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Appendix

In Appendix A, we provide details of the video self-supervised models we
use in our evaluation study. Appendix B provides details on the experimental
setup for each of our downstream sensitivity factors. We also show correlation
plots between current benchmarks and the experimental results for each sensi-
tivity factor in Appendix C. Feature similarities between supervised pre-training
and each self-supervised pre-training method are shown in Appendix D. In Ap-
pendix E, we describe domain di↵erence between the downstream video datasets
we use and the attributes we use to characterize this di↵erence. We show the
standard deviations of the experiments on the SEVERE benchmark Appendix F
and also compare the SEVERE benchmark to results on HMDB51 action recog-
nition in Appendix G. Finally, we report results of some additional experiments
in Appendix H and Appendix I that we did not have room for in the main paper.

A Details of the Evaluated Self-Supervised Models

We use a variety of di↵erent self-supervised methods in our paper, here we
describe each method:
MoCo [10] is a contrastive learning method proposed for representation learn-
ing in images. Positives are created by performing di↵erent spatial augmenta-
tions on a video. Negatives are other videos. To obtain negatives beyond the
current batch, MoCo proposes a momentum encoder which maintains a queue
of momentum-updated data samples from previous batches.
SeLaVi [4] views the audio and visual modalities as di↵erent augmentations of
a video and learns with a cross-modal clustering pretext task.
VideoMoCo [53] extends MoCo to the temporal domain. It does this with an
adversarial dropout augmentation which removes the frames the model considers
most important. With the contrastive learning loss, the model learns invariance
to this adversarial frame dropout alongside the spatial augmentations used in
MoCo.
Pretext-Contrast [70] combines the pretext task approach with contrastive
learning. As its pretext task it uses video cloze procedure [45] where the goal
is to predict which augmentations have been applied to a video clip. For the
contrastive learning objective di↵erent temporal shifts, i.e. distinct clips from
the same video, are considered.
RSPNet [56] also combines pretext and contrastive tasks, with a focus on video
speed. The pretext task is to predict the relative di↵erence in speed between two
versions of the same video, while the contrastive task creates extra positives
and negatives by augmenting videos with di↵erent speeds along with the spatial
augmentations.
AVID-CMA [49] is a multi-modal contrastive learning method which uses
audio in addition to the visual modality. It first uses cross-modal contrastive
learning where the one modality is used as the positives and the other as the
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negatives. Then it uses within modality contrastive learning where additional
positives which have high audio and visual similarity are sampled.

CtP [75] performs self-supervised learning through a “catch the patch” pretext
task. The goal in this task is to predict the trajectory of an image patch which
is resized and moved through a sequence of video frames.

TCLR [14] is a contrastive method which encourages features to be distinct
across the temporal dimension. It does this by using clips from the same video
as negatives. Therefore, instead of encouraging invariance to temporal shift as
other methods to, it encourages the model to be able to distinguish between
di↵erent shifts. It also uses an extensive set of spatial augmentations.

GDT [54] is a multi-modal contrastive method which composes a series of
di↵erent augmentations and encourages model to learn invariance to some and
learns to distinguish between others. We use the best performing version of
GDT which encourages invariance to spatial augmentations, the audio and visual
modalities and temporal reversal, while encouraging the model to distinguish
between di↵erent temporal shifts.

While all models are pre-trained on Kinetics-400 and use an R(2+1)D-18
backbone with 112x112 spatial input size, there are some smaller di↵erences in
how the models are trained. Due to the computational cost of training these
models we download publicly available models or obtain them from the authors,
therefore we cannot control for these smaller di↵erences in the pre-training set
up. These di↵erences include number of pre-training epochs, batch size, number
of video frames used and spatial and temporal augmentations. We list these
di↵erences in Table 5.

Table 5: Pre-training di↵erences of our evaluated self-supervised methods.
While all models are pre-trained with the same backbone and dataset, there are dif-
ferences in how many epoches they were trained for, the batch size and number of
frames they use and the spatial and temporal augmentations they are encouraged to
be invariant to.

Method
Spatial Augmentations Temporal Augmentations

Extra Epochs Batch Num Random Horiz. Grayscale Color Gaussian Scaling Shift Reversal Speed
Modality Size Frames Crop Flip Jitter Blur

MoCo 200 128 16 3 3 3 3 3
SeLaVi Audio 200 1024 30 3 3
VideoMoCo 200 128 32 3 3 3 3
Pretext-Contrast 200 16 16 3 3 3 3 3 3
RSPNet 200 64 16 3 3 3 3 3
AVID-CMA Audio 400 256 16 3 3 3 3
CtP 90 32 16
TCLR 100 40 16 3 3 3 3 3
GDT Audio 100 512 30 3 3 3 3

Supervised 45 32 16 3 3 3
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B Downstream Experimental Details

B.1 Downstream Domain

In Section 3 we investigate to what extent self-supervised methods learn features
applicable to action recognition in any domain. Here we explain the datasets,
splits and training details we use to do this.

Datasets We report our experiments on the following datasets:
UCF-101 [65] is currently one of the most widely used datasets for evaluating
video self-supervised learning models. It consists of YouTube videos from a set
of 101 coarse-grained classes with a high overlap with actions in Kinetics-400.
We use the first standard split proposed in the original paper [65] containing
9,537 training and 3,783 testing samples for the 101 action classes.
NTU-60 : [62] consists of daily human actions captured in a controlled lab setting
with a fixed number actors. Although it has some overlap with Kinetics-400
actions, it is quite di↵erent visually due to the setting. We use the cross-subject
protocol proposed in [62] to split the data into 40,320 training and 16,560 testing
samples for 60 action classes.
Gym-99. We use FineGym version v1.0 [63] which is a dataset of fine-grained
actions constructed from recorded gymnastic competitions. We use the Gym 99
subset which contains 99 action classes with 20,484 and 8,521 samples in the
train and test sets respectively.
SS-v2 : [25] is a crowdsourced collection of first-person videos aimed to instill
common-sense understanding. It di↵ers significantly with respect to Kinetics-
400 in terms of visual appearance and point-of-view. We use the original dataset
splits from [25] containing 168,913 training and 24,777 testing samples for 174
action classes.
EPIC-Kitchens-100 : [13] is a large-scale egocentric dataset consisting of daily
actions performed in a kitchen. It has annotations for verbs (97) and nouns
(300) and the action is defined a tuple of these. Like SS-v2, EK-100 also di↵ers
significantly from Kinetics-400 in terms of visual appearance and point-of-view.
We use standard splits from [13] containing 67,217 samples in training set and
9,668 in the validation set. In the main paper we only aim to recognize the 97
verb classes, we provide results for the noun and action recognition tasks in
Appendix I.
Training Details In the initial hyper-parameter search, we perform a grid
search over various finetuning settings with learning rates between 0.1 - 0.00001,
varying total training epochs, data augmentations, and schedulers. We choose the
optimal hyper-parameters based on the performances of the pretraining models
on the validation sets of each dataset for each downstream task.

During training, we sample a random clip from each video of 32 frames with
standard augmentations i.e. a random multi-scale crop of size 112x112, random
horizontal flipping and color jittering. We train with the Adam optimizer. The
learning rates, scheduling and total number of epochs vary across datasets and
are shown in Table 6. However, each model is trained with the same hyper-
parameters for the corresponding dataset. For inference, we use 10 linearly spaced
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clips of 32 frames each. For each frame we take a center crop which is resized to
112x112 pixels. To calculate the action class prediction of a video, we take the
mean of the predictions from each clip and report top-1 accuracy.

Table 6: Training details of finetuning and linear evaluation on various downstream
datasets. Learning rate is scheduled using a multip-step scheduler with � = 0.1 at cor-
responding steps for each dataset. We train all the models with same hyperparameters
for the corresponding dataset.

Dataset
Finetuning Linear Evaluation

Batch Size Learning rate Epochs Steps Batch Size Learning rate Epochs Steps

UCF-101 32 0.0001 160 [60,100,140] 64 0.01 100 [40,80]
NTU-60 32 0.0001 180 [90, 140, 160] 64 0.01 120 [40,80,100]
Gym-99 32 0.0001 160 [60,100,140] 64 0.01 120 [40,80,100]
SS-v2 32 0.0001 45 [25, 35, 40] 64 0.01 40 [20,30]
EK-100 32 0.0025 30 [20, 25] 32 0.0025 30 [20, 25]
K-400 - - - - 64 0.01 40 [10,20,30]

B.2 Downstream Samples

In Section 4 we measure how sensitive current video self-supervised models are to
the amount of downstream samples. We do this by varying the size of the training
data starting from 1000 examples and doubling it until we reach the full train set.
We use the same data splits as in the downstream domain experiments, explained
in Appendix B.1, and sample a subset of video clips from the respective train
sets. We use the same random subset across the di↵erent models to make the
comparison fair. For each dataset, we use same training and testing procedure as
the downstream domain experiments, explained in Appendix B.1 and Table 6.

B.3 Downstream Actions

In Section 5 we measure how benchmark-sensitive current video self-supervised
models are to downstream actions. We do so by measuring performance on di↵er-
ent subsets, defined in the FineGym dataset [63], which have increasing semantic
similarity. We provide the details of Gym-99, Gym-288 and the four di↵erent
subsets we use of Gym-99 below:
Gym-99 consists of 29k video clips of 99 di↵erent actions across the four di↵erent
gymnastic events in FineGym: Vault, Floor Exercise, Balance Beam and Uneven
Bars. This is a relatively balanced subset of the full FineGym dataset with all
actions having more than 80 occurrences. There are a total 20.5k training videos
and 8.5k testing videos.
Vault is a subset of Gym 99 containing 1.5k videos of the 6 actions from the
Vault event. The training split contains 1.0k examples and the testing split
contains 0.5k examples.
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Floor contains actions in the Floor Exercise event from Gym-99. It consists of
7.5k instances of over 35 actions with a split of 5.3k for training and 2.2k for
testing.
FX-S1 is a subset of actions of leaps, jumps and hops from the Floor event in
Gym-99. This subset of 11 actions contains a total of 2.6k video clips with 1.9k
for training and 0.7k for testing.
UB-S1 contains 5k videos of 15 actions from the Uneven Bars event with a split
of 3.5k for training and 1.5k for testing. The actions consist of di↵erent types of
circles around the bars.
Gym-288 is a long-tailed version of Gym 99 containing 32k videos with 22.6K
training and 9.6K testing samples. It adds 189 infrequent classes to the 99 classes
in Gym 99, where actions can have as little as 1 or 2 instances in training. This
results in a total of 288 action classes from the four di↵erent gymnastic events.

We follow the same training and evaluation procedure as that for finetuning
Gym-99 in downstream domain training. In particular, for training we sample
a random clip from each video of 32 frames with standard augmentations i.e. a
random multi-scale crop of size 112x112, random horizontal flipping and color
jitter. Each model is trained with the Adam optimizer using a learning rate
of 0.0001 and multi-step scheduler with �=0.1 at epochs [60, 100, 140] for 160
epochs. For inference, we use 10 linearly spaced clips of 32 frames each. For each
frame we take a center crop which is resized to 112x112 pixels. To calculate the
action class prediction of a video, we take the mean of the predictions from each
clip. For each subset, we compute accuracy per action class and report the mean
over all action classes as in the original dataset [63].

B.4 Downstream Tasks

In Section 6 we investigate how sensitive self-supervised methods are to the
downstream task and whether they generalize beyond action recognition. We
provide details of the experimental setup used for each task below.
Spatio-temporal action detection. The goal of this task is to predict the
bounding box of an actor in a given video clip, both spatially and temporally,
along with the action class. We use the UCF101-24 benchmark which is a subset
of UCF-101 with bounding box annotations for 3,207 videos from 24 action
classes. We follow the implementation of Köpüklü et al. [39] using only a 3D-
CNN branch for spatio-temporal action detection. We initialize the 3D backbone
with the pre-trained, self-supervised R(2+1D)-18 models. A clip size of 16 frames
is sampled from the video as the input with standard data augmentations i.e.
horizontal flipping, random scaling and random spatial cropping. Each model is
trained using the Adam optimizer with an initial learning rate of 1e-4, weight
decay of 5e-4 and batch size 64, for a total of 12 epochs. The learning rate is
decayed using a multi-step scheduler with �=0.5 at epochs [4,6,8,10]. For testing
we also follow [39] and report video-mAP over all the action classes.
Repetition counting. The goal of the this task is to estimate the number of
times an action repeats in a video clip. We use the UCFRep benchmark proposed
by Zhang et al. [87], which is a subset of UCF-101. The dataset consists of 526
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videos with 3,506 repetition number annotations. From the annotated videos,
2M sequences of 32 frames and spatial size 112x112 are constructed which are
used as the input. We use the implementation from the original benchmark [87]
with pre-trained R(2+1)D-18 models as the backbone networks. Each model is
trained for 100 epochs with a batch size of 32 using the Adam optimizer with a
fixed learning rate of 0.00005. For testing, we follow the protocol from [87] and
report mean counting error.

Arrow-of-time. The goal of this task is to predict the direction (forward of
backward) of the video. We closely follow the setup used by Ghodrati et al. [23].
The full UCF-101 dataset is used with two versions of each video, one normal
and one reversed. During training, for each video, we sample 8 frames linearly
with a random o↵set, with batch size of 12 and 112x112 center crops, number of
epochs 10, learning rate of 1e�5. We do not use any augmentations or learning
rate schedulers. During testing, we sample 8 frames linearly. We report top-1
binary classification accuracy.

Multi-label classification on Charades. Charades [64] is made up of videos
of people recording everyday activities at their homes. Videos in Charades are
longer than the other datasets we use and the goal is to recognize multiple
di↵erent actions in each video. A per-class sigmoid output is used for multi-class
prediction. We use the implementation of Feichtenhofer et al. [20]1 with the
R(2+1)D-18 backbone. During training, we use 32 frames with a sampling rate
of 8. Since this task requires longer temporal context, we observe that using more
frames with higher sampling rate is beneficial. We use a spatial crop of 112x112
and augmentations such as random short-side scaling, random spatial crop and
horizontal flip. We train for 57 epochs in total with a batch size of 16 and a
learning rate of 0.0375 with multi-step scheduler with � = 0.1 at epochs [41,
49]. During testing, following [20], we spatio-temporally max-pool predictions
over 10 clips for a single video. We report mean average precision (mAP) across
classes.

Action detection on AVA. AVA [27] consists of clips extracted from films.
We use version v2.2 with bounding box annotations for spatio-temporal action
detection of temporally fine-grained action classes. The goal of this task is to
detect and predict action classes from proposals generated by o↵-the-shelf per-
son detectors. We again use the implementation of [20] with the R(2+1)D-18
backbone. During training, we use 32 frames with a sampling rate of 2. We use
spatial crop of 112x112 and augmentations such as random short-side scaling,
random spatial crop, horizontal flip. We train for 20 epochs with learning rate of
0.1 with multi-step scheduler with � = 0.1 at epochs [10, 15] and a batch size of
32. During testing, following [20], we use a single clip at the center of the video
with 8 frames and sampling rate of 8. We report mean average precision (mAP)
across the classes.

1https://github.com/facebookresearch/SlowFast

https://github.com/facebookresearch/SlowFast
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C Correlations of Downstream Performance

As observed from the results of Section 3, the performance for both UCF-101
finetuning and Kinetics-400 linear evaluation is not indicative of how well a self-
supervised video model generalizes to di↵erent downstream domains, samples,
actions and tasks. Here, we plot the performance of each pre-trained model
for each downstream settings and show the correlation with UCF-101 finetuning
and Kinetics-400 linear evaluation performances. The results are shown in Figs. 5
to 12. These plots further demonstrate that the correlations are overall low for
each downstream factor i.e. domain, samples, actions and tasks, indicating that
more thorough testing of video self-supervised methods is needed.
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Fig. 5: Downstream domain against UCF-101 finetuning. We plot the corela-
tions between finetuning performance of video pre-training methods on UCF-101 and
performances on finetuning and linear-evaluation on all downstream datasets.
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Fig. 7: Downstream actions against UCF-101 finetuning. We plot the corela-
tions of performances of video pre-training methods between UCF-101 finetuning and
FineGym subsets.
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Fig. 8: Downstream tasks against UCF-101 finetuning. We plot the corelations
between performance on UCF-101 finetuning and other downstream tasks for the video
pre-training methods.
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Fig. 9:Downstream domain against Kinetics-400 linear evaluation.We plot the
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Fig. 10: Downstream samples against Kinetics-400 linear evaluation. For the
low data setting (1000-2000 samples), we plot the correlations of performance of video
pre-training methods against that for Kinetics-400 linear-evaluation.

20 40 60

K400 Linear

84

85

86

87

88

F
in

et
un

in
g

r = 0.08

Gym99 (99)

20 40 60

K400 Linear

51

52

53

54

55

56

57

58

r = 0.341

Gym288 (288)

20 40 60

K400 Linear

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

r = 0.793

Vault (6)

20 40 60

K400 Linear

76

78

80

82

84

86

88

r = 0.2

FX (35)

20 40 60

K400 Linear

45

50

55

60

65

70

75

80

r = 0.26

FX-S1 (11)

20 40 60

K400 Linear

80

82

84

86

88

r = 0.035

UB-S1 (15)

MoCo

SeLaVi

VideoMoCo

Pretext-contrast

RSPNet

AVID-CMA

CTP

TCLR

GDT

Supervised

Fig. 11: Downstream actions against Kinetics-400 linear evaluation. We plot
the corelations of performances of video pre-training methods between Kinetics-400
linear-evaluation and FineGym subsets.
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Fig. 12: Downstream tasks against Kinetics-400 linear evaluation. We plot the
corelations between performance on Kinetics-400 linear-evaluation and other down-
stream tasks for the video pre-training methods.
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D Representation Similarity Matrices

We plot the the feature similarity on Kinetics validation set using centered kernel
alignment [52] between supervised pre-training and our evaluated self-supervised
pre-training methods in Fig. 13. We showed a subset of these plots in Fig. 4,
here we show the feature similarity for all the self-supervised models we used in
our experiments.
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Fig. 13: Representation similarity between features of self-supervised methods and
supervised pre-training on Kinetics-400 validation set using centered kernel alignment.
Features of contrastive methods are more closer to the features of supervised pretrain-
ing.
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Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

Fig. 14: Example video frames from the Kinetics-400 pre-training dataset and the
7 di↵erent downstream datasets we consider. Note the di↵erences in the capture
setting and point-of-view across these datasets.
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Fig. 15: Temporal awareness. Illustrating the e↵ect of temporal awareness (increas-
ing temporal-context) on the action recognition performance using a standard 3D-CNN
for di↵erent action datasets.



32 F.M. Thoker et al.

Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

Kinetics-400
Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

UCF-101
Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

HMDB-51

Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

NTU-60
Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

Gym-99
Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

SS-v2

Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

EPIC-Kitchens-100
Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

Charades
Label overlap

PoV

EnvironmentAction
length

Temporal
awareness

AVA

Fig. 16: Radar plots with details. The radar plots contain details of the values along
the axis for every attribute for the datasets we use in this study.

E Downstream Dataset Attributes

We define several attributes in Section 2.1 in order to characterize di↵erences
in domain between the downstream datasets and the Kinetics-400 pre-training
dataset in Fig. 2. We provide detailed radar plots in Fig. 16 with axes labeled
with relevant values for each attribute. The attributes Point-of-view and Envi-
ronment are defined qualitatively based on the contents of the target dataset.
Examples of videos from each of the datasets are shown in Fig. 14. We can see
that FineGym [63] consists of videos of Olympic gymnastic events. Thus, we
label it as stadium for environment and third-person for point-of-view. On the
radar plots, we order environment in descending order of variability contained in
a given dataset. Kinetics-400 is placed near the origin as it has much higher vari-
ability than NTU-60 for example, which is captured in a controlled lab setting.
Action length is the average duration of the actions in each of the datasets.

We quantify temporal awareness as the minimum number of frames (temporal
context) required to best recognize the action. We do this by finetuning R(2+1)D
with weights initialized from supervised pre-training on Kinetics-400 and we
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denote temporal awareness (⌧) as:

⌧ = arg min
t2{1,2,...,N}

✓
100 ⇥ ft+1 � ft

ft

◆
< ↵

�
(1)

where ↵ is chosen to be 1. This means ⌧ indicates the number of frames after
which relative improvement in performance is lesser than ↵, i.e. when the per-
formance has plateaued. Fig. 15 shows the top-1 action recognition performance
against increasing number of frames for each of our downstream datasets. We
use bilinear interpolation to estimate performance at given number of frames
beyond those that we experiments with. For example, using our method to com-
pute temporal awareness, the performance for UCF-101 plateaus at 7 frames
while that for EK-100 plateaus at 32 frames indicating that EK-100 needs much
larger temporal context for recognition while UCF-101 may su�ce with a shorter
temporal context.

Label overlap is the amount of actions which are present in both the down-
stream dataset and the pretraining dataset (Kinetics-400). We quantify this by
matching identical actions as well as manually checking for reworded versions
of the same action class. For example, “head massage” in UCF-101 has a corre-
sponding action “massaging person’s head” in Kinetics-400. In NTU-60 action
class “brushing teeth” has a matching action “brushing teeth” in Kinetics-400.

F Standard deviations for proposed SEVERE-benchmark

In this section, we show the standard deviations of each pretrained method for
all downstream setups in our proposed benchmark. The results are obtained
over 3 runs initialized with di↵erent random seeds. It is clear from Table 7 that
results are consistent over multiple runs with small std deviations. Thus our
observations and conclusions are not impacted across multiple runs. Moreover,
future works can refer to Table 7 for reproduciblity.

Table 7: Standard deviations for proposed SEVERE-benchmark. We compute
the std of each method for each downstream setup over 3 runs initialized with random
seeds.

Existing SEVERE-benchmark

Pre-training Domains Samples Actions Tasks

UCF101 HMDB51 SS-v2 Gym-99 UCF (103) Gym-99 (103) FX-S1 UB-S1 UCF-RC Charades-MLC
None 77.3±0.9 47.7±1.6 57.1±1.3 89.8±0.1 38.3±1.4 22.7±3.5 46.6±1.8 82.3±2.1 0.217±0.01 7.9±0.1

MoCo 83.3±0.3 53.6±0.2 57.1±0.1 90.7±0.2 60.4±1.0 30.9±1.0 65.0±1.2 84.5±0.4 0.208±0.01 8.3±0.1
VideoMoCo 84.9±0.5 58.0±1.0 59.0±0.1 90.3±0.3 65.4±1.2 20.6±0.8 57.3±2.9 83.9±1.6 0.185±0.00 10.5±0.1
SeLaVi 85.2±0.3 54.2±0.3 56.2±0.1 88.9±0.1 69.0±1.9 30.2±0.9 51.3±1.0 80.9±1.6 0.162±0.01 8.4±0.1
Pretext-Contrast 87.7±0.6 58.4±0.6 56.9±0.2 90.5±0.1 64.6±2.3 27.5±1.6 66.1±0.3 86.1±0.8 0.164±0.01 8.9±0.1
RSPNet 88.7±0.1 59.2±0.7 59.0±0.3 91.1±0.0 74.7±0.6 32.2±1.5 65.4±1.7 83.6±1.3 0.145±0.01 9.0±0.3
AVID-CMA 88.8±0.3 58.7±1.2 52.0±0.6 90.4±0.4 68.2±0.5 33.4±0.8 68.0±0.9 87.3±1.0 0.148±0.01 8.2±0.2
CtP 90.1±0.1 63.2±0.5 59.6±0.4 92.0±0.1 61.0±1.5 32.9±1.9 79.1±0.5 88.8±0.5 0.178±0.01 9.6±0.1
TCLR 90.8±0.2 60.6±0.9 59.8±0.0 91.6±0.0 72.6±1.9 26.3±1.0 60.7±0.7 84.7±1.1 0.142±0.01 12.2±0.3
GDT 91.3±0.3 64.8±1.0 58.0±0.3 90.5±0.1 78.4±0.2 45.6±0.6 66.0±0.3 83.4±1.6 0.123±0.01 8.5±0.1

Supervised 93.9±0.2 68.5±0.4 60.8±0.1 92.1±0.1 86.6±0.6 51.3±0.1 79.0±2.0 87.1±0.2 0.132±0.01 23.5±0.1
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G HMDB51 Results

For completion we also show the performance of each pretraining method on
HMDB51 [42] dataset in Table 7. HMDB51 is used in current standard bench-
marking along with UCF101 [65]. It is clear from the table that the performances
on both datasets are highly correlated to each other and less correlated to other
downstream setups. This again highlights the importance of evaluating video
self-supervised methods beyond current benchmarks and use a setup which eval-
uates the generalizability of current models, such as the SEVERE-benchmark.

H Linear Evaluation for Downstream Samples

In Section 4 we evaluated our pre-trained models with varying amounts of down-
stream samples for finetuning. In this section we provide the results for the
same experiment but using linear-evaluation instead of finetuning. The results
are shown in Fig. 17. We observe that rank changes are not significant between
di↵erent sample sizes as they are for full finetuning., However similar to fine-
tuning, supervised pretraining is dominant for low data setting as shown by the
performance on NTU-60 and GYM-99 with 1000-4000 examples.
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Fig. 17: Linear evaluation for Downstream Samples. Comparison of video self-
supervised learning methods using varying number of samples on linear evaluation for
four downstream datasets. Rank changes are less significant with increasing sample
size.
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Table 8: Ablation on Verb and Noun Recognition. On EPIC-Kitchens-100, we
show results for noun, verb and action recognition. Colors denote relative rankings
across methods for each dataset, ranging from low high. Most pre-
training methods struggle on noun and action recognition and have little correlation
with verb recognition.

EPIC-Kitchens-100

Pre-training Verb Noun Action

None 25.7 6.9 1.8

MoCo 26.4 13.9 6.9
SeLaVi 33.8 12.1 5.9
VideoMoCo 43.6 15.1 9.4
Pretext-contrast 34.3 11.4 5.6
RSPNet 42.7 18.7 11.7
AVID-CMA 29.9 8.7 3.6
CtP 42.8 12.0 7.8
TCLR 36.2 11.7 5.8
GDT 37.3 15.5 8.4

Supervised 47.7 24.5 16.0

I Verb vs. Noun in Downstream Action Recognition

EPIC-Kitchens-100 [13] consists of noun and verb annotations for each video. An
action is defined as a tuple of these. In the main paper, we report verb recognition
performance across all experiments. In Table 8 we compare the performance on
verb recognition to the performance on noun and action recognition. In general,
performance is lower for noun and action recognition in comparison to verb
recognition. This is likely due to the R(2+1)D-18 backbone being insu�cient
to model the complex actions found in EPIC-Kitchens-100. Interestingly, good
performance on verb recognition is not a good indication that the model will
perform well at noun or action recognition. Notably, some methods such as
VideoMoCo and CtP perform well at verb recognition but struggle on noun
recognition. RSPNet seems to perform reasonably well for both verb and noun
recognition.
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