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Abstract. While transformers have shown great potential on video recog-
nition with their strong capability of capturing long-range dependencies,
they often suffer high computational costs induced by the self-attention
to the huge number of 3D tokens. In this paper, we present a new trans-
former architecture termed DualFormer, which can efficiently perform
space-time attention for video recognition. Concretely, DualFormer strat-
ifies the full space-time attention into dual cascaded levels, i.e., to first
learn fine-grained local interactions among nearby 3D tokens, and then
to capture coarse-grained global dependencies between the query token
and global pyramid contexts. Different from existing methods that apply
space-time factorization or restrict attention computations within local
windows for improving efficiency, our local-global stratification strategy
can well capture both short- and long-range spatiotemporal dependen-
cies, and meanwhile greatly reduces the number of keys and values in
attention computation to boost efficiency. Experimental results verify
the superiority of DualFormer on five video benchmarks against existing
methods. In particular, DualFormer achieves 82.9%/85.2% top-1 accu-
racy on Kinetics-400/600 with ∼1000G inference FLOPs which is at least
3.2× fewer than existing methods with similar performance. We have re-
leased the source code at https://github.com/sail-sg/dualformer.

Keywords: efficient video transformer, local and global attention.

1 Introduction

Video recognition is a fundamental task in computer vision, such as action
recognition [5] and event detection [18]. Like in image-based tasks [27,44,17],
Convolutional Neural Networks (CNNs) are often taken as backbones for video
recognition models [32,48,50,5,12,13]. Though successful, it is challenging for
convolutional architectures to capture long-range spatiotemporal dependencies
across video frames due to their limited receptive field.

Recently, transformers [51] have become an alternative paradigm for visual
modeling beyond CNNs, demonstrating great potential in a series of image pro-
cessing tasks [54,34,42,55,52,62]. A pioneering work is the Vision Transformer
(ViT) [10] which replaces the inherent inductive bias of locality in convolutions
by global relation modeling with multi-head self-attention (MSA) [51]. Soon the

https://github.com/sail-sg/dualformer
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Fig. 1. Accuracy vs. FLOPs on Kinetics [25]. Ours-B is the base version of DualFormer.

vision community extends the application of MSA from static images to videos
considering its remarkable power for capturing long-range spatiotemporal depen-
dencies [38,11,3,1]. Concretely, a video is first partitioned into non-overlapping
3D patches, similar as in NLP tasks [51], which then serve as input tokens for
transformers to jointly learn short- and long-range relations within a video.

One of the major challenges for applying transformers to video data is their
low efficiency. Due to the MSA operation, the computational cost of video trans-
formers grows quadratically with the increasing number of tokens, and may even
become totally unaffordable for some high spatial resolution or long videos. To
alleviate this issue, TimeSformer [3] and ViViT [1] factorize the full space-time
self-attention along temporal and spatial dimensions separately to achieve a
balance between accuracy and efficiency in video recognition. Inspired by the
observation that near tokens are usually more related than distant ones [46],
Video Swin Transformer [35] applies the inductive bias of locality at each trans-
former layer via performing self-attention in the non-overlapping local windows.
Though effective, both the space-time factorization and the local-window based
attention scheme contradict the aim of applying full space-time attention, i.e., to
jointly capture local and global spatiotemporal dependencies within one layer,
and thus impair the performance of video transformers.

In this work, we present a new video transformer architecture entitled Du-
alFormer for efficient video recognition. DualFormer stratifies the full space-
time attention into dual cascaded levels: 1) Local-Window based Multi-head Self-
Attention (LW-MSA) to extract short-range interactions among nearby tokens;
and 2) Global-Pyramid based MSA (GP-MSA) to capture long-range dependen-
cies between the query token and the coarse-grained global pyramid contexts. In
this manner, DualFormer significantly reduces the number of keys and values in
attention computation, and achieves much higher efficiency over existing video
transformers [3,1,35] with comparable performance, as shown in Figure 1.

Figure 2 shows how a query patch (in red) attends to its surroundings in a
DualFormer block. Following the intuition that tokens closer to each other are
more likely to be correlated [34,59], we first perform LW-MSA at a fine-grained
level to allow each patch to interact with its neighbors within a local window.
This strategy has also been verified to be efficient and memory-friendly by recent
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Fig. 2. Visualization of four space-time MSA schemes. For better illustration, we use 2D
patch partitions. We denote in red the query patch and in non-red colors its attention
targets for each scheme. Multiple highlighted colors in a scheme indicate the MSA
separately applied along different dimensions. (a) Full space-time attention [3] has
quadratic complexity w.r.t. the number of patches. (b) Divided space-time attention [3],
where MSA is separately applied in temporal and spatial domains. (c) Local window-
based attention [35] improves efficiency by restricting MSA computation within local
windows, lacking interactions between distant patches. (d) Our dual-level MSA scheme
stratifies the modeling of local and global relations. Given a query patch, we first use
LW-MSA to compute attention weights within the local window. Then, the query patch
attends to the multi-scale global priors (two scales here) via GP-MSA.

studies [34,59,8,35,6]. Next, at the global level, a query patch attends to the full
region of interest at a coarse granularity via GP-MSA. To be specific, we first
extract global contextual priors with different pyramid scales for multi-scale
scene interpretation (see the two scales, i.e. small windows and large windows,
in Figure 2(d)). These global priors then pass global contextual information to
the query tokens via MSA. Since such priors are extracted at a coarse-grained
level, their number is much smaller than the original token number, leading to far
less computation cost in capturing global information than the full space-time
attention. In contrast to the space-time factorization in TimeSformer [3] and
ViViT [1] and the locality-based scheme in Swin [35], this dual-level attention
design not only enables our model to have the global receptive field at each block,
but is also efficient in attention computations.

Extensive experimental results on five video benchmarks validate the supe-
riority of our DualFormer in terms of accuracy and FLOPs. In particular, our
DualFormer achieves 82.9%/85.2% top-1 accuracy on Kinetics-400/600 [25] with
only ∼1000 GFLOPs which is 3.2× and 16.2× fewer than the previous state-of-
the-art methods, i.e., Swin [34] and ViViT [1], respectively. We strongly believe
that such gains on efficiency benefit real-world deployments of video recognition
models, especially for deployments on edge devices. See detailed comparison on
Kinetics-400/600 in Figure 1. Furthermore, our model also achieves state-of-the-
art performance on three smaller datasets under transfer learning settings.
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2 Related Work

CNNs for Video Recognition. CNN-based video recognition models can
be categorized into two groups: 2D CNNs and 3D CNNs [31]. For the first
group [24,53], each video frame is processed separately by 2D convolutions and
then aggregated along the time axis at the top of the network. However, some
studies point out that 2D convolutions cannot well capture the information along
the temporal dimension [32,37,36,22]. The second group learns spatiotemporal
video representation via 3D convolutions by aggregating space-time features and
are difficult to optimize [21,48,58,16,15]. Thus, the current trend for 3D CNN-
based video recognition is to boost efficiency. For example, I3D [5] expands pre-
trained 2D CNNs [27,44,17] into 3D CNNs; some recent works [41,57,50,49,13,12]
factorize 3D convolutions into spatial and temporal filters, demonstrating even
higher accuracy than vanilla 3D CNNs. Unfortunately, most of the 2D and 3D
CNNs cannot capture long-range spatiotemporal dependencies due to their lim-
ited receptive fields, which leads to sub-optimal recognition performance.
Transformers for Video Recognition. Recently, transformers are applied to
model spatiotemporal dependencies for video recognition [38,11,3,4,1,61,35,39]
by virtue of their great power in capturing long-range dependencies [10,47,34,8].
With pretraining on a large-scale image dataset, video transformers achieve
promising performance on video benchmarks [3,1,35], such as Kinetics-400/600.
However, the potential of video transformers is significantly limited by the con-
siderable computational complexity of performing full space-time attention. Vari-
ous approaches have been proposed to reduce such computation cost [3,4,1,61,35].
For instance, TimeSformer [3] factorizes the full space-time attention into spa-
tial and temporal dimensions. Similarly, ViViT [1] examines three variants of
space-time factorization for computation reduction. X-ViT [4] approximates the
space-time attention by restricting the temporal attention to a local temporal
window and using a mixing strategy. Video Swin Transformer [35] introduces an
inductive bias of locality to transformers for video understanding. However, these
attempts focus on either space-time factorization or restricting attention compu-
tation locally, crippling the capability of MSA in capturing long-range dependen-
cies. To solve this, we present a new transformer called DualFormer to improve
the efficiency of video transformers, by alternatively capturing fine-grained local
interactions and coarse-grained global information within each block. Besides,
there are some concurrent works enhancing transformers [60,29] or exploring
self-supervised pretraining schemes [40,56] for video recognition.

3 Methodology

We start by summarizing the overall architecture of DualFormer in Sec. 3.1, and
then elaborate on its basic block in Sec. 3.2 by well introducing the two types of
attention, including Local-Window based Multi-head Self-Attention (LW-MSA)
and Global-Pyramid based MSA (GP-MSA). Afterward, we explain the network
configuration for constructing our DualFormer in Sec. 3.3. Finally, we discuss
the differences between our DualFormer and related works in Sec. 3.4.
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Fig. 3. Overall architecture of DualFormer. GAP: global average pooling.

3.1 Overall Architecture

Figure 3 shows the overall architecture of the proposed DualFormer. It takes a
video clip X ∈ RT×H×W×3 as input, where T stands for the number of frames
and each frame consists of H ×W × 3 pixels. To accommodate high-resolution
video-based tasks, our model leverages a hierarchical design [11,59,34,35] to pro-
duce decreasing-resolution feature maps from early to late stages. First, we parti-
tion a video clip into non-overlapping 3D patches of size 2×4×4×3 and employ
a linear layer for projection, resulting in T

2 × H
4 × W

4 visual tokens with fea-
ture channel dimension C. Then, as shown in Figure 3, these tokens go through
the four stages of DualFormer for learning visual representations. At each stage
s ∈ {1, 2, 3, 4}, we sequentially stack Ns DualFormer blocks for spatiotemporal
learning, where Ns controls the capacity of each model stage. Each DualFormer
block consists of dual cascaded levels of self-attention mechanisms: LW-MSA for
learning short-range interactions within local windows, and GP-MSA for cap-
turing long-range context information within the whole video. Additionally, a
convolution-based Position Encoding Generator (PEG) [9] is integrated into the
first block of each stage (between the two types of MSA) to empower position-
aware self-attention. After each stage, DualFormer follows the prior art [35] to
utilize a patch merging layer to downsample the spatial size of the feature map
by 2×, while the feature channel dimension is increased by 2×. Once the output
of the last stage is obtained, DualFormer performs video recognition by applying
a global average pooling (GAP) layer followed by a linear classifier.

3.2 DualFormer Block

As all blocks share the same architecture, we introduce each block by taking a
block at the s-th stage as an example. Assume that the input feature map at
the s-th stage is of resolution Ts × Hs × Ws with channel dimension Cs, the
complexity of the full space-time attention is O(T 2

sH
2
sW

2
sCs) which is too high

to handle high-resolution videos in practice. To alleviate this efficiency issue, in
each DualFormer block, we stratify the full space-time attention into dual cas-
caded levels, i.e., to first learn fine-grained local space-time interactions among
nearby 3D tokens by our LW-MSA, and then to capture coarse-grained global
dependencies between the query token and the coarse-grained global pyramid
contexts via our GP-MSA. Next, we will delineate LW-MSA and GP-MSA.
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Local-Window based MSA. Considering nearby tokens often have stronger
correlations than faraway tokens, we perform LW-MSA to compute the self-
attention within non-overlapping 3D windows to capture local interactions among
tokens. As shown in Figure 2d, given a feature map with Ts × Hs × Ws patch
tokens with dimension Cs, we first evenly split it into non-overlapping small
local windows, each of which is of size ts × hs × ws, yielding

Ts

ts
× Hs

hs
× Ws

ws

windows. Next, we flatten all tokens within the (i, j, k)-th local window into
Xi,j,k ∈ Rtshsws×Cs . Now we are ready to formulate our LW-MSA:

X′
ijk = MSA(LN(Xijk)) +Xijk, Yijk = MLP

(
LN

(
X′

ijk

))
+X′

ijk, (1)

where MSA, LN, and MLP denote a standard multi-head self-attention, a layer
normalization [2], and a multi-layer perceptron, respectively. The computational
complexity1 of MSA within a local window is computed as O((tshsws)

2Cs). We
further summarize the cost of all Ts

ts
× Hs

hs
× Ws

ws
windows as follows:

O(LW-MSA) = (tshsws)
2Cs ×

(
TsHsWs

tshsws

)
= tshswsMsCs, (2)

where Ms = TsHsWs is the token number. In this way, the complexity of our
LW-MSA is Ms

tshsws
× less than that of full space-time attention O(M2

sCs). Since
videos often have a huge number of tokens (Ms is large) and the local window
is of small size (tshsws is small), our LW-MSA enjoys much higher efficiency for
video recognition. See the effects of ts, hs, ws on the performance in Sec. 4.3.

Global-Pyramid based MSA. While being efficient in computation, LW-
MSA cripples the ability of MSA to capture global information. For example, a
query patch cannot attend to a patch outside the local window. To tackle this
issue, a shifted window strategy is proposed to enable a patch to communicate
with the patches inside adjacent windows in [35]. Nevertheless, it is still difficult
for patches to interact with distant windows. In this work, we propose GP-MSA
as a complement for learning long-range dependencies within the whole video.

As a variant of MSA, our GP-MSA receives queries Q, keys K, and values V
as input to capture the global information. For simplicity, we assume Q, K and
V are all in shape Ms×Cs, where Ms is the number of tokens at the s-th stage.
Different from the vanilla MSA, our GP-MSA proposes a simple yet effective
method, termed pyramid downsampling, to reduce the spatiotemporal scale
of K and V before performing MSA, so as to lessen the computational overheads
and memory usage. Specifically, as illustrated by Figure 4, our pyramid down-
sampling adopts three levels of depth-wise convolutions [7] to generate a set of
global priors, where each prior is a spatiotemporal abstract of the original feature
map under different pyramid scales. This operation allows the model to separate
the feature map into non-overlapping regions and to build pooled representations
for various locations. For example, the 1×1×1 prior (the orange cube in Figure
4) denotes the coarsest scale with only a single value at each channel, which
is similar to global average pooling [33] that covers the whole video, while the

1 For simplicity, we omit the complexity of MLP in this paper.
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Fig. 4. The pipeline of GP-MSA. DWConv denotes depth-wise convolution [7] for gen-
erating global priors with multiple scales. For simplicity, we use a three-level pyramid
(1×1×1, 2×2×2, and 4×4×4) for illustration. With pyramid downsampling, the com-
putational cost and memory usage of GP-MSA are much lower than those of standard
MSA due to reduction of the key/value number.

2×2×2 prior (the yellow cube) indicates a summary of finer granularity. Then,
as shown in Figure 4, we flatten and concatenate these priors to be the new
key-value of size G × Cs, where G denotes the number of space-time locations,
e.g., G=

∑
k={1,2,4} k

3=73. After downsampling, we pass the global contextual
information in these priors to each query patch via standard MSA.
Complexity Analysis of GP-MSA. Without loss of generality, assume we have
Ng pyramid scales for all stages and denote the size of global prior at the i-th
scale as (ki1, k

i
2, k

i
3), where ki1 < Ts, k

i
2 < Hs and ki3 < Ws. The complexity of

GP-MSA at the s-th stage is computed as:

O(GP-MSA) = MsCs

Ng∑
i=1

ki
1k

i
2k

i
3︸ ︷︷ ︸

MSA

+

Ng∑
i=1

(
TsHsWs

ki
1k

i
2k

i
3

ki
1k

i
2k

i
3Cs

)
︸ ︷︷ ︸

DWConv

=

( Ng∑
i=1

ki
1k

i
2k

i
3 + Ng

)
MsCs = (G + Ng)MsCs,

where G =
∑Ng

i=1 k
i
1k

i
2k

i
3 is the number of global priors, i.e., new keys or val-

ues after reduction. To further improve efficiency, we draw inspiration from
R(2+1)D [50] to factorize the depth-wise convolution at each scale along tem-
poral and spatial dimensions, which gives an even less complexity:

O(GP-MSA) =

(
G+

Ng∑
i=1

(
ki
1

Ts
+

ki
2k

i
3

HsWs

))
MsCs ≈ GMsCs < (G + Ng)MsCs︸ ︷︷ ︸

Previous

≪ M2
sCs︸ ︷︷ ︸

MSA

.

(3)

Since G is generally much smaller than the number of tokens (Ms) in the original
feature map, our GP-MSA significantly reduces the computational complexity
and memory usage during learning global representations. For instance, at the
first stage of DualFormer where G is 456 while Ms is 50176, the complexity
has been reduced by ∼110 times. In a nutshell, the overall complexity of MSA
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in a DualFormer block is the summation of LW-MSA in Eq. (2) and GP-LSA
in Eq. (3), and is much smaller than the complexity of vanilla full-time self-
attention, demonstrating the efficiency of our DualFormer.

Position Encoding Generator (PEG). As the self-attention operation is
permutation-invariant, we draw inspiration from conditional positional encoding
[9] to utilize a convolution layer as a position encoding generator (PEG) to
encode the position information into self-attention as follows:

PEG(X) = DWConv(X) + X, (4)

where X is the input of the current stage. DWConv(·) represents 3D depth-
wise convolution for improving efficiency (compared with standard convolutions).
Primarily, convolutions can provide absolute position information, which has
been verified in [20,9]. By using convolutions, the position embedding is no longer
input-agnostic and dynamically generated based on the local neighbors of each
token. Moreover, our PEG is permutation-variant since the permutation over
inputs affects the order in local windows. In addition, the convolution kernels
are applied to local windows everywhere in an input video, thus having similar
responses to the objects with similar features, i.e., translation-invariant.

3.3 Model Configuration

Following Swin [35], we consider three network configurations (i.e., base, small
and tiny) for our DualFormer. For the LW-MSA of all versions, its local window
size is always (8, 7, 7), and its MLP expansion factor is always 4. In GP-MSA,
we utilize two pyramid scales (8, 7, 7) and (4, 4, 4) at the first three stages for

Stage Layer Tiny Small Base

Stage 1

Output:
T
2 , H

4 , W
4

Patch
Merging

p1 = (2, 4, 4)
C1 = 64

p1 = (2, 4, 4)
C1 = 96

p1 = (2, 4, 4)
C1 = 128

LW-MSA
GP-MSA

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×1

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×1

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×1

Stage 2

Output:
T
2 , H

8 , W
8

Patch
Merging

p2 = (1, 2, 2)
C2 = 128

p2 = (1, 2, 2)
C2 = 192

p2 = (1, 2, 2)
C2 = 256

LW-MSA
GP-MSA

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×1

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×1

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×1

Stage 3

Output:
T
2 , H

16 ,
W
16

Patch
Merging

p3 = (1, 2, 2)
C3 = 256

p3 = (1, 2, 2)
C3 = 384

p3 = (1, 2, 2)
C3 = 512

LW-MSA
GP-MSA

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×5

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×9

 (8, 7, 7)
(4, 4, 4)
(8, 7, 7)

×9

Stage 4
Output:
T
2 , H

32 ,
W
32

Patch
Merging

p4 = (1, 2, 2)
C4 = 512

p4 = (1, 2, 2)
C4 = 768

p4 = (1, 2, 2)
C4 = 1024

LW-MSA
GP-MSA

[
(8, 7, 7)
(8, 7, 7)

]
×2

[
(8, 7, 7)
(8, 7, 7)

]
×1

[
(8, 7, 7)
(8, 7, 7)

]
×1

Table 1. Model configurations of DualFormer, including three versions. pi and Ci

denote patch size and feature dimension at the i-th stage, respectively.



Local-Global Stratified Transformer for Efficient Video Recognition 9

learning global contextual information. At the last stage, since the feature map
size has become (16, 7, 7), we only extract one scale of global prior with (8, 7, 7)
using a depth-wise convolution. More details can be found in Table 1.

3.4 Discussion

Here, we compare our model with some related works mentioned in Sec. 2.
Comparison with Space-Time Factorization. The space-time attention fac-
torization in TimeSformer [3] and ViViT [1] separately perform standard MSA
in temporal and spatial domains, while DualFormer has two major differences.
Firstly, our DualFormer factorizes the full space-time attention along another
two dimensions, namely, local and global dependencies via LW-MSA and GP-
MSA respectively in which both model temporal and spatial domains as a whole
and thus better capture their complementary information. Secondly, for each do-
main, TimeSformer and ViViT still perform conventional MSA attention among
all tokens. Differently, our LW-MSA and GP-MSA first considers the attention
among nearby 3D tokens and then integrate the global information at the local-
window level, which greatly reduces the number of keys and values for attention
computation and boosts efficiency.
Comparison with Video Swin. Our DualFormer also distinguishes Swin [35]
from their different ways for long-range relation modeling. In Swin, a shifting
window strategy is proposed to empower cross-local-window interaction, and
thus increases the receptive fields of MSA. Nevertheless, it is still non-trivial for
this shifting scheme to learn the dependencies between distant patch tokens. In
contrast, our DualFormer employs GP-MSA to directly capture the interaction
between the query token and the coarse-grained global pyramid contexts, which
is more explicit and efficient to learn the global spatiotemporal dependencies.
Experimental results in Figure 1 verify that DualFormer can achieve slightly
higher accuracy while having at least 3× fewer FLOPs than Swin.
Comparison with Image-based ViTs. Several image-based transformers
with a local-to-global design, e.g., Twins [8] and RegionViT [6], are also relevant
to our model. Compared to Twins, the major difference is the construction of
global contexts. Since the objects across different frames in a video may vary in
sizes, our DualFormer extracts multi-scale global contextual information via a
pyramid downsampling module, while Twins only captures global information
at a specific scale. Besides, Twins is originally designed for image processing and
hence needs elaborate ways to generalize to spatiotemporal domains.

RegionViT differs from our model in how local tokens interact with global
contexts. It generates coarse-grained regional tokens and fine-grained local tokens
from an image with different patch sizes, where each regional token is associated
with a set of local tokens based on their locations. All regional tokens are first
passed through a standard MSA to exchange the information among regions, and
then a local self-attention performs MSA where each takes one regional token
and corresponding local tokens. In other words, the local token will only interact
with the regional token that it belongs to, while each local token in DualFormer
directly interacts with all multi-scale global contexts.
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4 Experiments

We evaluate our approach on five popular video datasets. For action recogni-
tion, we use two versions of Kinetics [25], i.e., Kinetics-400/Kinetics-600
which contain about 240K/370K training videos and 20k/28k validation videos,
and has 400/600 action classes. For temporal modeling, since the Something-
Something [14] dataset has expired, we test DualFormer on another fine-grained
action benchmark, namely Diving-48 [30] which consists of ∼18k videos with 48
diving classes. Finally, we examine transfer learning performance of our method
on two smaller datasets, including HMDB-51 [28] and UCF-101 [45].

4.1 Implementation Details

Unless otherwise stated, our model receives a clip of 32 frames sampled from the
original video using a temporal stride of 2 and spatial resolution of 224×224,
yielding 16×56×56 tokens at the first stage. During inference, 4 temporal clips
with a center crop (totally 4 space-time views) are exploited to compute accuracy.
Kinetics-400/600. For both Kinetics datasets, we use AdamW [26] optimizer
with a batch size 64 and a cosine learning rate scheduler to train DualFormer
for 30 epochs. Following Swin [35], we utilize different initial learning rates for
the ImageNet-pretrained backbone (1e-4) and head (1e-3). We also use a linear
warm-up for the first 2.5 epochs. To avoid overfitting, we set weight decay to
0.02, 0.02, 0.05 and stochastic depth drop rates [19] to 0.1, 0.2 and 0.3 for the
tiny, small and base versions, respectively. Token labeling [23] is employed as
augmentation to improve DualFormer-T/S. See more details in the Appendix.
Diving/HMDB/UCF. On these three datasets, we adopt AdamW [26] opti-
mizer to train 16 epochs with one epoch of linear warm-up. The learning rate,
batch size, weight decay and stochastic depth drop rate are the same as those
for Kinetics. We use the pretrained weights on ImageNet-1K or Kinetics-400 for
the model initialization for different settings.

4.2 Comparison to State-of-the-art

Kinetics-400. We present the top-1 and top-5 accuracy of CNNs (upper part)
and transformer-based methods (lower part) in Table 2. Compared to the best
CNN-based method X3D-XXL [57], DualFormer-S achieves slightly higher accu-
racy while using 9.2× fewer FLOPs. Compared to transformers (MViT-B,32×3
[11] and X-ViT [4]), DualFormer-S with similar computations brings ∼0.4% gain
on the top-1 accuracy. In contrast to Swin-T [35], DualFormer-T outperforms it
by 0.7% on top-1 and 0.5% on top-5 score with 4.4× fewer computational costs.
We also witness 1.8% improvement on the top-1 accuracy when using ImageNet-
21K to pretrain DualFormer-B compared to ImageNet-1K. With ImageNet-21K
pretraining, DualFormer-B achieves the state-of-the-art results on both metrics
while being dramatically faster than two recent transformer backbones: 16.2×
faster than ViViT-L [1] and 3.2× faster than Swin-B [35]. See more details on
accuracy vs. speed in Fig. 1.
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Method Pretrain Input Views
Overall
FLOPs

Param
Kinetics-400 Kinetics-600
Top-1 Top-5 Top-1 Top-5

R(2+1)D [50] - 32 × 2 10 × 1 750 61.8 72.0 90.0 - -
I3D [5] IN-1K 32 × 2 - 108 25.0 72.1 90.3 - -
SlowFast+NL [13] - - 10 × 3 7020 59.9 79.8 93.9 81.8 95.1
X3D-XL [12] - 16 × 5 10 × 3 1452 11.0 79.1 93.9 81.9 95.5
X3D-XXL [12] - 16 × 5 10 × 3 5823 20.3 80.4 94.6 - -
ip-CSN-152 [49] IG-65M 8 10 × 3 3270 32.8 82.5 95.3 - -
ViT-B-VTN [38] IN-21K 250 × 1 1 × 1 4218 11.0 78.6 93.7 - -
TimeSformer-L [3] IN-21K 96 × 4 1 × 3 7140 121.4 80.7 94.7 82.2 95.5
MViT-B, 32×3 [11] - 32 × 3 1 × 5 850 36.6 80.2 94.4 83.8 96.3
MViT-B, 64×3 [11] - 64 × 3 3 × 3 4095 36.6 81.2 95.1 - -
VidTr-L [61] IN-21K 32 × 2 10 × 3 10530 - 78.6 93.5 - -
X-ViT (16×) [4] IN-21K 16 × 4 1 × 3 850 - 80.2 94.7 84.5 96.3
ViViT-L/16×2 [1] IN-21K 32 × 2 4 × 3 17352 310.8 80.6 94.7 82.5 95.6
ViViT-L/16×2 [1] JFT-300M 32 × 2 4 × 3 17352 310.8 82.8 95.5 84.3 96.2
Swin-T [35] IN-1K 32 × 2 4 × 3 1056 28.2 78.8 93.6 - -
Swin-S [35] IN-1K 32 × 2 4 × 3 1992 49.8 80.6 94.5 - -
Swin-B [35] IN-1K 32 × 2 4 × 3 3384 88.1 80.6 94.6 - -
Swin-B [35] IN-21K 32 × 2 4 × 3 3384 88.1 82.7 95.5 84.0 96.5
DualFormer-T (ours) IN-1K 32 × 2 4 × 1 240 21.8 79.5 94.1 - -
DualFormer-S (ours) IN-1K 32 × 2 4 × 1 636 48.9 80.6 94.9 - -
DualFormer-B (ours) IN-1K 32 × 2 4 × 1 1072 86.8 81.1 95.0 - -
DualFormer-B (ours) IN-21K 32 × 2 4 × 1 1072 86.8 82.9 95.5 85.2 96.6

Table 2. Comparisons with state-of-the-art methods for action recognition on Kinetics-
400/600. All models are trained and evaluated on 224×224 spatial resolution. n×s input
indicates we feed n frames to the network sampled every s frames. FLOPs indicates
the total floating point operations per second during inference. The magnitudes are
Giga (109) and Mega (106) for FLOPs and Param, respectively. IN: ImageNet.

Kinetics-600. As shown in Table 2, the results on Kinetics-600 are similar to
those on Kinetics-400. DualFormer-B achieves the highest accuracy among these
models. In particular, DualFormer-B brings 1.2% gains on top-1 score and runs
3.2× faster than Swin-B. Compared to ViViT-L which is pretrained on a large-
scale and private dataset JFM-300M, although our DualFormer-B is pretrained
on a much smaller dataset (ImageNet-21K), it yields 0.9% higher top-1 accuracy
and requires 16.2× fewer FLOPs.

Diving-48. Here we test our model on a temporally-heavy dataset. Due to a
recently reported label issue of Diving-48, we only compare our model with Slow-
Fast [13] and TimeSformer [3]. From Table 3, we observe that our DualFormer
obtains a maximum 81.8% top-1 score on Diving-48, significantly surpassing
SlowFast. For TimeSformer-L which has 3.7× FLOPs and receives 96 frames as
input, our method still yields 0.8% higher accuracy while using only 32 frames as
input. These results verify the strong power of our model in temporal modeling.

HMDB-51 and UCF-101. Lastly, we examine the transfer learning ability
of our DualFormer over the split 1 of HMDB-51 and UCF-101. Table 3 reports
the top-1 accuracy. With ImageNet-1K pretrained weights as initialization, our
tiny version achieves comparable performance to VidTr-M [61] while using 192×
fewer FLOPs (see DualFormer-T* in Table 3). When pretrained on Kinetics-400,
DualFormer-S with 12 testing views can outperform VidTr-L by a large accuracy
margin 2%/0.8% on HMDB and UCF while using only 18% FLOPs of VidTr-L.
This reveals the generalization potential of our model on small datasets.
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Method Input Views FLOPs DIVE HMDB UCF
I3D [5] 64×1 - - - 74.3 95.1
TSM [32] 8 - - - 70.7 94.5
TeiNet [36] 16 - - - 73.3 96.7
SlowFast [13] 16×8 - - 77.6 - -
VidTr-M [61] 16×4 10×3 5370 - 74.4 96.6
VidTr-L [61] 32×4 10×3 10530 - 74.4 96.7
TimeSformer [3] 8×4 1×3 590 75.0 - -
TimeSformer-L [3] 96×4 1×3 7140 81.0 - -
DualFormer-T* 16×4 4×1 28 75.4 74.6 96.3
DualFormer-T 16×4 4×1 28 75.9 75.0 96.6
DualFormer-S 32×4 4×1 636 81.2 76.2 97.4
DualFormer-S 32×4 4×3 1908 81.8 76.4 97.5

Table 3. Results on HMDB-51, UCF-101 and Diving-48 (DIVE). Baseline results
are from [3,61]. We pretrain our models on Kinetics-400 and finetune them on these
datasets, only except for DualFormer-T* which is pretrained on ImageNet-1K.

Variants FLOPs Param Top-1 Top-5

(LL, LL, LL, LL) 244 21.7 78.4 93.3

(GG, GG, GG, GG) 228 21.8 77.6 93.2

(LL, LL, LG, LG) 236 21.7 78.8 93.5

(LG, LG, LL, LL) 244 21.8 79.3 94.0

(LG1, LG1, LG1, LG1) 224 21.8 78.4 93.4

(LG2, LG2, LG2, LG2) 232 21.8 79.3 93.9

(LG, LG, LG, LG) 240 21.8 79.5 94.1

Table 4. Experimental results of different com-
binations of LW-MSA (L) and GP-MSA (G)
with DualFormer-T on Kinetics-400. G1 and G2

denote GP-MSA with only one pyramid scale
(4,4,4) and (8,7,7), respectively. The gray row
indicates our default setting.

Fig. 5. Visualization of attention
maps at the last layer generated
by Grad-CAM [43] on Kinetics-
400. Our model successfully learns
to focus on the relevant parts in the
video clip. Upper: flying kites. Mid-
dle: walking dogs. Below: sailing.

4.3 Ablation Study

Effect of LW-MSA & GP-MSA. To study the effect of the dual-level MSA,
we test different combinations of LW/GP-MSA to implement DualFormer-T.
(LG, LG, LG, LG) denotes our default configuration, namely the one in Figure
4, where each block sequentially performs LW-MSA and GP-MSA. For the four
variants at the upper part of Table 4, LL and GG mean that the blocks at that
stage only contain two LW-MSAs and two GP-MSAs, respectively. For example,
(LL, LL, LG, LG) means using blocks with two LW-MSAs at the first two stages
and using a combination of LW-MSA and GP-MSA at the last two stages.

For a fair comparison, we slightly tune the hyperparameter to ensure their
FLOPs and parameters to be similar. We report the accuracy of these variants
on Kinetics-400 in the upper part of Table 4. Among these variants, (GG, GG,
GG, GG) performs the worst since the local context information is very impor-
tant to a patch. The model with only LW-MSA degrades by 1.1% top-1 score
(79.5%→78.4%) due to a limited receptive field at every stage. By integrating
GP-MSA to increase the receptive field, both (LL, LL, LG, LG) and (LG, LG,
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Fig. 6. Effect of space-time views on Kinetics-400 (left) and on Diving-48 (right).

LL, LL) achieve better performance than the variants with only local or global
modules. In particular, adding GP-MSA to the early stages benefits more than
late stages, revealing the importance of GP-MSA to complement the early stages.
Moreover, we evaluate the two pyramid scales in GP-MSA and report their re-
sults in the lower part of Table 4. Compared to our default setting, we can find a
clear accuracy drop by removing either the (4, 4, 4) or (8, 7, 7) scale. In addition,
some examples of attention visualization are shown in Figure 5.

Effect of testing views. Previous methods employ multiple space-time views to
boost performance during inference, e.g., 10×3 views in VidTr-L and 4×3 views
in Swin. We investigate how the number of testing views affects the accuracy of
DualFormer-T on Kinetics-400 and Diving-48. From Figure 6, one can find that
increasing the number of temporal clips can bring significant improvement on
both datasets, while using more spatial crops does not always help. For example,
using three spatial crops slightly outperforms the 1-crop counterpart on Diving-
48. As the inference FLOPs is proportional to the space-time views, to trade off
the computational cost and accuracy, our method uses a testing strategy of four
temporal clips with a spatial crop (totally four) during the inference phase.

Effect of window size in LW-MSA. Window size is a crucial hyperparameter
in LW-MSA. Hence, we test different window sizes to investigate their effect on
model performance. As shown in Table 5, a larger window size in both temporal
and spatial dimensions brings consistent gains in accuracy due to the increase
of local receptive field, but also induces heavier computation. For an accuracy-
speed balance, we choose (8, 7, 7) as our default setting. From this table, we also
observe that reducing the number of input frames (e.g., 32→16) can dramatically
improve efficiency but inevitably degrades the top-1 accuracy by ∼1%.

Input Window Size FLOPs Top-1 Top-5
16×4 4×7×7 104 78.0 93.2
16×4 8×7×7 112 78.4 93.3
32×2 4×7×7 224 79.1 93.9
32×2 8×7×7 240 79.5 94.1
32×2 16×7×7 272 79.7 94.4
32×2 8×14×14 324 79.7 94.5

Table 5. Effect of window size of LW-MSA with
DualFormer-T on Kinetic-400. The gray row indi-
cates the default configuration.

Method FLOPs Param Top-1

AvgPool 59 21.8 78.7

Conv 61 27.6 79.5

DWConv 60 21.8 79.5

Table 6. Results of pyramid
downsampling functions based on
DualFormer-T on Kinetics-400.
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Method Top-1

w.o PEG 78.9

Absolute [3] 79.2

Relative [35] 79.3

DWConv 79.5

Table 7. Effect of PEGs
to DualFormer-T on the
Kinetics-400 dataset.

Rate Patch Size FLOPs Param Top-1 Top-5
1, 1, 1 (4, 4, 4) 112 21.8 78.5 93.3
2, 1, 1 (2, 4, 4) 136 21.8 78.7 93.5
1, 2, 1 (2, 4, 4) 152 21.9 78.8 93.5
1, 1, 2 (2, 4, 4) 216 22.3 79.2 93.9
1, 1, 1 (2, 4, 4) 240 21.8 79.5 94.1

Table 8. Effect of temporal pooling in DualFormer-T on
Kinetic-400. (i, j, k) means reducing the temporal reso-
lution i, j, k times at the last 3 stages, respectively.

Effect of pyramid downsampling function. There are several alternative
functions to generate global priors in GP-MSA, such as average pooling (Avg-
Pool) and standard convolution (Conv). Here, we replace the depth-wise con-
volution (DWConv) with them on Kinetics-400 to investigate their effect. As
reported in Table 6, our DWConv achieves comparable performance to Conv
while using much fewer parameters. Our implementation also outperforms Avg-
Pool by 0.8% on the top-1 score with similar computation costs.
Do we need PEG? As depicted in Table 7, DualFormer without PEG suffers
from a clear drop on the top-1 accuracy (79.5%→78.9%), which indicates the
necessity of integrating position information in MSA. We further compare our
DWConv-based PEG with an absolute position encoding (i.e., TimeSformer) and
a relative bias-based method in Swin. As a result, our solution achieves 0.3% and
0.2% higher top-1 score than the absolute and relative method, respectively.
Effect of Temporal Pooling Rate. Our method follows [11,35] to utilize a
multi-scale hierarchy. Such hierarchy is achieved by the patch merging layer at
the beginning of the last three stages, where we downsample the spatial size
of feature map by 2× and keep the original temporal resolution. Here, we dis-
cuss the effect of temporal pooling at the last three stages. According to the
results in Table 8, even though such temporal pooling can further reduce the
computational cost, it also leads to a decrease in the overall accuracy.

5 Conclusion

In this paper, we develop a transformer-based architecture with local-global
attention stratification for efficient video recognition. Empirical study demon-
strates that the proposed method achieves a better accuracy-speed trade-off on
five popular video recognition datasets. In the future, we plan to remove the
strong dependency on pretrained models and design a useful strategy to train
our model from scratch. Another direction is to explore the use of our model in
other applications, such as video segmentation and prediction.
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