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Abstract. Despite the recent success of video self-supervised learning
models, there is much still to be understood about their generalization ca-
pability. In this paper, we investigate how sensitive video self-supervised
learning is to the current conventional benchmark and whether methods
generalize beyond the canonical evaluation setting. We do this across
four different factors of sensitivity: domain, samples, actions and task.
Our study which encompasses over 500 experiments on 7 video datasets,
9 self-supervised methods and 6 video understanding tasks, reveals that
current benchmarks in video self-supervised learning are not good indi-
cators of generalization along these sensitivity factors. Further, we find
that self-supervised methods considerably lag behind vanilla supervised
pre-training, especially when domain shift is large and the amount of
available downstream samples are low. From our analysis we distill the
SEVERE-benchmark, a subset of our experiments, and discuss its im-
plication for evaluating the generalizability of representations obtained
by existing and future self-supervised video learning methods. Code is
available at https://github.com/fmthoker/SEVERE-BENCHMARK.

Keywords: Self-supervised learning, Video representation learning, Video
understanding

1 Introduction

Video self-supervised learning has progressed at a tremendous pace in recent
years, e.g. [1,54,56–58,75], as it offers a crucial starting point from which to learn.
This is especially important for video understanding applications, where anno-
tating large amounts of data is extremely expensive, error-prone and sensitive to
annotator bias. Hence, learning video representations through self-supervision
is crucial, especially for use cases where the downstream video data is limited
because of the domain, task or actions the video contains. However, the major-
ity of current works in video self-supervised learning, e.g. [4, 48, 49, 53, 81], do
not test beyond standard benchmarks. The standard protocol is to use unla-
beled Kinetics-400 [36] for pre-training and then measure performance by fine-
tuning on two action recognition datasets: UCF-101 [65] and HMDB-51 [42].
While these benchmarks have facilitated the impressive progress of video self-
supervised learning in recent years, they cannot indicate the generalizability
of such methods as these pre-training and downstream datasets are all simi-
lar in appearance and the type of actions they contain. Some methods have
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started to report finetuning performance on additional datasets like Something-
Something-v2 [25] in [20,56,75], Diving-48 [43] in [14,78], AVA [27] in [20,80,82]
and EPIC-Kitchens-100 [13] in [82]. However, such evaluations are insufficient to
understand the generalization of video self-supervised methods alone since they
only add a single additional dataset, often without comparison to prior methods.

In this work, we address the essential need to gauge the sensitivity of ex-
isting video self-supervised methods to the current benchmark by thoroughly
evaluating their performance for generalization across diverse downstream set-
tings. Similar benchmarking studies have been performed for self-supervised pre-
training in images [5, 12, 16, 17, 24, 33, 38, 41, 50, 60, 73, 83, 86], which investigate
model transferability [16,33,50,74] or the importance of factors like pre-training
dataset [12, 24, 41] and backbone architecture [38]. Unfortunately, lessons from
these works do not directly transfer to video self-supervised learning. First, video
self-supervised tasks are distinct from those of images as they are designed to
understand the temporal dimension of video [14, 56, 75, 82] in addition to the
spatial understanding needed in images [9]. Second, video is multi-modal and
several methods [4, 49, 54] are designed to exploit cross or multi-modal under-
standing, which is again absent in image-based methods. For videos, [20] extends
four image-based self-supervised methods to videos and investigate their perfor-
mance focusing on different pre-training setups. We take inspiration from this
and benchmarking works in image self-supervised learning and perform a much-
needed study for understanding the generalizability of self-supervised methods
for video in relation to different downstream factors.

As our first contribution, we identify the problem of benchmark-sensitivity
in video self-supervised learning and examine this sensitivity along the factors of
domain, samples, actions and task. As our second contribution, we perform an
extensive evaluation which spans a total of over 500 experiments with 9 video self-
supervised learning methods across 7 video datasets and 6 video understanding
tasks. We find that standard benchmarks in video self-supervised learning do not
indicate generalization along the said sensitivity factors and vanilla supervised
pre-training outperforms self-supervised pre-training, particularly when domain
change is large and there are only a few downstream finetuning samples available.
Third, we propose a subset of our experiments as the SEVERE-benchmark for
future self-supervised learning methods to benchmark generalization capability.
We also discuss the implication of this benchmark for evaluating the generaliz-
ability of representations obtained by existing methods as well as the nature of
video self-supervised objectives that currently generalize well.

2 Identifying Benchmark Sensitivity

The vast majority of current works in video self-supervised learning evaluate
their approach by pre-training on Kinetics-400 [36] and finetuning the learned
representation for action recognition on UCF-101 [65] and HMDB-51 [42]. Some
works [4, 14, 22, 31, 44, 54, 56, 70, 75] also report performance on video retrieval
for UCF-101 and HMDB-51 and several recent works [58,59,82] compare linear
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Fig. 1: Benchmark-sensitivity. We evaluate the sensitivity of 9 video self-supervised
learning methods along 4 downstream factors which vary from the pre-training source:
the domain, the samples, the actions and the task.

evaluation performance on Kinetics-400. However, these downstream datasets
are very similar to each other and also share many similarities with the pre-
training dataset of Kinetics-400. Videos in all three datasets are collected from
YouTube and are mostly recorded with a single camera containing a single well-
positioned human actor. In terms of class labels, all datasets focus on similar,
coarse-grained and mutually exclusive actions with many actions common be-
tween pre-training and downstream datasets. Besides all these data similarities,
the existing evaluations also ignore a major benefit of self-supervised represen-
tation learning for videos, i.e. finetuning the representation with only a small
amount of data samples and transferring to other video understanding tasks be-
yond action recognition. Hence, we believe the current benchmark standard is in-
sufficiently equipped to gain a true understanding of where video self-supervised
models are successful, as it cannot show the generalizability or the sensitivity
of methods to factors such as domain shift, amount of finetuning data samples,
action similarity or task shift. In this study, we identify the sensitivity of existing
evaluations and thoroughly benchmark self-supervised video learning methods
along four sensitivity factors as depicted in Fig. 1.

I. Downstream domain. First, we analyse whether features learned by self-
supervised models transfer to datasets that vary in domain with respect to
the pre-training dataset.

II. Downstream samples. Second, we evaluate the sensitivity of self-supervised
methods to the number of downstream samples available for finetuning.

III. Downstream actions. Third, we investigate if self-supervised methods
learn fine-grained features required to recognize semantically similar actions.

IV. Downstream task. Finally, we study the sensitivity of video self-supervised
methods to the downstream task and question whether self-supervised fea-
tures can be used beyond action recognition.
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Fig. 2: Video dataset characteristics. Characterizing domain shift in datasets via
difference in label overlap, point-of-view (PoV), environment, action length and tem-
poral awareness with Kinetics-400 (shown by dotted line). Kinetics-400 and UCF-101
are highly similar to each other, while datasets like Something-Something-v2, EPIC-
Kitchens-100 and Charades have different attributes compared to Kinetics-400.

2.1 Downstream Video Datasets

We evaluate various self-supervised models along our four sensitivity factors
on 7 video datasets: UCF-101 [65], NTU-60 [62], FineGym (Gym-99) [63],
SomethingSomething-v2 (SS-v2) [25], EPIC-Kitchens-100 (EK-100) [13],
Charades [64] and AVA [27]. They include a considerable variety in video
domain, the actions they contain and cover a range of video understanding tasks.
To get a sense of the differences between these downstream datasets and the
Kinetics-400 source dataset, we summarize their similarity to Kinetics-400 by
radar plots in Fig. 2 based on several attributes. Environment refers to the
variety of settings contained in the dataset. Point-of-view is whether a video
is recorded from a first-person or third-person viewpoint. Temporal awareness
defines the extent to which temporal context is required to recognize or detect
actions. We quantify this as the point at which performance saturates with
increasing temporal context in the input. Label overlap is the fraction of actions
in a target dataset that are also present in Kinetics-400. Action length is the
temporal length of the actions in seconds. Details are provided in the appendix.

2.2 Evaluated Self-Supervised Video Learning Methods

Self-supervised learning methods in video can be grouped into two categories
based on the objective they use: pretext task methods and contrastive learn-
ing methods. Pretext task methods use predictive tasks such as solving spatio-
temporal jigsaw puzzles [2, 32, 37], rotation prediction [35], frame and clip or-
der [21, 48, 68, 81, 84], video speed [7, 11, 34, 77, 85], video completion [45], pre-
dicting motion statistics [76], tracking random patches in video frames [75] or
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audio-visual clustering [3, 4, 8, 30]. Contrastive learning methods discriminate
between ‘positive’ and ‘negative’ pairs to learn invariances to certain data aug-
mentations and instances either from visual-only input [14,15,28,44,53,58,66,82]
or multi-modal data [29,40,46,49,54,69,71].

Some methods also combine pretext and contrastive approaches [6, 15, 31,
56, 70, 88]. A detailed survey of video self-supervised learning methods can be
found in [61]. We consider 9 video-based self-supervised methods which achieve
good performance on current benchmarks and cover a range of self-supervised
paradigms in the video domain, including contrastive learning, pretext-tasks,
their combination and cross-modal audio-video learning.

Due to the high computational cost of training self-supervised methods, we
focus on works with publicly available weights for a common R(2+1)D-18 net-
work [72] pre-trained on Kinetics-400 [36]: MoCo [10], SeLaVi [4], Video-
MoCo [53],Pretext-Contrast [70],RSPNet [56],AVID-CMA [49],CtP [75],
TCLR [14] and GDT [54]. We compare these to no pre-training, i.e. training
from scratch, and fully supervised pre-training for action recognition. It is worth
noting that since we use publicly available models we cannot control the exact
pre-training setup. There are subtle differences in the training regime for each
method, such as the number of epochs, the data augmentations used and the
batch size. Details of these differences are provided in the appendix. However,
all models use the same backbone and pre-training dataset thus we can evaluate
their downstream abilities in exactly the same way. To finetune for downstream
tasks we simply attach a task-dependent head at the last layer of the pre-trained
R(2+1)D-18 backbone to produce label predictions for the corresponding task.
For a fair comparison, we use the same set of hyper-parameters, optimization
and pre-processing during the downstream training of each model.

3 Sensitivity Factor I: Downstream Domain

We first investigate to what extent self-supervised methods learn features that
are applicable to action recognition in any domain. We evaluate the suite of pre-
trained models on UCF-101, NTU-60, Gym-99, SS-v2 and EK-100 for the task
of action recognition. It is worth noting that as well as variety in domain, these
datasets include variety in the amount of training data (9.5k - 168k examples)
and cardinality of classification (60 - 300 classes). We attach a single classification
layer to the pre-trained backbone and evaluate the models’ performance on the
downstream task in two settings. First, full finetuning where we train the
whole network from the initialization of the pre-trained weights. Second, linear
evaluation where we train the classification layer only using the frozen features
of pre-trained backbones. We follow the standard splits proposed in the original
datasets and report video-level top-1 accuracy on the test sets. The details about
splits, pre-processing, training for each dataset are provided in the appendix.

Full finetuning. The left part of Table 1 shows the results of full finetuning.
From the results, it is clear that all self-supervised methods are very effective
on UCF-101 as there is a significant gap between training from scratch and
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Table 1: Sensitivity Factor I: Downstream Domain. Video self-supervised meth-
ods evaluated across datasets with increasing domain shift with respect to the source
dataset (see Fig. 2). Colors denote relative rankings across methods for each dataset,
ranging from low high. The ranking of methods is domain-sensitive for
both finetuning and linear classification and becomes less and less correlated with the
current UCF-101 benchmark as the domain shift increases.

Pre-training
Finetuning Linear Evaluation

UCF101 NTU60 Gym99 SSv2 EK 100 K 400 UCF101 NTU60 Gym99 SSv2 EK 100

None 77.3 92.9 89.8 57.1 25.7 - - - - - -

MoCo 83.3 93.4 90.7 57.1 26.4 34.5 65.4 16.0 21.2 7.4 21.4
VideoMoCo 84.9 94.1 90.3 59.0 43.6 31.0 66.3 51.6 41.6 19.5 25.7
SeLaVi 85.2 92.8 88.9 56.2 33.8 24.1 51.2 15.7 20.2 4.5 22.4
Pretext-Contrast 87.7 93.9 90.5 56.9 34.3 22.4 57.2 17.6 30.0 10.9 20.0
RSPNet 88.7 93.9 91.1 59.0 42.7 46.0 76.6 33.5 32.2 12.5 24.9
AVID-CMA 88.8 94.0 90.4 52.0 29.9 43.5 78.1 53.9 45.1 16.1 22.5
CtP 90.1 94.3 92.0 59.6 42.8 7.6 37.9 22.6 30.6 12.2 20.0
TCLR 90.8 94.1 91.6 59.8 36.2 19.9 63.3 33.5 33.0 10.8 21.8
GDT 91.3 93.9 90.5 58.0 37.3 38.6 75.7 38.2 34.2 11.9 25.3

Supervised 93.9 93.9 92.1 60.8 47.7 65.9 91.7 45.5 42.7 16.6 26.6

using self-supervised pre-training. This gap is reduced as the difference between
Kinetics-400 and the downstream domain increases. SeLaVi, MoCo and AVID-
CMA in particular are evidence of this as these methods suffer when datasets
have higher temporal awareness and less label overlap with Kinetics-400. When
moving from UCF-101 to NTU-60 and Gym-99 there is a change in the ordering
of self-supervised methods. This demonstrates a high performance on UCF-101
does not guarantee a self-supervised model is generalizable to other domains. The
change in ranking is even more prominent for SS-v2 and EK-100, which require
the most temporal awareness and also shift to a first-person viewpoint. This
is particularly noticeable for AVID-CMA. On these datasets, MoCo has similar
results to no pre-training, which is evidence that video-specific self-supervised
learning methods are needed and that image-based methods are insufficient.
Overall, supervised pre-training achieves good performance across the board,
outperforming self-supervised methods on the most similar domain (UCF-101)
as well as the most dissimilar domains (SS-v2 and EK-100). Amidst the models
tested, CtP, RSPNet, VideoMoCo and TCLR stand out as the self-supervised
pre-training methods most generalizable to different domains.

Linear classification. The right part of Table 1 shows the results for linear
classification. As with finetuning, the ranking among the self-supervised methods
changes as the domain difference between the pre-training and the downstream
dataset increases. For example, VideoMoCo ranks lower than GDT and RSPNet
for UCF-101 and Kinetics-400 but ranks higher than both for all other datasets.
This again demonstrates that performance on UCF-101 does not give a complete
picture of a self-supervised model’s success. We also observe that linear evalua-
tion on Kinetics-400, as some papers report [58,59,82], has the same issue since
it is highly correlated to UCF-101 performance. For UCF-101 and Kinetics-400,
self-supervised models with contrastive objectives learn highly discriminative
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features compared to the non-contrastive models. This can be seen by com-
paring contrastive models AVID-CMA, GDT and RSPNet to non-contrastive
SeLaVi and CtP. From the NTU-60 and Gym-99 results we observe that as the
label overlap between the pre-training and the downstream dataset decreases,
the performance gap between finetuning and linear evaluation increases consid-
erably. This is true for both supervised and self-supervised pre-training. The
most generalizable methods in the linear classification setting are contrastive
methods VideoMoCo and AVID-CMA as well as supervised pre-training. Inter-
estingly, there are cases where VideoMoCo and AVID-CMA even outperform
supervised pre-training, namely for NTU-60, Gym-99 and SS-v2.

Conclusion. We observe from Table 1 that performance for both UCF-
101 finetuning and Kinetics-400 linear evaluation is not indicative of
how well a self-supervised video model generalizes to different down-
stream domains, with the ranking of methods changing substantially
across datasets and whether full finetuning or linear classification is used.

4 Sensitivity Factor II: Downstream Samples

The previous section analyzed sensitivity to the downstream domain by evalu-
ating performance on several different datasets. However, finetuning on each of
these datasets uses a large number of labeled examples, which means training
from scratch already obtains good performance. Not all domains and use cases
have ample labeled video examples available, thus we investigate what the im-
pact of the number of finetuning samples is and whether self-supervised methods
can be beneficial in scenarios where we have little data to finetune with. We vary
the amount of finetuning data, beginning from 1000 videos, sampled uniformly
from the classes, and double the amount until we reach the full training set
size. We report on four of the downstream datasets from the previous section:
UCF-101, NTU-60, Gym-99 and SS-v2. The results are summarized in Fig. 3.

We first observe that the trends in the low data regime are different from those
with the full data. The gap between supervised and self-supervised pre-training is
much larger in low data settings, particularly for UCF-101 and Gym-99. NTU is
an exception, where, with 1000-4000 samples CtP, GDT, AVID-CMA and TCLR
outperform supervised pre-training. As with changes in the downstream domain,
change in the amount of downstream examples also causes a change in the rank-
ing of self-supervised models. For example, on UCF-101, RSPNet is much more
successful than CtP and TCLR when using only 1000 samples. This is because
some self-supervised models benefit more than others from an increased amount
of downstream samples. For example, CtP is one of the most generalizable pre-
training strategies when finetuning with the full data on UCF-101, Gym-99 and
SS-v2, but this is not the case with fewer training samples. Interestingly, GDT
is consistently high in the ranking with low amounts of finetuning samples. This
is likely due to the large number of temporal augmentations it uses, which help
the generalization ability when the training data is limited.
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Fig. 3: Sensitivity Factor II: Downstream Samples. Comparison of video self-
supervised learning methods using varying number of finetuning samples for four down-
stream datasets. Both the gap and rank among pre-training methods are sensitive to
the number of samples available for finetuning.

Conclusion. We observe from Fig. 3 that video self-supervised models are
highly sensitive to the amount of samples available for finetuning, with
both the gap and rank between methods changing considerably across
sample sizes on each dataset.

5 Sensitivity Factor III: Downstream Actions

As indicated earlier, existing evaluations of self-supervised video learning meth-
ods have been limited to coarse-grained action recognition. In this section, we
investigate whether current self-supervised tasks are only effective for these types
of benchmarks or whether they are able to learn features that are useful for dif-
ferentiating more challenging and semantically similar actions.

FineGym [63] provides us with an experimental setup to study sensitivity
to this factor. The dataset contains different evaluations with varying levels
of semantic similarity, namely action recognition across all events, within an
event or within a set. Recognition across all events uses the whole of Gym-
99 containing actions from four gymnastic events. For recognition within an
event there are two subsets: Vault and Floor containing only actions from these
two events. Recognition within a set has two subsets namely FX-S1, containing
different leaps-jumps-hops in Floor, and UB-S1, which consists of types of circles
in Uneven Bars. We also experiment with the long-tailed version of FineGym,
Gym-288, which adds 189 more tail classes. Details of these subsets are in the
appendix. As before, we attach a classification head to the pre-trained models
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Table 2: Sensitivity Factor III: Downstream Actions. Video self-supervised mod-
els evaluated on different semantic similarities of action in FineGym: across events,
within an event and within a set. Colors denote relative rankings across methods for
each dataset, ranging from low high. Many methods struggle on the
within a set benchmark where actions are most semantically similar.

Gym99 Gym288

Pre-training Across Events Within Event Within Set Across Events

All Vault Floor FX-S1 UB-S1 All

None 84.8 24.7 75.9 46.6 82.3 50.0

SeLaVi 84.5 25.4 76.0 51.3 80.9 52.8
AVID-CMA 85.7 30.4 82.7 68.0 87.3 52.5
VideoMoCo 85.9 28.4 79.5 57.3 83.9 54.1
Pretext-contrast 86.0 28.5 81.4 66.1 86.1 52.7
MoCo 86.5 33.2 83.3 65.0 84.5 55.1
GDT 86.6 36.9 83.6 66.0 83.4 55.4
RSPNet 86.9 33.4 82.7 65.4 83.6 55.2
TCLR 87.7 29.8 84.3 60.7 84.7 55.4
CtP 88.1 26.8 86.2 79.1 88.8 56.5

Supervised 88.6 37.7 86.1 79.0 87.1 58.4

and finetune the whole network with the training set of each subset. In Table 2
we report Top-1 accuracy (mean per-class) on the testing sets following [63].

Performance of self-supervised methods varies considerably across down-
stream actions. The methods that perform best on Gym-99 often do not gener-
alize well to the subsets with higher semantic similarity among actions. This is
particularly noticeable for RSPNet and TCLR which drop in the ranking for the
within-set subsets. All self-supervised methods, except GDT, struggle on Vault,
likely due to the intense motions. Surprisingly, MoCo performs reasonably well
when actions are more semantically similar, and is comparable to GDT and RSP-
Net. The best self-supervised method for subsets with high semantic similarity is
CtP. This is especially evident from FX-S1 where it outperforms the second-best
self-supervised method, AVID-CMA, by 12%. As with downstream domain and
samples, supervised pre-training generalizes better than self-supervised methods
across downstream actions with only CtP achieving comparable performance.

Table 2 also compares balanced Gym-99 with long-tailed Gym-288. We ob-
serve that self-supervised methods are not robust to this change in distribution,
with the gap in performance with respect to supervised pre-training increas-
ing. However, the ranking remains consistent, meaning the performance on the
balanced set is generally indicative of the performance on the long-tailed set.

Conclusion. Most self-supervised methods in Table 2 are sensitive to the
actions present in the downstream dataset and do not generalize well
to more semantically similar actions. This further emphasizes the need
for proper evaluation of self-supervised methods beyond current coarse-
grained action classification.



10 F.M. Thoker et al.

Table 3: Sensitivity Factor IV: Downstream Tasks. Transferability of self-
supervised video learning methods across video understanding tasks. Colors denote
relative rankings across methods for each task, ranging from low high.
Note that for repetition counting lower (error) is better. Self-supervised features are
transferable to different downstream tasks when the domain shift is low, but struggle
when there is also a domain shift. Action recognition on UCF-101 is not a good proxy
for self-supervised video learning use cases where a downstream domain- and task-shift
can be expected.

Task-shift within domain Task-shift out of domain

Pre-training Action Action Repetition Arrow of Multi-label Action
Recognition Detection Counting Time Recognition Detection

None 77.3 0.327 0.217 56.1 7.9 7.4

MoCo 83.3 0.416 0.208 80.3 8.3 11.7
VideoMoCo 84.9 0.440 0.185 72.9 10.5 13.1
SeLaVi 85.2 0.419 0.162 77.4 8.4 10.2
Pretext-contrast 87.7 0.462 0.164 77.2 8.9 12.7
RSPNet 88.7 0.467 0.145 87.0 9.0 14.1
AVID-CMA 88.8 0.435 0.148 83.3 8.2 10.0
CtP 90.1 0.465 0.178 77.1 9.6 10.0
TCLR 90.8 0.476 0.142 85.6 12.2 10.8
GDT 91.3 0.463 0.123 76.4 8.5 12.6

Supervised 93.9 0.482 0.132 77.0 23.5 17.9

6 Sensitivity Factor IV: Downstream Tasks

The fourth factor we investigate is whether self-supervised video models are
sensitive to the downstream task or whether features learned by self-supervised
models are useful to video understanding tasks beyond action recognition. We
evaluate this in two ways. First, we keep the domain fixed and evaluate different
tasks in a domain similar to the pre-training dataset. We also explore further
tasks by changing the domain and seeing how these two factors interplay.

Task-shift within domain. We consider three different tasks which are all de-
fined for UCF-101: spatio-temporal action detection [39], repetition counting [87]
and arrow-of-time prediction [23]. Using UCF-101 allows us to keep the domain
fixed across tasks and eliminates the impact of domain shift. Note that each
task uses a different subset of the full UCF-101 dataset, however, the domain
remains consistent. For each task, we use the R(2+1)D-18 networks as the pre-
trained backbones as before and attach task-dependent heads. We report mean
Average Precision for spatio-temporal localization [47], mean absolute counting
error for repetition counting [87] and classification accuracy for arrow-of-time
prediction [23,79]. Further details are in the appendix.

From the results in Table 3, we observe that self-supervised learning is bene-
ficial to tasks beyond action recognition, with almost all methods outperforming
training from scratch on spatio-temporal action detection, repetition counting
and arrow-of-time prediction. Action detection results are well correlated with
action recognition. Repetition counting and arrow-of-time have less correlation
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with action recognition, suggesting that the current benchmark on UCF-101 ac-
tion recognition by itself is not a good indication of how well self-supervised
methods generalize to other tasks. For repetition counting and arrow-of-time
prediction, some methods perform comparably to or outperform supervised pre-
training. Notably, RSPNet and TCLR generalize the best across these tasks,
with GDT also performing well on repetition counting. CtP ranks high on ac-
tion recognition and detection but performs modestly for repetition counting.
This shows that different methods have different task sensitivity, so a thorough
evaluation along downstream tasks is needed.

Task-shift out of domain. We also evaluate how well the self-supervised
models generalize when both the domain and the task change. We do so with two
popular video understanding benchmarks: long-term multi-label classification
on Charades [64] and short-term spatio-temporal action detection on AVA [27].
For both, we follow the setup and training procedure from [19] with R(2+1)D-
18 models as the pre-trained backbone and we measure performance in mean
Average Precision. Details are in the appendix.

From the results in Table 3, we observe that supervised pre-training is far
more generalizable than all self supervised methods, which all struggle consider-
ably when both the domain and task change. For long-term action classification
on Charades, TCLR is slightly better than other methods. On AVA, RSPNet
is the best performing self-supervised method with VideoMoCo second. In Sec-
tion 3, we earlier observed that these were two of the methods more robust to
domain shift suggesting that this factor is key to success on AVA.

Conclusion. The results in Table 3 reveal that action classification per-
formance on UCF-101 is mildly indicative for transferability of self-
supervised features to other tasks on UCF-101. However, when methods
pre-trained on Kinetics-400 are confronted with a domain change in ad-
dition to the task change, UCF-101 results are no longer a good proxy
and the gap between supervised and self-supervised pre-training is large.

7 SEVERE-benchmark

As evident from the results in previous sections, current video self-supervised
methods are benchmark-sensitive to the four factors we have studied. Based
on our findings, we propose the SEVERE-benchmark (SEnsitivity of VidEo
REpresentations) for use in future works to more thoroughly evaluate new video
self-supervised methods for generalization along the four sensitivity factors we
have examined. Since we do not expect future works to run all the experiments
from our study, we create a subset of experiments that are indicative benchmarks
for each sensitivity factor and realistic to run. We summarize the benchmark
composition in Table 4 and detail its motivation per factor. Standard deviations
for the results we obtain on this benchmark can be found in the appendix.
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Table 4: Proposed SEVERE-benchmark for evaluating video self-supervised meth-
ods for generalization along downstream domains, samples, actions and tasks.

Existing SEVERE-benchmark

Pre-training Domains Samples Actions Tasks

UCF101 SS-v2 Gym-99 UCF (103) Gym-99 (103) FX-S1 UB-S1 UCF-RC Charades-MLC

None 77.3 57.1 89.8 38.3 22.7 46.6 82.3 0.217 7.9

MoCo 83.3 57.1 90.7 60.4 30.9 65.0 84.5 0.208 8.3
VideoMoCo 84.9 59.0 90.3 65.4 20.6 57.3 83.9 0.185 10.5
SeLaVi 85.2 56.2 88.9 69.0 30.2 51.3 80.9 0.162 8.4
Pretext-Contrast 87.7 56.9 90.5 64.6 27.5 66.1 86.1 0.164 8.9
RSPNet 88.7 59.0 91.1 74.7 32.2 65.4 83.6 0.145 9.0
AVID-CMA 88.8 52.0 90.4 68.2 33.4 68.0 87.3 0.148 8.2
CtP 90.1 59.6 92.0 61.0 32.9 79.1 88.8 0.178 9.6
TCLR 90.8 59.8 91.6 72.6 26.3 60.7 84.7 0.142 12.2
GDT 91.3 58.0 90.5 78.4 45.6 66.0 83.4 0.123 8.5

Supervised 93.9 60.8 92.1 86.6 51.3 79.0 87.1 0.132 23.5

Downstream domain. To measure a self-supervised model’s domain sensitiv-
ity we recommend using Something-Something-v2 and FineGym-99. These two
datasets come from domains distinct to Kinetics-400 and UCF-101 and also each
other. FineGym-99 evaluates a model’s ability to generalize to datasets with less
distinctive backgrounds where there are few actions in common with Kinetics-
400. SS-v2 evaluates the generalizability to actions that require high temporal
awareness as well as the shift to a first-person viewpoint. It is evident from Ta-
ble 4 that there are significant rank changes between UCF-101, Gym-99 and
SS-v2 thus these three datasets provide a challenging subset for future methods.
Downstream samples. For the sample sensitivity, we recommend using 1000
samples on UCF-101 and Gym-99. Using 1000 samples showed the most dra-
matic difference from the full dataset size particularly for these datasets where
there is a considerable gap between self-supervised and supervised pre-training
as well as considerable rank change among the methods.
Downstream actions. To test generalizability to recognizing semantically simi-
lar actions, we recommend evaluating the two within-set granularities of Gym-99
i.e. FX-S1 and UB-S1. Both of these subsets have high semantic similarity be-
tween actions with methods currently struggling to generalize to both of these
subsets as can be seen in Table 4. There is also a significant gap between super-
vised and most self-supervised pre-training methods for FX-S1, highlighting the
potential for future works in this area.
Downstream task. To evaluate the task sensitivity, we recommend using rep-
etition counting on UCF-101 and multi-label classification on Charades. Repeti-
tion counting on UCF-101 highlights different strengths to action recognition as
it allows investigation of a model’s ability to generalize to a task that requires
more temporal understanding without measuring the impact of the domain. We
recommend multi-label classification on Charades as it is currently a very chal-
lenging task for self-supervised models and allows the combination of domain
and task shift to be investigated. Code to compare on the SEVERE-benchmark
is available at https://github.com/fmthoker/SEVERE-BENCHMARK.

https://github.com/fmthoker/SEVERE-BENCHMARK
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8 Observations, Limitations and Recommendations

Observations. We hope that our study and resulting benchmark provides a
helpful insight for future research to design novel self-supervised methods for
generalizable video representation learning. From the benchmark results in Ta-
ble 4, we observe that:

(i) There is no clear winner as different methods stand out in different down-
stream settings.

(ii) Supervised pre-training is dominant across all sensitivity factors, especially
when the number of available downstream samples are limited and when
there is a change in both the downstream domain and the downstream task.

(iii) Self-supervised contrastive methods that explicitly encourage features to be
distinct across the temporal dimension transfer well. This is visible from
the consistent performance of GDT, TCLR and RSPNet across different
sensitivity factors.

(iv) Learning certain temporal invariances may prevent generalizability to tem-
poral or fine-grained benchmarks. This is evident from GDT’s performance
on SS-v2 and UB-S1. These benchmarks require distinction between actions
such as moving something left vs. moving something right in SS-v2 and gi-
ant circle forwards vs. giant circle backwards in UB-S1. The invariance to
temporal reversal learned by GDT impacts its ability to recognize such ac-
tions. Similarly, MoCo outperforming VideoMoCo on the FX-S1 and UB-S1
Gym-99 subsets suggests that invariance to frame dropout in VideMoCo can
harm the performance on highly similar actions.

(v) Pretext-tasks specific to videos can be effective to learn more fine-grained fea-
tures. CtP generalizes well both to different domains where the background
is less indicative of the action and to more semantically similar actions. The
pretext task is to track and estimate the position and size of image patches
moving in a sequence of video frames. Such a formulation requires the net-
work to learn to follow moving targets and ignore the static background infor-
mation. CtP’s generalization success demonstrates that contrastive learning
is not the only way forward for self-supervised video representation learning.

(vi) Fig. 4 shows the feature similarity on Kinetics using centered kernel align-
ment [52] between supervised pre-training and the best self-supervised meth-
ods i.e. GDT, RSPNet, TCLR, CtP. This figure illustrates that contrastive
methods seem to imitate supervised pre-training as the correlation between
supervised pre-training and the three contrastive methods (RSPNet, GDT
and TCLR) is high. This explains the good performance of these methods on
UCF-101 with 1000 examples. By contrast, CtP’s features are far away from
supervised pre-training. This is interesting because CtP generalizes well to
new domains and actions, it shows that good generalization capability can
be obtained without imitating supervised pre-training.

Limitations. While our study has highlighted the benchmark sensitivity of
video self-supervised learning across four factors, there are many more factors
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Fig. 4: Representation similarity between features of top self-supervised methods
and supervised pre-training on Kinetics-400 validation set (using centered kernel align-
ment [52]). Contrastive methods have a high correlation with supervised pretraining,
while CtP’s features are far away. Thus, showing potential for both imitating super-
vised learning as well as learning features distinct to it.

that we do not consider in this work. Due to computational limits, we keep the
source dataset fixed as Kinetics-400 and use publicly available pre-trained mod-
els. This means there is variability in the exact pre-training setup such as the
spatial data augmentations that are used by each model. We hope that future
works will explore impact of such pretraining factors as well as the impact of
pre-training on other large-scale datasets such as Ego4D [26] for the generaliza-
tion of video self-supervised models. Another limitation of our study is that we
only consider a fixed R(2+1)D-18 backbone, which is currently one of the most
commonly used in video self-supervised learning. This allows our comparison
between methods to be fair, however, it does limit the ability of methods to
perform well on datasets such as EPIC-Kitchens-100. Another factor that could
be explored further is the task. We have considered a selection of various video
understanding tasks centered around human actions. However, there are many
more video understanding tasks that could be explored such as human centric
tasks like action anticipation [13] and temporal action detection [13], as well as
non-human centric tasks like animal behavior analysis [18, 51, 67], multi-object
tracking [55] and visual grounding [67].

Recommendations. Based on the results and our observations, we have several
recommendations for future works in video self-supervised learning. (i) Our study
has highlighted the need for more focus on generalizability of self-supervised
learning methods, particularly along the domain and dataset size factors. (ii)
Distinguishing across the temporal dimension is effective and is a useful direction
to pursue further for generalizability. (iii) Pretext-tasks like the one used in CtP
are good for the generalizability to domain and action, thus designing new video
specific pretext tasks is a promising direction. This could also be combined with
contrastive learning tasks to gain the benefits of both types of learning.

Acknowledgements. This work is part of the research programme Perspectief
EDL with project number P16-25 project 3, which is financed by the Dutch
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