
1

Supplementary Materials
to Paper #1541

TL;DW? Summarizing Instructional Videos with Task Relevance &
Cross-Modal Saliency

This section is organised as follows:

1. WikiHow Summaries Data Collection
2. Implementation Details
3. Additional Results

(a) Results on instructional videos in generic video summarization datasets
(b) Step recall
(c) Model architecture ablations

4. Additional Qualitative Results
(a) Qualitative comparison of ground-truth, IV-Sum, CLIP-It, and Step AV
(b) Pseudo summary vs IV-Sum summary
(c) Pseudo summary vs step-localization annotations
(d) Failure case

Scrape WikiHow videos and steps

Main Video Frames

Localize steps in video

Stitch localized clips to form summary

Fig. 1: WikiHow Summaries Data Collection. We first scrape all the main videos
in the WikiHow articles, along with the images or video clips assosciated with each
step. Next, the image/clip corresponding to each step is localized in the main video.
The images are localized to ± 2.5 seconds(i.e. a 5 seconds window centered around the
image). The localized clips are stitched together to form the summary.

1 WikiHow Summaries Data Collection

We provide more details on the WikiHow Summaries data collection process.
As described in Sec. 4.2 of the main paper, these are the main stages of the
dataset creation: (1) Scraping WikiHow videos (2) Localizing images/clips in
video (3) Ground-truth summary from localized clips (4) Manual verification.
Fig. 1 illustrates our data collection process. We show an example for the article
“Prepare Tofu”. We localize each of the individual steps (images/clip) in the main
video by comparing the ResNet features and obtain short localized clips. The

https://www.wikihow.com/Prepare-Tofu

2

clips are stitched together to form the summary. A handful of summaries with
spurious lengths (too long or too short) are manually verified and corrected.

We describe how we handle some edge cases in the articles, and the reasoning
behind using ResNet features in stage (2).

Multiple methods. Sometimes the articles contain multiple methods of per-
forming a task. If the video also contains multiple methods, as in this “Draw
a cow” example, we localize each method in the video, and the summary is a
compilation of all methods. The reasoning behind doing this is that users looking
for a specific way of drawing a cow can take a quick glimpse of the summary and
decide if they want to watch the whole video. However, if the article contains
multiple methods but the video only contains one, as in this example, only the
method depicted in the video is added in the summary.

Reason for using ResNet features instead of direct pixel comparison.
As described in the main paper Sec 4.2, we compare ResNet features to localize
the images/clips of the steps in the main video. The reason we compare ResNet
features and not pixel values directly is because the images/clips associated with
the steps aren’t always extracted from the main video. For example, in this article
on “Making a pinwheel”, the frames in the images/clips are from a different video
and don’t have exact matches in the main video for the article. Using ResNet
features in place of pixels makes the localization robust to color/background
changes, allowing us to localize steps despite an exact match of frames.

Table 1: Hyperparameters for training IV-Sum.

Hyperparamter Value

Batch size 24
Epochs 300
Learning rate IV-Sum 1e-3
Learning rate S3D fine-tuning 1e-4
Weight decay 1e-4
Dropout 0.1
Learning rate decay StepLR
t% 55%
#frames per segment 32
#frames per video during training 768
Training FPS 8

2 Implementation Details

Video processing. For generating pseudo summaries and for training IV-Sum,
the videos are down-sampled to 8 FPS, and divided into non-overlapping segments

https://www.wikihow.com/Draw-a-Cow
https://www.wikihow.com/Draw-a-Cow
https://www.wikihow.com/Make-an-Envelope
https://www.wikihow.com/Make-a-Pinwheel
https://youtu.be/J4_Wuq_VmOY

3

of size 32 frames, which is the recommended segment size for MIL-NCE [3]1.
While training IV-Sum, we fix the number of segments sampled from a video
to be 28 (i.e. 896 frames) which are selected as a contiguous sequence from a
randomly chosen start location. If the video is shorter in duration, it is padded
with zeros. During inference, we retain the original fps of the video and all the
segments are passed to IV-Sum. For concatenating the text representations to
the visual representations, we follow the approach in MIL-NCE and map each
visual clip to the sentences a few seconds before, after, and during the clip. The
text embedding is an average of all the sentence embeddings.
Hyperparameters. Tab. 1 shows detailed list of hyperparameters. For all
baselines and our method, to ensure a fair comparison we generate the summary
from scores by selecting the top t% of the highest scoring segments to be in the
summary. t is set to be 55 based on the statistics in the validation set of WikiHow
Summaries, where on average 55% of the original video appears in the summary.
Dimensions. We first describe the dimensions of each of the embeddings. The
image embeddings are in fvid(si) ∈ R512. The text embeddings for M transcript
sentences using ftext are in RM×512 which are then fused using a 2 layer perceptron
to R512. M is set to be the maximum number of sentences found in any ASR
transcript. The image and text embeddings are concatenated and passed to the
segment scoring transformer ftrans, the output dimension of this is in R512.
Computation resources. The training time is approximately 2 days using
Distributed Data Parallel to train for 300 epochs on 8 NVIDIA RTX 2080 GPUs.
The model inference time for a single video at its original fps is 1.5 minutes on
average.

3 Additional Results

Table 2: Evaluating on generic video summarization datasets. We compare
F-Score of IV-Sum and CLIP-It on the instructional videos in TVSum.

Method F-Score

CLIP-It [4] 0.72
IV-Sum 0.73

Evaluating on instructional videos in generic video summarization
datasets. Here, we consider the existing generic video summarization datasets,
in particular, those videos that fall under “instructional” domain, in order to
validate our model further. Generic video summarization dataset TVSum [9] has
15 videos pertaining to the categories changing a car tire, getting a car unstuck,

1 We use the implementation of MIL-NCE available here https://github.com/

antoine77340/MIL-NCE_HowTo100M

https://github.com/antoine77340/MIL-NCE_HowTo100M
https://github.com/antoine77340/MIL-NCE_HowTo100M

4

and making a sandwich while SumMe [2] has no instructional videos. We follow
the evaluation protocol described in CLIP-It [4]. For a fair comparison to CLIP-
It [4], we curate a test set by randomly selecting 7 of these 15 videos, while the
remaining 8 are added to the training set, so as to ensure that the CLIP-It model
sees instructional videos during training. The augmented training set is curated
by combining the 8 videos with those in SumMe (25 videos), TVSum (45 videos),
OVP [5] (50 videos), and YouTube [1] (39 videos). CLIP-It is trained on this
augmented training set consisting of 168 videos (including 8 instructional videos)
and evaluated on the held out 7 instructional videos. Our method is trained on
pseudo summaries (built on top of CrossTask and COIN) and evaluated in a
zero-shot way on the test set of 7 videos.

As seen in Tab. 2, our method IV-Sum, although trained with noisy / weakly
labeled pseudo summaries from a different data distribution, achieves an F-Score
comparable to the CLIP-It [4], trained on human annotated summaries.

Table 3: Comparing step-recall. We report step-recall on our method and 2 baselines.

Method Step-recall

Step Cross-Modal Similarity 0.68
CLIP-It with ASR 0.70
IV-Sum 0.94

Step recall. We define an additional metric, step-recall to be the average
percentage of steps present in the ground-truth summary which were successfully
picked by the generated summary. Our WikHow Summaries dataset contains
annotations of frames pertaining to each step, and if any of the frames from a
step are present in the summary, we assume the step is covered. Using this logic,
we generate a list of steps in the generated summary Y ′

step, and a list of steps in
the ground-truth Ystep. We compute step-recall as follows,

Step-recall =
overlap between Ystep and Y ′

step

total duration of Ystep

In Tab. 3 we report the step-recall for Step Cross-Modal Similarity, CLIP-It
with ASR (trained on generic video summarization datasets) and IV-Sum. Both
Step Cross-Modal Similarity and CLIP-It with ASR baselines miss 30% of steps
found in the ground truth summary while our method on average only misses
6% of the steps.
Loss Ablations. In Table 5, we explore additional loss functions as in prior video
summarization works [8,7,6,4]. Diversity loss ensures diversity among the summary
segments and the reconstruction loss enforces similarity in representations of the
reconstructed summary and the input video. Adding diversity reduced the recall
and we notice no improvement on adding reconstruction loss. We believe this
may be because frames corresponding to different steps are not always diverse
but are still important for the summary.

5

Table 4: Instructional Video Summarizer Ablations. We perform ablations on
different components of the video summarizer network and report results on the
WikiHowTo Summaries validation set.

(a) IVSum S3D backbone Ablations.
We compare fixing the pre-trained weights
of the S3D model to fine-tuning a part of
it.

Method F-Score

S3D fixed 65.8
S3D fine-tuned 67.9

(b) IVSum Segment Scoring Trans-
former Ablations. We compare different
architecture configurations of the segment
scoring transformer.

Method F-Score

#heads #layers
SST 8 16 63.1
SST 16 6 63.5
SST 8 12 66.7
SST 8 24 67.9
MLP - - 32.1

Table 5: Loss Ablations. We ablate different losses in the IV-Sum model and show
results on validation set of WikiHow Summaries

Method F-Score Recall

MSE 67.9 84.5
MSE + Diversity 61.2 63.4
MSE + Reconstruction 67.6. 85.8

Model ablations. Table 4a shows the performance comparisons between freezing
the video and text encoding backbone (S3D) vs. fine-tuning part of the network.
In Table 4b, we ablate the segment scoring transformer (SST) in our model and
change the number of encoder layers, heads, and also replace the transformer with
an MLP. We report the F-Score on the validation set of WikiHowTo Summaries.

For a fair comparison of MIL-NCE vs CLIP features, we retrain our IV-Sum
model replacing video segments with frames and replacing MIL-NCE features
with CLIP image and text features (same as the ones used in the CLIP-It baseline).
We report results in Tab. 6. We see that IV-Sum with CLIP performs at par
with CLIP-It with ASR but falls short of IV-Sum, indicating the need to use
video segments and MIL-NCE features pre-trained on HowTo100M.

6

Table 6: Instructional Video Summarization results on WikiHow Summaries.
All models were trained on pseudo summaries.

Method
F-Score τ (Kendall) ρ (Spearman)

Val Test Test Test

CLIP-It with ASR 62.5 61.8 0.093 0.191
IV-Sum with CLIP 61.8 62.0 0.094 0.201
IV-Sum 67.9 67.3 0.101 0.212

4 Additional Quantitative Results

Please watch the video on our website for qualitative results.
Comparison to baselines. We show video results comparing the ground-truth
summary to that from IV-Sum (our method) and baselines Step Cross-Modal
Similarity and CLIP-It with ASR trained on generic video summarization datasets.
Our method picks all frames in the ground-truth and assigns high scores to
salient frames. Step Cross-Modal Similarity misses the crucial step “fold and
tuck” at the end as it assigns higher scores to irrelevant frames at the start of the
video. This is because it has no knowledge of task-relevance. CLIP-It with ASR
(trained on generic video summarization datasets) misses steps (like “fold into a
triangle”) and assigns lower scores to the key frames in a step as it optimizes
for diversity. Evaluating Pseudo Summary generation procedure for
WikiHow Summaries. We found that there are 15 tasks which are shared
between the Pseudo Summary training set and the WikiHow Summaries test set.
We applied the method used to construct pseudo summaries to these 15 task
videos in the WikiHow Summaries by fetching videos of the same task from our
training set. We compare this to IV-Sum and report results in Tab 7. We notice
a slight improvement on all three metrics, indicating that our model is able to
learn above the noise in the pseudo summaries.

Table 7: Evaluating pseudo summary generation on subset of WikiHow
Summaries

Method
F-Score τ ρ

Test Test Test

Pseudo Summary Generation 38.0 0.03 0.36
IV-Sum 42.0 0.04 0.38

Pseudo summary vs IV-Sum summary. IV-Sum is trained on weakly labeled
pseudo summaries that may sometimes be noisy. However, since the training loss
is not 0, we check if our model learns despite the noise and produces summaries

https://medhini.github.io/ivsum/

7

of a better quality. In this example, we show summaries for “this” video from the
Pseudo Summaries dataset. As seen the pseudo summary contains an irrelevant
segment where results from a web search are shown in Korean for nearly 10
seconds (9th second to the 19th second). The IV-Sum model trained on pseudo
summaries yields a resulting summary without this segment, as it is able to learn
“task-relevance” and “cross-modal saliency”.
Pseudo summary vs step-localization annotation. We compare pseudo
summaries generated using our method to the step-localization summary. In the
example “Make a pumpkin spice latte”, the input video can be found here. Step
localization only localizes two main steps, “boil milk” and “add coffee and blend”
whereas our pseudo summary contains all the main steps necessary to do the task.
Failure case. Since we always select the top 55% of the segments to be in
the summary (i.e. t=55%), the summary chosen by our method is sometimes
much longer/shorter than the ground-truth summary. This is a failure case of
the baseline methods as well. For example, for this 38 second video on “How to
ripen a cantaloupe”, the ground-truth summary is a brief 15 seconds whereas our
summary covers the steps in more detail and is 21 seconds long.

https://www.youtube.com/watch?v=9krpJsOi3dE
https://www.youtube.com/watch?v=9krpJsOi3dE
https://www.youtube.com/watch?v=HX1okLOSRz8
https://www.youtube.com/watch?v=HX1okLOSRz8

8

References

1. De Avila, S.E.F., Lopes, A.P.B., da Luz Jr, A., de Albuquerque Araújo, A.: Vsumm:
A mechanism designed to produce static video summaries and a novel evaluation
method. Patt. Rec. Letters (2011) 4

2. Gygli, M., Grabner, H., Riemenschneider, H., Gool, L.V.: Creating summaries from
user videos. European Conference on Computer Vision (ECCV) (2014) 4

3. Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end
learning of visual representations from uncurated instructional videos. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2020) 3

4. Narasimhan, M., Rohrbach, A., Darrell, T.: Clip-it! language-guided video summa-
rization. Advances in Neural Information Processing Systems (NeurIPS) (2021) 3,
4

5. Open video project. https://open-video.org/ 4
6. Park, J., Lee, J., Kim, I.J., Sohn, K.: Sumgraph: Video summarization via recursive

graph modeling. European Conference on Computer Vision (ECCV) (2020) 4
7. Rochan, M., Wang, Y.: Video summarization by learning from unpaired data. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 4
8. Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional

sequence networks. European Conference on Computer Vision (ECCV) (2018) 4
9. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: Tvsum: Summarizing web videos

using titles. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015) 3

https://open-video.org/

