR [53] 65.3
Ours 68.2

(b) Using Kinetics-pretrained feature

Method mAP

IDN [13] 60.3
TRN [52] 62.1
OadTR [48] 65.2
LSTR [53] 69.5

Ours 67.3
Ours 71.2

Table 2: Result of online action anticipation on THUMOS’14. † was reproduced by us
because LSTR [53] only reported ActivityNet-pretrained results

method Pre-train
mAP@τo average

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

RED [17]

ANet1.3

45.3 42.1 39.6 37.5 35.8 34.4 33.2 32.1 37.5
TRN [52] 45.1 42.4 40.7 39.1 37.7 36.4 35.3 34.3 38.9
TTM [48] 45.9 43.7 42.4 41.0 39.9 39.4 37.9 37.3 40.9
LSTR [53] - - - - - - - - 50.1
Ours 64.7 61.8 58.7 55.7 53.2 51.1 49.2 47.8 55.3

TTM [48]
K400

46.8 45.5 44.6 43.6 41.9 41.1 40.4 38.7 42.8

LSTR† [53] 60.4 58.6 56.0 53.3 50.9 48.9 47.1 45.7 52.6
Ours 66.2 63.5 60.5 57.4 54.8 52.6 50.5 48.9 56.8

Table 1 shows the results of online action detection. TeSTra surpasses the pre-
vious states-of-the-art by a large margin. We also adopt NVIDIA Optical Flow
SDK (NVOFA) 2 for faster optical flow computation. NVOFA can run as fast as
1K FPS on a 240×180 image sequence on a modern GPU. We denote the model
that takes NVOFA optical flow as input to be TeSTra . We observe some per-
formance drop, but an mAP of 67.3% is still competitive. Most importantly, the
runtime of the entire pipeline is significantly sped up. More detailed discussion
on runtime analysis will be provided in Sec. 5.4. All results use ES-Attention.

Table 2 shows the results of online action anticipation. TeSTra with Kinetics-
pretrained feature achieves an average mAP of 56.8%, outperforming all previous
methods. For fair comparison, we also rerun LSTR [53] using the same Kinetics-
pretrained feature. This improved LSTR is still 4% below TeSTra.

2 https://developer.nvidia.com/opticalflow-sdk

https://developer.nvidia.com/opticalflow-sdk

12 Y. Zhao and P. Krähenbühl

Table 3: Result of action anticipation on EK100. The upper half lists RGB-only meth-
ods; in lower half all types of inputs are allowed

Method Input Pre-train
overall unseen tail

verb noun action verb noun action verb noun action

RULSTM [16]

RGB

IN-1k 27.5 29.0 13.3 29.8 23.8 13.1 19.9 21.4 10.6
AVT [19] IN-1k 27.2 30.7 13.6 - - - - - -
AVT [19] IN-21k 30.2 31.7 14.9 - - - - - -
Ours IN-1k 26.8 36.2 17.0 27.1 30.1 13.3 19.3 28.6 13.7

RULSTM [16]
RGB
+OF
+Obj

IN-1k 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
TempAgg [39] IN-1k 23.2 31.4 14.7 28.0 26.2 14.5 14.5 22.5 11.8
AVT+ [19] IN-1k 25.5 31.8 14.8 25.5 23.6 11.5 18.5 25.8 12.6
AVT+ [19] IN-21k 28.2 32.0 15.9 29.5 23.9 11.9 21.1 25.8 14.1

Ours RGB+OF IN-1k 30.8 35.8 17.6 29.6 26.0 12.8 23.2 29.2 14.2

EK100. We compare TeSTra with prior works on the EPIC-Kitchen-100 ac-
tion anticipation track [9] in Table 3. We split the results into two halves: the
upper half contains methods with only RGB inputs and the lower half uses
additional information, such as optical flow and object feature. Using the same
ImageNet-1k-pretrained feature, TeSTra significantly outperforms RULSTM [16]
and AVT [19] on the action-level recall. The improvement is most pronounced
in the increase noun-level recall. This demonstrates the effectiveness of incor-
porating longer input for anticipation. The long-memory recalls many objects
that appeared previously. TeSTra with RGB+OF achieves 4.4% higher verb-
level recall than TeSTra with only RGB. One reason for this our early-fusion.
Unlike late-fusion approaches, RULSTM and AVT+, we concatenate RGB and
optical-flow feature at the beginning so that motion-related feature can be more
effectively leveraged. Again, all results use ES-Attention.

5.3 Ablation Studies

We conduct ablation experiments on EK100 to study the role of each module in
the architecture. Our full ablations uses the RGB-only model, but conclusions
generally hold for two-stream input as well.

Temporal Smoothing Kernels. We first verify the correctness of the tempo-
ral smoothing kernels at inference time in Table 4. If we apply the box kernel
and apply the FIFO recursion defined in Eq. (5), the result is 16.14%. However,
if we use the exponential smoothing recursion defined in Eq. (6) with decay fac-
tor λ = 0, action recall drops by 0.2 ∼ 0.4% on unseen and tail classes. This
indicates the necessity to cache historic elements and pop them when the queue
becomes full. When using the Laplace kernel, we compare batch mode where win-
dowed attention is computed using Eq. (9) and stream mode where exponential
smoothing recursion is computed using Eq. (6). The results are consistent (less
than 0.05% difference).

Real-time Online Video Detection with Temporal Smoothing Transformers 13

Table 4: Temporal smoothing kernels. Using explicit windowed-attention and stream-
attention under the Laplace kernel yield consistent results

Kernel Type Test Mode
overall unseen tail

act. rec. act. rec. act. rec.

Box FIFO (Eq. (5)) 16.14 12.64 12.89
Box ES (Eq. (6); λ = 0) 16.08 12.22 12.70

Laplace ES (Eq. (9)) 16.95 13.33 13.73
Laplace ES (Eq. (6)) 16.94 13.28 13.72

Table 5: Ablation studies on position embeddings. Temporal position embeddings
are unnecessary for long-term memory, justifying our design of separate the temporal
smoothing kernel and feature vector

PE @ long memory PE @ short memory overall act. rec.

✗ ✓ 17.0
✓ ✓ 16.8
✗ ✗ 15.7

Effectiveness of Positional Embedding. The rationale behind streaming
attention is that we can separate the attention kernel into temporal and feature
components. To justify this, we add a temporal positional embedding in the
long-term memory and observe no performance improvement from Table 5. We
also try to remove the temporal embedding in the short-term memory but this
changes the result significantly (-1.3%).

Effectiveness of MixClip Table 6a shows the effect of MixClip rate on the
anticipation result. When no MixClip is applied, the baseline drops to 15.5%
action recall. The performance consistently improves with MixClip and achieves
the best (17.0%) at pmc = 0.5.

Fusing long- and short-term memory Table 6b compares different ways of
fusing long- and short-term memory. The naive way is to treat long- and short-
term memory separately, i.e. (1) use the TeSTra encoder to compress distant
inputs and (2) use closer inputs as queries in the TeSTra decoder to attend to
this compressed set of vectors. We observe that this no-fuse approach achieves
15.9% which is even 0.2% lower than short-memory-only baseline, where N = 0
and the TeSTra decoder is instantiated by self-attention. This indicates that we
might need to incorporate the relationship within the short-term memory too.
To achieve this, we try to augment long-term memory by attaching short-term
memory, denoted by “@ long mem.”, but see no significant improvement. It
might be because long-term memory is much longer than the short-term one so
that the short-term information is overwhelmed at the first stage of compression.
Since the memory length after compressed is in the same order as the short-term
memory, we concatenate both (“@ comp. mem.”) and get 17.0% action recall,
improving the naive way by 1.1%.

14 Y. Zhao and P. Krähenbühl

Table 6: Ablation studies on MixClip and long-/short-term memory fusing

(a) The effect of MixClip

MixClip Rate 0 0.2 0.5 0.8

overall v. rec. 25.8 26.0 26.8 26.2
overall n. rec. 34.6 35.3 36.2 35.2

overall act. rec. 15.5 16.0 17.0 16.2

(b) Long- and short-term memory fusion

How to fuse overall act. rec.

w/o. long mem. 16.1
no fuse 15.9
@ long mem. 16.0
@ comp. mem. 17.0

102 103 104

long mem. length (N)
0.00

0.05

0.10

0.15

Ru
nt

im
e

 (s
ec

. p
er

 ti
m

e
st

ep
)

cross attn.
stream attn.

Fig. 6: Runtime comparison between
vanilla cross attention and our expo-
nential smoothing attention

OF RGB OF
TeSTra Total

Comp. Feat. Feat.

Ours 1,000
150.0 104.7 142.8

41.1
Ours 19.3 12.6

Table 7: Runtime profile (in FPS) for the
entire detection system. Real-time TeS-
Tra uses NVOFA optical-flow while the
default one uses TV-L1 [55]

5.4 Runtime Analysis

Finally, we study the runtime speed of TeSTra using an NVIDIA Quadro RTX
6000 GPU. Fig. 6 shows the comparison of inference speed between LSTR with
cross attention and TeSTra with ES-Attention. We choose the length of the long
memory N to be {32, 128, 512, 2048, 8196}. We can clearly see that the runtime
per time step scales linearly for cross-attention-based LSTR but keeps constant
for TeSTra. Specifically, TeSTra runs at a speed of 142.8 FPS. If we integrate
TeSTra into the online detection system, we need to take into account of the
computation overhead by the optical flow computation and feature extraction.
The runtime profile is summarized in Table 7. The full TeSTra runs at 12.6 FPS.
The bottleneck is computing optical flow using TV-L1 algorithm [55]. Using the
NVOFA, the real-time TeSTra can run at 41.1 FPS.

6 Conclusion

We propose stream attention based on the kernel-based reformulation of cross-
attention and apply two kinds of temporal smoothing kernels that reduce the in-
ference computation to constant cost per frame. The resultant temporal smooth-
ing transformer achieves excellent performance while running at a low latency.
We hope that our design can shed some light on developing more efficient models
for long-term videos understanding.
Acknowledgement This material is in part based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-1845485, IIS-2006820, and the NSF
Institute for Foundations of Machine Learning.

Real-time Online Video Detection with Temporal Smoothing Transformers 15

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: A
large-scale video benchmark for human activity understanding. In: CVPR (2015)

3. Carreira, J., Patraucean, V., Mazare, L., Zisserman, A., Osindero, S.: Massively
parallel video networks. In: ECCV (2018)

4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

5. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509 (2019)

6. Choromanski, K.M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T.,
Hawkins, P., Davis, J.Q., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention
with performers. In: ICLR (2021)

7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: Deep Learning and Representation
Learning Workshop (2014)

8. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.:
Transformer-xl: Attentive language models beyond a fixed-length context. In: ACL
(2019)

9. Damen, D., Doughty, H., Farinella, G.M., , Furnari, A., Ma, J., Kazakos, E.,
Moltisanti, D., Munro, J., Perrett, T., Price, W., Wray, M.: Rescaling egocen-
tric vision: Collection, pipeline and challenges for epic-kitchens-100. IJCV (2021),
https://doi.org/10.1007/s11263-021-01531-2

10. De Geest, R., Gavves, E., Ghodrati, A., Li, Z., Snoek, C., Tuytelaars, T.: Online
action detection. In: ECCV (2016)

11. De Geest, R., Tuytelaars, T.: Modeling temporal structure with lstm for online
action detection. In: WACV (2018)

12. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

13. Eun, H., Moon, J., Park, J., Jung, C., Kim, C.: Learning to discriminate informa-
tion for online action detection. In: CVPR (2020)

14. Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.:
Multiscale vision transformers. In: ICCV (2021)

15. Feichtenhofer, C.: X3D: Expanding architectures for efficient video recognition. In:
CVPR (2020)

16. Furnari, A., Farinella, G.M.: Rolling-unrolling lstms for action anticipation from
first-person video. TPAMI (2020)

17. Gao, J., Yang, Z., Nevatia, R.: Red: Reinforced encoder-decoder networks for action
anticipation. In: BMVC (2017)

18. Gao, M., Xu, M., Davis, L.S., Socher, R., Xiong, C.: Startnet: Online detection of
action start in untrimmed videos. In: ICCV (2019)

19. Girdhar, R., Grauman, K.: Anticipative video transformer. In: ICCV (2021)
20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
21. Hoai, M., De la Torre, F.: Max-margin early event detectors. IJCV 107(2), 191–202

(2014)
22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation

9(8), 1735–1780 (1997)

https://doi.org/10.1007/s11263-021-01531-2

16 Y. Zhao and P. Krähenbühl

23. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving
averages. International journal of forecasting 20(1), 5–10 (2004)

24. Idrees, H., Zamir, A.R., Jiang, Y., Gorban, A., Laptev, I., Sukthankar, R., Shah,
M.: The THUMOS challenge on action recognition for videos ”in the wild”. CVIU
(2016), http://arxiv.org/abs/1604.06182

25. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

26. Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J.: Per-
ceiver: General perception with iterative attention. In: ICML (2021)

27. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast
autoregressive transformers with linear attention. In: ICML (2020)

28. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer. In: ICLR
(2020)

29. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In:
ECCV (2012)

30. Koppula, H., Saxena, A.: Learning spatio-temporal structure from rgb-d videos for
human activity detection and anticipation. In: ICML (2013)

31. Lei, J., Wang, L., Shen, Y., Yu, D., Berg, T., Bansal, M.: Mart: Memory-augmented
recurrent transformer for coherent video paragraph captioning. In: ACL (2020)

32. Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: Joint learning of gaze and
actions in first person video. In: ECCV (2018)

33. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

34. Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: Environment
affordances from egocentric video. In: CVPR (2020)

35. Park, H.S., Hwang, J.J., Niu, Y., Shi, J.: Egocentric future localization. In: CVPR
(2016)

36. Rae, J.W., Potapenko, A., Jayakumar, S.M., Hillier, C., Lillicrap, T.P.: Compres-
sive transformers for long-range sequence modelling. In: ICLR (2020)

37. Rhinehart, N., Kitani, K.M.: First-person activity forecasting with online inverse
reinforcement learning. In: ICCV (2017)

38. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press (2002)

39. Sener, F., Singhania, D., Yao, A.: Temporal aggregate representations for long-
range video understanding. In: ECCV (2020)

40. Tay, Y., Bahri, D., Yang, L., Metzler, D., Juan, D.C.: Sparse sinkhorn attention.
In: ICML (2020)

41. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-
separated convolutional networks. In: ICCV (2019)

42. Tsai, Y.H.H., Bai, S., Yamada, M., Morency, L.P., Salakhutdinov, R.: Transformer
dissection: An unified understanding for transformer’s attention via the lens of
kernel. In: EMNLP (2019)

43. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

44. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from
unlabeled video. In: CVPR (2016)

45. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.C.: Axial-deeplab:
Stand-alone axial-attention for panoptic segmentation. In: ECCV (2020)

46. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks for action recognition in videos. T-PAMI (2018)

http://arxiv.org/abs/1604.06182

Real-time Online Video Detection with Temporal Smoothing Transformers 17

47. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768 (2020)

48. Wang, X., Zhang, S., Qing, Z., Shao, Y., Zuo, Z., Gao, C., Sang, N.: OadTR: Online
action detection with transformers. In: ICCV (2021)

49. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE 78(10), 1550–1560 (1990)

50. Wu, C.Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.: Com-
pressed video action recognition. In: CVPR (2018)

51. Wu, C., Wang, Y., Shi, Y., Yeh, C.F., Zhang, F.: Streaming transformer-based
acoustic models using self-attention with augmented memory. In: Interspeech
(2020)

52. Xu, M., Gao, M., Chen, Y.T., Davis, L.S., Crandall, D.J.: Temporal recurrent
networks for online action detection. In: ICCV (2019)

53. Xu, M., Xiong, Y., Chen, H., Li, X., Xia, W., Tu, Z., Soatto, S.: Long short-term
transformer for online action detection. In: NeurIPS (2021)

54. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: ICCV (2019)

55. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l 1 optical
flow. In: Joint pattern recognition symposium. pp. 214–223. Springer (2007)

56. Zaheer, M., Guruganesh, G., Dubey, K.A., Ainslie, J., Alberti, C., Ontanon, S.,
Pham, P., Ravula, A., Wang, Q., Yang, L., et al.: Big bird: Transformers for longer
sequences. In: NeurIPS. vol. 33 (2020)

57. Zeng, K.H., Shen, W.B., Huang, D.A., Sun, M., Carlos Niebles, J.: Visual forecast-
ing by imitating dynamics in natural sequences. In: ICCV (2017)

58. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition
with enhanced motion vector cnns. In: CVPR (2016)

59. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: ICLR (2018)

60. Zhang, Q., Lu, H., Sak, H., Tripathi, A., McDermott, E., Koo, S., Kumar, S.:
Transformer transducer: A streamable speech recognition model with transformer
encoders and rnn-t loss. In: ICASSP (2020)

	Real-time Online Video Detection with Temporal Smoothing Transformers

