Rethinking Learning Approaches for Long-Term Action Anticipation

Megha Nawhal¹, Akash Abdu Jyothi¹, and Greg Mori^{1,2}

¹ Simon Fraser University, Burnaby, Canada
² Borealis AI, Vancouver, Canada

Abstract. Action anticipation involves predicting future actions having observed the initial portion of a video. Typically, the observed video is processed as a whole to obtain a video-level representation of the ongoing activity in the video, which is then used for future prediction. We introduce ANTICIPATR which performs long-term action anticipation leveraging segment-level representations learned using individual segments from different activities, in addition to a video-level representation. We propose a two-stage learning approach to train a novel transformer-based model that uses these two types of representations to directly predict a set of future action instances over any given anticipation duration. Results on Breakfast, 50Salads, Epic-Kitchens-55, and EGTEA Gaze+ datasets demonstrate the effectiveness of our approach.

Keywords: Action Anticipation; Transformer; Long-form videos

1 Introduction

The ability to envision future events is a crucial component of human intelligence which helps in decision making during our interactions with the environment. We are naturally capable of anticipating future events when interacting with the environment in a wide variety of scenarios. Similarly, anticipation capabilities are essential to practical AI systems that operate in complex environments and interact with other agents or humans (*e.g.*, wearable devices [55], human-robot interaction systems [28], autonomous vehicles [36, 62]).

Existing anticipation methods have made considerable progress on the task of near-term action anticipation [9,10,13,14,16,18,37,59] that involves predicting the immediate next action that would occur over the course of a few seconds. While near-term anticipation is a valuable step towards the goal of future prediction in AI systems, going beyond short time-horizon prediction has applicability in a broader range of tasks that involve long-term interactions with the environment. The ability to anticipate actions over long time-horizons is imperative for applications such as efficient planning in robotic systems [8, 15] and intelligent augmented reality systems.

In this paper, we focus on long-term action anticipation. Figure 1 illustrates the problem – having observed an initial portion of an untrimmed activity video, we predict *what* actions would occur *when* in the future.

Fig. 1. Long-Term Action Anticipation. Given the initial portion of an activity video $(0, \ldots, T_o)$ and anticipation duration T_a , the task is to predict the actions that would occur from time $T_o + 1$ to $T_o + T_a$. Our proposed anticipation model receives the observed video and the anticipation duration as inputs and directly predicts a set of future action instances. Here, the action anticipation is *long-term* – both the observed duration T_o and the anticipation duration T_a are in the order of minutes.

Long-term anticipation methods [2,12,15,25,51] predict future actions based on the information in the observed video (*i.e.*, an initial portion of an untrimmed activity video) that partially depicts the activity in the video. Current approaches rely on encoding the observed video (input) as a whole to obtain *videolevel representations* to perform action anticipation.

We propose a novel approach that leverages segment-level and video-level representations for the task of long-term action anticipation. Consider the example in Figure 1. The video depicts the activity *person making pasta* spanning several minutes. This activity has segments with actions such as *slice onion*, *put pesto*, *put courgette*, *add cheese*. One of these segments such as *put pesto* tends to co-occur with actions involving objects such as *courgette*, *onion*, or *cheese* in a specific order. However, other videos with a different activity, say, *person making pizza*, could potentially have a similar set and/or sequence of actions in a different kitchen scenario. As such, while a specific sequence of actions (*i.e.*, segments of a video) help denote an activity, an individual video segment (containing a single action) alone contains valuable information for predicting the future. Based on this intuition, we introduce an approach that leverages segment-level representations in conjunction with video-level representations for the task of long-term action anticipation. In so doing, our approach enables reasoning beyond the limited context of the input video sequence.

In this work, we propose ANTICIPATR that consists of a two-stage learning approach employed to train a transformer-based model for long-term anticipation (see Fig. 2 for an overview). In the first stage, we train a *segment encoder* to learn segment-level representations. As we focus on action anticipation, we design this training task based on co-occurrences of actions. Specifically, we train the segment encoder to learn *which future actions are likely to occur after a given segment*? Intuitively, consider a video segment showing a pizza pan being moved towards a microwave. Irrespective of the ongoing activity in the video that contains this segment, it is easy to anticipate that certain actions such as *open microwave, put pizza* and *close microwave* are more likely to follow than the actions *wash spoon* or *close tap*.

In the second stage, we utilize both the segment-level and video-level representations for long-term action anticipation. We design a transformer-based model that contains two encoders: (1) the segment encoder to derive representations corresponding to segments in the observed video, and (2) a video encoder to derive the video-level representations of the observed video. These encoded representations are then fed into an anticipation decoder that predicts actions that would occur in the future. Our model is designed to directly predict a set of future action instances, wherein, each element of the set (*i.e.*, an action instance) contains the start and end timestamps of the instance along with the action label. Using direct set prediction, our approach predicts the actions at all the timestamps over a given anticipation duration in a single forward pass.

To summarize, this paper makes the following contributions: (1) a novel learning approach for long-term action anticipation that leverages segment-level representations and video-level representations of the observed video, (2) a novel transformer-based model that receives a video and anticipation duration as inputs to predict future actions over the specified anticipation duration, (3) a direct set prediction formulation that enables single-pass prediction of actions, and (4) state-of-the-art performance on a diverse set of anticipation benchmarks: Breakfast [29], 50Salads [56], Epic-Kitchens-55 [9], and EGTEA Gaze+ [31]. Code is available at https://github.com/Nmegha2601/anticipatr

Overall, our work highlights the benefits of learning representations that capture different aspects of a video, and particularly demonstrates the value of such representations for action anticipation.

2 Related Work

Action Anticipation. Action anticipation is generally described as the prediction of actions before they occur. Prior research efforts have used various formulations of this problem depending on three variables: (1) anticipation format, *i.e.*, representation format of predicted actions, (2) anticipation duration, *i.e.*, duration over which actions are anticipated, and (3) model architectures.

Current approaches span a wide variety of anticipation formats involving different representations of prediction outcomes. They range from pixel-level representations such as frames or segmentations [5, 33, 34, 39] and human trajectories [3, 10, 20, 24, 27, 38] to label-level representations such as action labels [12, 13, 14, 16, 25, 30, 46, 48, 49, 51, 53, 59, 64, 65] or temporal occurrences of actions [2, 15, 32, 37, 40, 57] through to semantic representations such as affordances [28] and language descriptions of sub-activities [52]. We focus on label-level anticipation format and use 'action anticipation' to refer to this task.

Existing anticipation tasks can be grouped into two categories based on the anticipation duration: (1) near-term action anticipation, and (2) long-term action anticipation. In this paper, we focus on long-term action anticipation.

Near-term anticipation involves predicting label for the immediate next action that would occur in the range of a few seconds having observed a short video segment of duration of a few seconds. Prior work propose a variety of

temporal modeling techniques to encode the observed segment such as regression networks [59], reinforced encoder-decoder network [16], TCNs [63], temporal segment network [9], LSTMs [13, 14, 45], VAEs [40, 61] and transformers [18].

Long-term anticipation involves predicting action labels over long timehorizons in the range of several minutes having observed an initial portion of a video (observed duration of a few minutes). A popular formulation of this task involves prediction of a sequence of action labels having observed an initial portion of the video. Prior approaches encode the observed video as a whole to obtain a video-level representation. Using these representations, these approaches either predict actions recursively over individual future time instants or use time as a conditional parameter to predict action label for the given single time instant. The recursive methods [2, 12, 15, 46, 51] accumulate prediction error over time resulting in inaccurate anticipation outcomes for scenarios with long anticipation duration. The time-conditioned method [25] employs skip-connections based temporal models and aims to avoid error accumulation by directly predicting an action label for a specified future time instant in a single forward pass. However, this approach still requires multiple forward passes during inference as the task involves predicting actions at all future time instants over a given anticipation duration. Additionally, sparse skip connections used in [25] do not fully utilize the relations among the actions at intermediate future time instants while predicting action at a given future time instant. In contrast to these approaches based on video-level representations, our approach leverages segment-level representations (learned using individual segments across different activities) in conjunction with video-level representations. Both these representations are utilized to directly predict action instances corresponding to actions at all the time instants over a given anticipation duration in a single forward pass.

An alternate formulation of long-term anticipation proposed in [42] focuses on predicting a set of future action labels without inferring when they would occur. [42] extracts a graph representation of the video based on frame-level visual affordances and uses graph convolutional network to encode the graph representation to predict a set of action labels. In contrast, our approach leverages both the segment-level and video-level representations of the input video and a transformer-based model to predict action instances - both action labels and their corresponding timestamps.

Other methods design approaches to model uncertainty in predicting actions over long time horizons [1, 44, 46] and self-supervised learning [47].

Early action detection. The task of early action detection [21, 35, 50, 54] involves recognizing an ongoing action in a video as early as possible given an initial portion of the video. Though the early action detection task is different from action anticipation (anticipation involves prediction of actions *before* they begin), the two tasks share the inspiration of future prediction.

Transformers in computer vision. The transformer architecture [58], originally proposed for machine translation task, has achieved state-of-the-art performance for many NLP tasks. In recent years, there has been a flurry of work on transformer architectures designed for high-level reasoning tasks on images and

videos. Examples include object detection [6], image classification [11], spatiotemporal localization in videos [17], video instance segmentation [60], action recognition [4, 66], action detection [43], multi-object tracking [41], next action anticipation [18], human-object interaction detection [26, 67]. DETR [6] is a transformer model for object detection, wherein, the task is formulated as a set prediction problem. This work has since inspired transformer designs for similar vision tasks – video instance segmentation [60] and human-object interaction detection [67]. Inspired by these works, we propose a novel transformer architecture that uses two encoder to encode different representations derived from the input video and a decoder to predict the set of future action instances in a single pass. Our proposed decoder also receives anticipation duration as an input parameter to control the duration over which actions are predicted.

3 Action Anticipation with ANTICIPATR

In this section, we first describe our formulation of long-term action anticipation and then describe our approach.

Problem Formulation. Let \mathbf{v}_o be an observed video containing T_o frames. Our goal is to predict the actions that occur from time $T_o + 1$ to $T_o + T_a$ where T_a is the anticipation duration, *i.e.*, the duration over which actions are predicted. Specifically, we predict a set $\mathcal{A} = \{a^i = (c^i, t^i_s, t^i_e)\}$ containing future action instances. The *i*-th element denotes an action instance a^i depicting action category c^i occurring from time t^i_s to t^i_e where $T_o < t^i_s < t^i_e \leq T_o + T_a$. Here, $c^i \in \mathcal{C}$ where \mathcal{C} is the set of action classes in the dataset.

Intuitively, for action anticipation, the observed video as a whole helps provide a broad, video-level representation of the ongoing activity depicted in the video. However, the observed video is composed of several segments that individually also contain valuable information about future actions and provide an opportunity to capture the video with segment-level representations. Using this intuition, in this paper, we propose ANTICIPATR that leverages these two types of representations of the observed video for the task of long-term anticipation.

ANTICIPATR employs a two-stage learning approach to train a transformerbased model that takes an observed video as input and produces a set of future action instances as output. See Fig. 2 for an overview. In the first stage, we train a *segment encoder* that receives a segment (sequence of frames from a video) as input and predicts the set of action labels that would occur at any time in the future after the occurrence of the segment in the video. We refer to this stage as segment-level training (described in Sec. 3.1). As the segment encoder only operates over individual segments, it is unaware of the broader context of the activity induced by a specific sequence of segments in the observed video.

In the second stage, we train a *video encoder* and an *anticipation decoder* to be used along with the segment encoder for long-term action anticipation. The video encoder encodes the observed video to a video-level representation. The segment encoder (trained in the first stage) is fed with a sequence of segments from the observed video as input to obtain a segment-level representation of

Stage 1: Segment-level Training

Stage 2: Action Anticipation

Fig. 2. Learning Approach. ANTICIPATR uses a two-stage learning approach. In the first stage, we perform segment-level training (refer to Sec 3.1). Given a segment as input, we train a segment encoder to predict the set of action labels that would occur at any time after the occurrence of the segment in the activity video. In the second stage, we perform long-term action anticipation (refer to Sec 3.2). We use video encoder to obtain video-level representation and segment encoder (trained in the first stage) is used to obtain segment-level representation. The anticipation decoder receives these two representations of the observed video to directly predict a set of action instances that would occur in the future over a given anticipation duration.

the video. The anticipation decoder receives the two representations along with the anticipation duration to predict a set of future action instances over the given anticipation duration in a single pass. The video encoder and anticipation decoder are trained using classification losses on the action labels and two temporal losses (L_1 loss and temporal IoU loss) on the timestamps while the segment encoder is kept unchanged. We refer to this second stage of training as action anticipation (see Sec. 3.2).

3.1 Stage 1: Segment-level Training

In this stage, the segment encoder is trained on a segment-level prediction task to learn representations for individual segments. See Fig. 3 (*left*) for an overview. **Segment Encoder.** We design the segment encoder network E_s as a sequence of ℓ_s transformer blocks containing a multi-head self-attention module followed by layernorm and a feed forward network [58]. This network is trained on the task of segment-level action anticipation.

Training. During training, the segment encoder receives a segment (sequence of frames from a video) as input and predicts the set of action labels that would occur at any time in the future (starting from the temporal boundary, *i.e.*, end of the segment until the end of that video) without inferring when they would

Fig. 3. Model Architecture. Our model comprises three networks: *segment encoder*, *video encoder* and *anticipation decoder* and is trained for long-term action anticipation in two stages. (*left*) Segment-level training (Sec. 3.1): The segment encoder receives a segment as input and predicts a set of action labels that would occur at any time in the future (after the occurrence of segment in the video). (*right*) Action Anticipation (Sec. 3.2): The video encoder encodes the observed video to a video-level representation. Concurrently, the video is divided into a sequence of segments and each segment is fed into the segment encoder (trained in first stage)The anticipation decoder receives the two representations along with an anticipation duration as inputs to directly predict a set of future action instances over the given anticipation duration. [MH Attention: Multi-head Attention, FFN: Feed Forward Network.]

occur. Depending on the segment, there could be multiple actions occurring between the end of segment and end of video. Thus, we formulate this training task as a multi-class multi-label classification.

The training data for the segment encoder is derived from the training set in the original video dataset containing videos with action annotations. These input segments are obtained using the action boundaries provided in the training set. We do not require any additional annotations. Formally, given a video \mathbf{v} containing T frames, a segment $\mathbf{v}_s^{(t',t'')}$, spanning time indices t' to t'' where $0 \leq t' < t'' < T$, is taken as input. For this segment, the target is a binary vector \mathbf{c}_s (dimension $|\mathcal{C}|$) corresponding to the action labels that occur after the temporal boundary of the segment until the end of the video ($[\mathbf{v}^{t''+1}, \dots, \mathbf{v}^T]$).

The segment encoder E_s receives the segment $\mathbf{v}_s^{(t',t'')}$ along with positional encodings $\mathbf{p}_s^{(t',t'')}$ (details in supplementary). The output of the encoder is an embedding $\mathbf{h} = [\mathbf{h}^1, \dots, \mathbf{h}^{t''-t'+1}]$ of dimension $(t'' - t' + 1) \times d_s$ where d_s is the channel dimension. The output embeddings are then averaged along time dimension and fed into a linear layer F followed by a sigmoid activation σ to obtain future action probabilities $\hat{\mathbf{c}}_s$ of dimension $|\mathcal{C}|$, expressed as:

$$\mathbf{h} = E_s \left(\mathbf{v}_s^{(t',t'')}, \mathbf{p}_s^{(t',t'')} \right)$$
$$\hat{\mathbf{c}}_s = \sigma \left(F \left(\frac{1}{t'' - t' + 1} \sum_{i=1}^{t'' - t' + 1} \mathbf{h}^i \right) \right).$$
(1)

Here, $\hat{\mathbf{c}}_s$ is the output of a multi-label classifier where each element c_s^j of $\hat{\mathbf{c}}_s$ denotes probability of corresponding action category $j \in \mathcal{C}$. This network is trained using binary cross entropy loss between the prediction vector $\hat{\mathbf{c}}_s$ and target vector \mathbf{c}_s . Once trained, the linear layer F is discarded and the segment encoder E_s is used to obtain segment-level representations for the action anticipation stage.

3.2 Stage 2: Action Anticipation

In the second stage of our approach, we use an encoder-decoder model that contains two encoders: (i) the segment encoder from the first stage, and (ii) a video encoder that encodes the observed video as a whole. The outputs of these two encoders along with an anticipation duration are fed into an anticipation decoder which uses the representations from the two encoders to predict a set of future action instances over the given anticipation duration. See Fig. 3 (right). Video Encoder. The video encoder receives an observed video containing T_o frames. We denote the input as $\mathbf{v}_o = [\mathbf{v}^1, \dots, \mathbf{v}^{T_o}]$. We design the encoder network E_v as a sequence of ℓ_v transformer blocks [58] containing a multi-head self-attention module followed by layernorm and feed forward network. The encoder receives the features corresponding to the observed video \mathbf{v}_{o} as input. As the self-attention module is permutation-invariant, we provide additional information about the sequence in the form of sinusoidal positional encodings [58] $\mathbf{p}_o = [\mathbf{p}^1, \dots, \mathbf{p}^{T_o}]$ (see supplementary for additional explanation). Here, each element in the positional encoding sequence is added to the corresponding element in the video features and then fed into the encoder block. The encoder models temporal relationships in the observed video and transforms the input sequence to a contextual representation $\mathbf{h}_v = [\mathbf{h}_v^1, \dots, \mathbf{h}_v^{T_o}]$, expressed as:

$$\mathbf{h}_v = E_v(\mathbf{v}_o, \mathbf{p}_o). \tag{2}$$

Encoding Video Segments. Concurrent to the video encoder, the input video is divided into a sequence of segments using temporal sliding windows. Specifically, a temporal window of size k starting from frame index i obtains a segment $[\mathbf{v}^i, \ldots, \mathbf{v}^{i+k-1}]$, which is fed to the segment encoder to obtain the outputs $\mathbf{h}_s^i, \ldots, \mathbf{h}_s^{i+k-1}$. The starting index i slides across time with $i \in \{1, k+1, 2k+1, \ldots, (T_o - k + 1)\}$ generating the temporal windows, where the window size k is a hyperparameter. The outputs of the segment encoder for all temporal windows are concatenated to obtain $\mathbf{h}_s = [\mathbf{h}_s^1, \ldots, \mathbf{h}_s^{T_o}]$. During implementation, the representations can still be obtained in one forward pass of the segment-level representation of the video is complementary to the video-level representation that encodes the ongoing activity in the video.

Anticipation Decoder. Given the video-level and the segment-level representations, the decoder aims to predict a set of future action instances over a given anticipation duration. The predicted set contains action instances of the form (label, start time, end time). The anticipation decoder receives the following inputs: (i) anticipation queries \mathbf{q}_0 , (ii) anticipation duration T_a over which actions are to be predicted, (iii) encoded representation \mathbf{h}_v from video encoder E_v , and (iv) encoded representation \mathbf{h}_s from segment encoder E_s .

The anticipation queries contain N_a elements, *i.e.*, $\mathbf{q}_0 = [\mathbf{q}_0^1, \ldots, \mathbf{q}_0^{N_a}]$, wherein each query is a learnable positional encoding (more details in supplementary). We consider N_a as a hyperparameter that is constant for a dataset and is sufficiently larger than the maximum number of action instances to be anticipated per video in the overall dataset. Each query \mathbf{q}_0^i is then fed into a linear layer (weights shared for all values of *i*) along with the anticipation duration T_a to obtain time-conditioned anticipation queries \mathbf{q}_a^i for $i = 1, \ldots, N_a$. This time conditioning enables the anticipation decoder to predict actions over any specified anticipation duration.

The decoder network D consists of ℓ_d blocks, wherein, each block contains a cascade of attention layers. The first attention layer is the multi-head selfattention block which models relations among the anticipation queries. The second attention layer is a multi-head encoder-decoder attention layer that maps the queries and the segment-level representations from the segment encoder. And, the third attention layer is another multi-head encoder-decoder attention layer that maps the output of previous layer to the video-level representation corresponding to the input. This third attention layer is followed by a feedforward network. The output of the decoder $\mathbf{y} = [\mathbf{y}^1, \dots, \mathbf{y}^{N_a}]$ serves as a latent representation of the action instances in the videos, expressed as:

$$\mathbf{y} = D(\mathbf{q}_a, \mathbf{h}_v, \mathbf{h}_s) \tag{3}$$

The decoder output is used to predict the set of action instances $\hat{\mathcal{A}} = \{\hat{a}^i = (\hat{c}^i, \hat{t}^i_s, \hat{t}^i_e)\}_{i=1}^{N_a}$. Each element in decoder output \mathbf{y}^i is fed into a linear layer followed by softmax to obtain prediction probabilities $\hat{p}^i(c)$ where $c = 1, \ldots, |\mathcal{C}| + 1$ and \hat{c}^i is the class corresponding to maximum probability. The number of queries N_a is larger than the maximum number of action instances per video in the dataset. Thus, we introduce an additional class label \emptyset indicating no action. \mathbf{y}^i is also fed into another feedforward network with ReLU to obtain corresponding start timestamps \hat{t}^i_s and end timestamps \hat{t}^i_e .

Training. To compute the loss, we first align the predictions with the groundtruth set of action instances. This alignment is necessary as there is no fixed prior correspondence between the predicted and the groundtruth set of action instances. Here, the predicted set for any video contains N_a action instances, but the size of groundtruth set \mathcal{A} varies based on the video and is smaller than the predicted set. Thus, we first pad the groundtruth set to make it the same size as the predicted set by adding $N_a - |\mathcal{A}|$ elements with label \emptyset indicating no action. Then, we use a pair-wise greedy correspondence algorithm to align the groundtruth and predicted sets. Starting with the groundtruth instance having the longest duration, we match each groundtruth instance with the unmatched predicted instance that has the maximum temporal overlap with the groundtruth instance. This results in a one-to-one mapping for loss computation (more details in supplementary).

Consider the output of the set correspondence module as γ denoting the permutation of the predicted set of instances, *i.e.*, the groundtruth action instance

 a^i is matched to predicted instance $\hat{a}^{\gamma(i)}$ for $i = 1, \ldots, N_a$. Given this alignment, we compute loss \mathcal{L} over all the matched pairs as a weighted combination of cross-entropy loss for classification, and two temporal losses: L1 loss and IoU loss (\mathcal{L}_{iou}) for prediction of segment timestamps, defined as:

$$\mathcal{L} = \sum_{i=1}^{N_a} \left[-\log(\hat{p}^{\gamma(i)}(c^i)) + \mathbb{1}_{\{c^i \neq \varnothing\}} \lambda_{L1} ||s^i - \hat{s}^{\gamma(i)}||_1 + \mathbb{1}_{\{c^i \neq \varnothing\}} \lambda_{iou} \mathcal{L}_{iou}(s^i, \hat{s}^{\gamma(i)}) \right],$$

$$(4)$$

where $\lambda_{iou}, \lambda_{L1} \in \mathbb{R}^+$ are hyperparameters, $s^i = [t_s^i, t_e^i], \hat{s}^{\gamma(i)} = [\hat{t}_s^{\gamma(i)}, \hat{t}_e^{\gamma(i)}]$ and $\hat{p}^{\gamma(i)}(c^i)$ is the probability of the groundtruth class c^i for prediction $\gamma(i)$. The video encoder and anticipation decoder are jointly trained to minimize this loss. We do not fine-tune the segment encoder in this stage.

Inference. During inference, the video encoder takes the observed video as input and the segment encoder takes the chunked video (*i.e.*, non-overlapping segments of fixed length) as input. The inputs to the decoder are: (i) anticipation queries $\mathbf{q}_0 = 1, \ldots, N_a$ (a constant, regardless of input), (ii) anticipation duration T_a (varies based on the input video and the anticipation requirement), (iii) output representation from the video encoder, and (iv) output representation from the segment encoder. The decoder predicts a set of action instances. Thus, our approach allows us to build a model that can anticipate actions over any future duration in a single pass by simply controlling the input T_a to the decoder as shown by results in Table 1.

In summary, ANTICIPATR uses a two-stage learning approach to train a transformer-based model (consisting of two encoders and one decoder) to predict a set of future action instances over any given anticipation duration. Our approach aims to perform action anticipation with segment-level representations learned using individual video segments in conjunction with video-level representations learned by encoding input video as a whole. Our model anticipates actions at all time instants over a given anticipation duration in a single forward pass by directly predicting a set of future action instances.

4 Experiments

We conducted extensive experiments and analysis to demonstrate the effectiveness of our proposed approach.

Datasets. We evaluate on four established benchmarks for this task. These datasets of untrimmed videos vary in scale, diversity of labels and video duration.

Breakfast [29] contains 1,712 videos each depicting one of 10 breakfast activities and annotated with action instances spanning 48 different action classes. On average, a video contains 6 action instances and has a duration of 2.3 minutes. For evaluation, we report the average across 4 splits from the original dataset.

50Salads [56] contains 50 videos, each showing a person preparing a salad. On average, there are 20 action instances per video spanning 17 action classes

Table 1. Results (Breakfast and 50Salads). We report the mean over classes accuracy for different observation/anticipation durations. Higher values indicate better performance. Note that "Sener *et al.* [51] (features+labels)" use action labels from a segmentation algorithm as additional input. Baseline results are from respective papers.

	Observation $(\beta_o) \rightarrow$	20%				30%			
	Anticipation $(\beta_a) \rightarrow$	10%	20%	30%	50%	10%	20%	30%	50%
Breakfast	RNN [2]	18.1	17.2	15.9	15.8	21.6	20.0	19.7	19.2
	CNN [2]	17.9	16.3	15.3	14.5	22.4	20.12	19.7	18.7
	RNN [2] + TCN	5.9	5.6	5.5	5.1	8.9	8.9	7.6	7.7
	CNN [2] + TCN	9.8	9.2	9.1	8.9	17.6	17.1	16.1	14.4
	Ke et al. [25]	18.4	17.2	16.4	15.8	22.7	20.4	19.6	19.7
	Farha et al. [12]	25.9	23.4	22.4	21.5	29.7	27.4	25.6	25.2
	Qi et al. [47]	25.6	21.0	18.5	16.0	27.3	23.6	20.8	17.3
	Sener et al. [51] (features)	24.2	21.1	20.0	18.1	30.4	26.3	23.8	21.2
	Sener <i>et al.</i> [51] (features+labels)	37.4	31.8	30.1	27.1	39.8	34.2	31.9	27.9
	Anticipatr (Ours)	37.4	32.0	30.3	28.6	39.9	35.7	32.1	29.4
	RNN [2]	30.1	25.4	18.7	13.5	30.8	17.2	14.8	9.8
ß	CNN [2]	21.2	19.0	15.9	9.8	29.1	20.1	17.5	10.9
ad	RNN [2] + TCN	32.3	25.5	19.1	14.1	26.1	17.7	16.3	12.9
als	CNN [2] + TCN	16.0	14.7	12.1	9.9	19.2	14.7	13.2	11.2
\mathbf{s}	Ke et al. [25]	32.5	27.6	21.3	15.9	35.1	27.1	22.1	15.6
ъ	Farha et al. [12]	34.8	28.4	21.8	15.2	34.4	23.7	18.9	15.9
	Sener et al. [51](features)	25.5	19.9	18.2	15.1	30.6	22.5	19.1	11.2
	Sener <i>et al.</i> [51](features+labels)	34.7	26.3	23.7	15.7	34.5	26.1	22.7	17.1
	Qi et al. [47]	37.9	28.8	21.3	11.1	37.5	24.1	17.1	09.1
	Piergiovanni et al. [46]	40.4	33.7	25.4	20.9	40.7	40.1	26.4	19.2
	ANTICIPATR (Ours)	41.1	35.0	27.6	27.3	42.8	42.3	28.5	23.6

and duration is 6.4 minutes. Following the original dataset, we report the average across 5-fold cross-validation in our evaluation.

EGTEA Gaze+ (EGTEA+) [31] contains egocentric videos of 32 subjects following 7 recipes in a single kitchen. Each video depicts the preparation of a single dish. Each video is annotated with instances depicting interactions (*e.g.*, open drawer), spanning 53 objects and 19 actions.

EPIC-Kitchens-55 (EK-55) [9] contains videos of daily kitchen activities. It is annotated for interactions spanning 352 objects and 125 actions. It is larger than the aforementioned datasets, and contains unscripted activities.

We represent the input videos by feature representations used in the benchmarks (see supplementary for details).

Evaluation. To measure the performance of our model, we adopt the evaluation protocol followed by state-of-the-art methods for these benchmark datasets.

For Breakfast and 50Salads, we report the mean over classes accuracy averaged over all future timestamps in the specified anticipation duration, *i.e.*, dense prediction evaluation as defined in [2,12,25]. We use $\beta_o \%$ of a full video as observation duration and predict the actions corresponding to following $\beta_a \%$ of the remaining video. As per the benchmarks, we sweep the values of $\beta_o \in \{20, 30\}$ and $\beta_a \in \{10, 20, 30, 50\}$ denoting different observation and anticipation durations respectively. Note that a single trained model is used for predicting at all these values of β_o and β_a by just varying the anticipation duration input to the decoder. Since the metric is computed over a dense anticipation timeline, we

Table 2. Results (EK-55 and EGTEA+). We report mAP values for ALL classes, FREQUENT classes (> 100 action instances) and RARE class (< 10 action instances). Following [42], we report the mAP values averaged over different observation durations. Higher values implies better performance. Baseline results are from respective papers.

Method		EK-5	55	EGTEA+			
	All	Freq	RARE	All	Freq	RARE	
RNN	32.6	52.3	23.3	70.4	76.6	54.3	
I3D [7]	32.7	53.3	23.0	72.1	79.3	53.3	
ActionVLAD [19]	29.8	53.5	18.6	73.3	79.0	58.6	
Timeception [22]	35.6	55.9	26.1	74.1	79.7	59.7	
VideoGraph [23]	22.5	49.4	14.0	67.7	77.1	47.2	
EGO-TOPO [42]	38.0	56.9	29.2	73.5	80.7	54.7	
ANTICIPATR(Ours)	39.1	58.1	29.1	76.8	83.3	55.1	

first convert our model predictions (set of action instances) into a timeline and then compute mean over classes accuracy (details in supplementary).

For EK-55 and EGTEA+, we compute a multi-label classification metric (mAP) over the target action classes as defined in [42]. $\alpha_o \%$ of each untrimmed video is given as input to predict all action classes in the future $(100 - \alpha_o)\%$ of the video, *i.e.*, until the end of the video. We sweep values of $\alpha_o \in \{25, 50, 75\}$ representing different observation durations. Since the metric is computed only over the future action classes, we take the union of the class labels of predicted action instances to compute mAP.

Comparison with state-of-the-art. Table 1 shows the results for Breakfast and 50Salads datasets in the 'no groundtruth labels' setting [25, 51]. The results show that our approach outperforms existing methods by a considerable margin for different observation/anticipation durations. For these benchmarks, the most similar approach to ours is Sener *et al.* [51] where they propose self-attention methods for temporal aggregation for long-term video modeling. In the setting similar to ours where they use only visual features as input, our approach outperforms [51] with up to 13% improvement. Moreover, when they also use action labels from a segmentation algorithm as input, our approach is still competitive despite not using such additional inputs. In addition, the benefit of our approach is more apparent when the anticipation duration is longer.

Table 2 shows results on the long-term action anticipation benchmarks for EK-55 and EGTEA+ datasets, as defined by [42]. The results show that our model achieves competitive results with the state-of-the-art method [42]. While this benchmark only considers prediction of future action labels, our results demonstrate that the segment prediction in our model acts as a beneficial auxiliary task for label prediction.

Impact of Segment-level Training. Our two-stage learning approach separately learns video-level representations and segment-level representations. To analyze the impact of such two-stage training, we design following experiments.

(i) **Fine-tuned Segment Encoder.** In this experiment, we also fine-tune the segment encoder while training video encoder and decoder during the anticipation stage (Sec 3.2). The results in Fig. 4 ('Fine-tuned SE') indicate that

13

Fig. 4. Analysis. Quantitative evaluation of the anticipation performance of ablated versions of ANTICIPATR. [SE: segment encoder; VE: video encoder].

fine-tuning the segment encoder hurts the anticipation performance. We believe fine-tuning the segment encoder with anticipation loss (Eq. 4) perturbs the segment-level representation learned during first stage of training.

(ii) No Segment-level Training. In this experiment, we do not train the segment encoder network in a separate stage. Instead, we train all three networks (*i.e.*, segment encoder, video encoder and anticipation decoder) jointly for the task of long-term action anticipation using the anticipation loss function (Eq. 4). Here, the segment encoder receives videos chunked into short segments (same as the proposed two-stage training). However, it is directly tasked with solving a more difficult problem of simultaneously encoding segment-level representation and inferring its usage for long-term anticipation. The results for all datasets presented in Fig. 4 ('No Segment-level Training') illustrate that eliminating training of the segment encoder worsens the anticipation performance. This shows the value of learning the segment-level representations independently without being influenced by the overall activity in the input video.

In summary, these experiments demonstrate the importance of the two-stage learning approach and suggest that the two representations should be learned separately to serve their individual purposes during anticipation.

Impact of Segment Encoder. To evaluate the impact of learning segmentlevel representation, we conducted experiments without the segment encoder network. This ablated version only contains the video encoder and the anticipation decoder and is trained in a single-stage using the anticipation loss (Eq. 4). The results in Fig. 4 ('No SE') show that removing the segment-level representations considerably hurts the anticipation performance. This performance degradation is worse than just removing the segment-level training stage ('No segment-level training' in Fig. 4). Thus, this experiment validates the benefit of the segment-level stream of information for action anticipation.

Impact of Set-based Output Representation. In our approach, we model the anticipation output as a set of action instances. We empirically validate this design by comparing with an alternative approach where the output is a sequence of action labels corresponding to the individual future time instants. We implement this by changing the anticipation queries (decoder input) during the anticipation stage – we provide positional encodings corresponding to each time instant over anticipation duration and directly predict the labels corresponding

Fig. 5. Visualizations from Breakfast (left) and 50salads (right) where 20% of the video is observed and actions are anticipated over 50% of the remaining video.

to these time instants. While the prediction for all time instants still happens in a single pass, the decoder is required to transform a large number of anticipation queries. The results in Fig. 4 ('No Set Output') show poor performance that worsen further as anticipation duration increases. This is largely because the number of queries is too high for the decoder for effective modeling.

Fusion of Encoder Outputs. To combine the representation from segment encoder and video encoder, our model uses two encoder-decoder attention layers in the decoder blocks. We tested an alternative approach wherein we fused the representations using a simple addition along temporal dimension before feeding into the decoder. Here, we modify the decoder blocks to contain a single encoder-decoder attention layer. The results in Fig. 4 ('Adding SE & VE before decoder') indicate that this fusion approach leads to a slight decrease in anticipation performance. We believe adding the representations before decoder forces the computation of encoder-decoder attention weights by considering both information streams at once. In contrast, our ANTICIPATR approach of computing attention one-by-one enables it to first filter out the relevant information from segment-level representations learned across different activities and then contextualize them into the specific context of the input video.

Visualizations. The examples in Fig. 5 shows that our model effectively anticipates future actions. Please refer to supplementary material for additional visualizations and analysis of failure cases.

5 Conclusion

We introduced a novel approach for long-term action anticipation to leverage segment-level representations learned from individual segments across different activities in conjunction with a video-level representation that encodes the observed video as a whole. We proposed a novel two-stage learning approach to train a transformer-based model that receives a video and an anticipation duration as inputs and predicts a set of future action instances over the given anticipation duration. Results showed that our approach achieves state-of-the-art performance on long-term action anticipation benchmarks for Breakfast, 50Salads, Epic-Kitchens-55, and EGTEA Gaze+ datasets. Overall, our work highlights the benefits of learning representations that capture information across different activities for action anticipation.

References

- Abu Farha, Y., Gall, J.: Uncertainty-aware anticipation of activities. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
- 2. Abu Farha, Y., Richard, A., Gall, J.: When will you do what?-anticipating temporal occurrences of activities. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR) (2018)
- Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
- Bhattacharyya, A., Fritz, M., Schiele, B.: Bayesian prediction of future street scenes using synthetic likelihoods. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019)
- Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
- Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
- Chang, C.Y., Huang, D.A., Xu, D., Adeli, E., Fei-Fei, L., Niebles, J.C.: Procedure planning in instructional videos. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
- Damen, D., Doughty, H., Farinella, G.M., Fidler, S., Furnari, A., Kazakos, E., Moltisanti, D., Munro, J., Perrett, T., Price, W., et al.: Scaling egocentric vision: The epic-kitchens dataset. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
- Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)
- Farha, Y.A., Ke, Q., Schiele, B., Gall, J.: Long-term anticipation of activities with cycle consistency. In: Proceedings of the German Conference on Pattern Recognition (GCPR) (2020)
- Furnari, A., Farinella, G.: Rolling-unrolling lstms for action anticipation from firstperson video. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2020)
- Furnari, A., Farinella, G.M.: What would you expect? anticipating egocentric actions with rolling-unrolling lstms and modality attention. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR) (2019)
- Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Forecasting future action sequences with neural memory networks. Proceedings of the British Machine Vision Conference (BMVC) (2019)

- 16 M. Nawhal et al.
- Gao, J., Yang, Z., Nevatia, R.: Red: Reinforced encoder-decoder networks for action anticipation. Proceedings of the British Machine Vision Conference (BMVC) (2017)
- Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
- Girdhar, R., Grauman, K.: Anticipative video transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
- Girdhar, R., Ramanan, D., Gupta, A., Sivic, J., Russell, B.: Actionvlad: Learning spatio-temporal aggregation for action classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
- Hernandez, A., Gall, J., Moreno-Noguer, F.: Human motion prediction via spatiotemporal inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
- 21. Hoai, M., De la Torre, F.: Max-margin early event detectors. International Journal of Computer Vision (IJCV) (2014)
- 22. Hussein, N., Gavves, E., Smeulders, A.W.: Timeception for complex action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
- 23. Hussein, N., Gavves, E., Smeulders, A.W.: Videograph: Recognizing minutes-long human activities in videos. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshop (2019)
- Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-rnn: Deep learning on spatio-temporal graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- Ke, Q., Fritz, M., Schiele, B.: Time-conditioned action anticipation in one shot. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
- Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: Hotr: End-to-end human-object interaction detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
- 27. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Proceedings of the European Conference on Computer Vision (ECCV) (2012)
- Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2015)
- 29. Kuehne, H., Arslan, A., Serre, T.: The language of actions: Recovering the syntax and semantics of goal-directed human activities. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
- Lan, T., Chen, T.C., Savarese, S.: A hierarchical representation for future action prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2014)
- Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: Joint learning of gaze and actions in first person video. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
- Liang, J., Jiang, L., Niebles, J.C., Hauptmann, A.G., Fei-Fei, L.: Peeking into the future: Predicting future person activities and locations in videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

- Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion gan for future-flow embedded video prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2017)
- Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into the future of semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2017)
- 35. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in lstms for activity detection and early detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2019)
- Mahmud, T., Hasan, M., Roy-Chowdhury, A.K.: Joint prediction of activity labels and starting times in untrimmed videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2017)
- Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
- Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)
- Mehrasa, N., Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: A variational auto-encoder model for stochastic point processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
- 41. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multiobject tracking with transformers. arXiv preprint arXiv:2101.02702 (2021)
- Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: Environment affordances from egocentric video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
- Nawhal, M., Mori, G.: Activity graph transformer for temporal action localization. arXiv preprint arXiv:2101.08540 (2021)
- 44. Ng, Y.B., Fernando, B.: Forecasting future action sequences with attention: a new approach to weakly supervised action forecasting. IEEE Transactions on Image Processing (TIP) (2020)
- 45. Osman, N., Camporese, G., Coscia, P., Ballan, L.: Slowfast rolling-unrolling lstms for action anticipation in egocentric videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
- 46. Piergiovanni, A., Angelova, A., Toshev, A., Ryoo, M.S.: Adversarial generative grammars for human activity prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
- Qi, Z., Wang, S., Su, C., Su, L., Huang, Q., Tian, Q.: Self-regulated learning for egocentric video activity anticipation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)
- Rodin, I., Furnari, A., Mavroeidis, D., Farinella, G.M.: Untrimmed action anticipation. arXiv preprint arXiv:2202.04132 (2022)
- Rodriguez, C., Fernando, B., Li, H.: Action anticipation by predicting future dynamic images. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

- 18 M. Nawhal et al.
- Ryoo, M.S.: Human activity prediction: Early recognition of ongoing activities from streaming videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2011)
- 51. Sener, F., Singhania, D., Yao, A.: Temporal aggregate representations for longrange video understanding. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
- 52. Sener, F., Yao, A.: Zero-shot anticipation for instructional activities. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR) (2019)
- Shi, Y., Fernando, B., Hartley, R.: Action anticipation with rbf kernelized feature mapping rnn. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
- Shou, Z., Pan, J., Chan, J., Miyazawa, K., Mansour, H., Vetro, A., Giro-i Nieto, X., Chang, S.F.: Online detection of action start in untrimmed, streaming videos. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
- 55. Soran, B., Farhadi, A., Shapiro, L.: Generating notifications for missing actions: Don't forget to turn the lights off! In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2015)
- 56. Stein, S., McKenna, S.J.: Combining embedded accelerometers with computer vision for recognizing food preparation activities. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing (2013)
- 57. Sun, C., Shrivastava, A., Vondrick, C., Sukthankar, R., Murphy, K., Schmid, C.: Relational action forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems (NIPS) (2017)
- Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- 60. Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., Xia, H.: End-to-end video instance segmentation with transformers. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
- Wu, B., Nair, S., Martin-Martin, R., Fei-Fei, L., Finn, C.: Greedy hierarchical variational autoencoders for large-scale video prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
- Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
- Zatsarynna, O., Abu Farha, Y., Gall, J.: Multi-modal temporal convolutional network for anticipating actions in egocentric videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
- 64. Zeng, K.H., Shen, W.B., Huang, D.A., Sun, M., Carlos Niebles, J.: Visual forecasting by imitating dynamics in natural sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2017)
- Zhang, H., Chen, F., Yao, A.: Weakly-supervised dense action anticipation. In: Proceedings of the British Machine Vision Conference (BMVC) (2021)
- 66. Zhang, Y., Li, X., Liu, C., Shuai, B., Zhu, Y., Brattoli, B., Chen, H., Marsic, I., Tighe, J.: Vidtr: Video transformer without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

Rethinking Learning Approaches for Long-Term Action Anticipation

67. Zou, C., Wang, B., Hu, Y., Liu, J., Wu, Q., Zhao, Y., Li, B., Zhang, C., Zhang, C., Wei, Y., et al.: End-to-end human object interaction detection with hoi transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)