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Abstract. Most online video understanding tasks aim to immediately
process each streaming frame and output predictions frame-by-frame. For
extension to instance-level predictions of existing online video tasks, On-
line Temporal Action Localization (On-TAL) has been recently proposed.
However, simple On-TAL approaches of grouping per-frame predictions
have limitations due to the lack of instance-level context. To this end,
we propose Online Anchor Transformer (OAT) to extend the anchor-
based action localization model to the online setting. We also introduce
an online-applicable post-processing method that suppresses repetitive
action proposals. Evaluations of On-TAL on THUMOS’14, MUSES, and
BBDB show significant improvements in terms of mAP, and our model
shows comparable performance to the state-of-the-art offline TAL meth-
ods with a minor change of the post-processing method. In addition to
mAP evaluation, we additionally present a new online-oriented metric
of early detection for On-TAL, and measure the responsiveness of each
On-TAL approach.

Keywords: Online Video Understanding, Temporal Action Localiza-
tion

1 Introduction

The rising amount of video production has increased the need for processing
untrimmed videos. To automate the processing of untrimmed video, many re-
searchers have attempted to solve the problems with deep neural networks
(DNN). Temporal Action Localization (TAL) is one of the major untrimmed
video understanding tasks, which detects the action instances with the class and
the boundary information. Significant progress has been made in TAL recently
by employing DNN [30/28/3TI33I18134].

As a challenging format of untrimmed videos, streaming video processing is
receiving more attention in the surveillance system, live streaming services, and
autonomous driving systems. Online Action Detection (OAD) is a task that takes
one frame from the stream and immediately predicts the action class including
the non-action class. In addition, Online Detection of Action Start (ODAS)
finds the action starting point as early as possible even before the start of an
action. These tasks mainly target the high responsiveness of action detection.
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However, highly responsive systems are limited to specific applications, especially
alarm systems, due to their frame-level output format. Although most video
understanding tasks start from an action instance, aforementioned tasks do not
consider instance-level contexts and are hard to apply to other applications.

To address these limitations on existing online video understanding tasks, an
instance-level online video understanding task named Online Temporal Action
Localization (On-TAL) [I2] was recently introduced. On-TAL has two main dif-
ferences with offline TAL: 1) by the online constraint, future frames cannot be
accessed, and 2) modification of generated proposals in the past is not allowed,
so the post-processing methods can only be applied on the currently generated
proposals.

From these constraints, one of the obvious approaches to On-TAL is to get
per-frame action predictions from the OAD backbone framework and to group
them into action instances. However, grouping per-frame predictions fundamen-
tally causes three issues of tick, fragmentation, and merging. The predicted ac-
tion probabilities from OAD may fluctuate at non-action frames or in the middle
of an action, and make ticks of an action instance or fragmented actions. In the
case of consecutive actions, the OAD based methods cannot separate the action
instances, making one merged action instance by the same action class.

To tackle these issues, we start with a TAL approach with the intuition
that instance-level supervision would solve the limitations of the OAD based
approaches. As we cannot access the future context by the first constraint of
On-TAL, revisiting the sliding window scheme becomes a valid approach for On-
TAL. The TAL methods with the sliding window approach [23/7] are not being
actively utilized in recent works due to its restricted use of video contexts. Build-
ing rich video context has been receiving more attention lately [BO/28/T83TI34]
for TAL. However, we revisit the sliding window approach for online TAL and
show its potential by reorganizing the framework and exploiting the state-of-
the-art context encoders.

In this paper, we spotlight the sliding window scheme again, and propose
an anchor-based model named Online Anchor Transformer (OAT) for On-TAL
task. OAT employs the transformer encoder/decoder to encode a sliding window
from each timeline and decode several anchor features from the encoded window
features and the anchor query. The decoded anchor features are used to classify
the action class and to regress the action end offset and the action length for the
refinement of action boundaries.

Aside from accurate detection, another advantage of adopting the anchor-
based approach for On-TAL is the ability to detect an action before the action
ends. The anchor-based approach can make the action proposals earlier than
the action ends, and those proposals are refined by the offset regression. On the
contrary, OAD-based approaches must wait until the action ends as depicted in
Fig. [1} Since the responsiveness is critical in online video understanding, we in-
troduce a new online-oriented metric for On-TAL named Average Early Detected
Time (AEDT), and compare it with other baseline On-TAL methods.
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Fig.1: Comparison of the OAD backbone approach and the anchor-based ap-
proach for Online Temporal Action Localization. When making an action in-
stance proposal, the OAD backbone approach have to wait until the model
predicts the end of an action. In contrast, Anchor-based approach can make
proposals earlier than action ends, and refine them by the offset regression.

The anchor-based approach is not a master key, of course, since it produces a
large amount of action proposals. Most TAL methods employ the post-processing
of non-maximum suppression (NMS) to control excessive number of proposals,
but this is not applicable to On-TAL by its second constraint. To deal with this,
we propose Online Suppression Network (OSN) that approximates NMS without
the use of the future context.

We evaluated our model on three online-applicable datasets, THUMOS 14 [11],
MUSES [19], and BBDB [20]. Our method shows the state-of-the-art On-TAL
performance by a significant margin. In addition, by simply changing the post-
processing method to NMS, our model shows comparable performance compared
to the state-of-the-art offline TAL methods, showing the potential of the sliding
window scheme.

In summary, our contributions are described as follows:

— To avoid the fundamental limitations of OAD-based On-TAL approaches, we
build the online-applicable anchor-based TAL framework using the sliding
window scheme, which can significantly boost the performance and detect
actions earlier than the action ends.

— We propose an online-oriented post-processing method named Online Sup-
pression Network (OSN), which can approximate non-maximum suppression
(NMS) without violating the online constraints.

— We introduce a new online-oriented metric for On-TAL named Average Early
Detected Time (AEDT), which can indicate the responsiveness of the online
video understanding task.

— Extensive experiments on THUMOS’14, MUSES, and BBDB show the effec-
tiveness of our model for On-TAL, and comparison with offline TAL methods
supports the potential of the sliding window scheme.
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2 Related Work

Temporal action localization Temporal action localization (TAL) is the instance-
level detection of actions that finds the action boundaries and its class. Early
works [23|[7] approach this task by using the sliding window scheme. As slid-
ing window approaches only consider local parts of a video for the detection,
most recent works have focused on widening the coverage of the video context
by using graph networks [30U28J3T], temporal multi-scale networks [33JI8], rela-
tions among the action proposals [3] or concatenating the global context [34].
For another branch of TAL approach, end-to-end training methods [27/15] are
recently getting attention. Forced by the constraint of the input format (On-
TAL), we draw attention to the sliding window approach again and narrow the
performance gap to the approaches that use coarse to fine video contexts.

Online video understanding As the start of the online video understanding, De
Geest et al. [4] proposed the Online Action Detection (OAD) task which classifies
per-frame action classes under the streaming video setting. Various approaches
are studied for the OAD task, such as applying reinforcement learning [§], an-
ticipating intermediate future [29/13], and building a new GRU-based neural
network layer [5]. Recently, Wang et al. [26] designed a transformer-based model
named OadTR which encodes past frames and decodes future frames to boost
the performance of the OAD.

Aside from classifying action classes, Shou et al. [22] suggested Online Detec-
tion of Action Start (ODAS) that focuses on the action start. The goal of ODAS
is detecting the action start frame as early as possible in streaming videos. The
following work [9] improves the performance of ODAS by combining the conven-
tional per-frame action classification and the class-agnostic start detection that
is trained by reinforcement learning.

As another type of online video understanding, Online Temporal Action
Localization (On-TAL) focuses on instance-level detection of actions. Kang et
al. [12] firstly defined the On-TAL task, which takes a streaming video as an in-
put and generates instance-level action proposals similar to TAL outputs. They
grouped the predictions from a backbone OAD model with a method of context-
aware actionness grouping (CAG). CAG is formalized into a Markov Decision
Process (MDP), and trained by the imitation learning.

However, using OAD backbone causes inevitable limitations such as tick,
fragmentation and merging. Our work excludes OAD backbones from the frame-
work, and relieves such limitations by introducing the anchor-based framework.
Although the anchor-based framework cannot be evaluated on frame-level de-
tection (e.g. ODAS or OAD) as done in [12], our framework significantly boosts
the On-TAL performance that are comparable to offline methods.

Post-processing of generated proposals The localization tasks, such as object de-
tection and temporal action localization, use a proposal generation framework
and typically employ the non-maximum suppression (NMS) method as its post-
processing to reduce repetitive proposals. As a deep learning approach of NMS,
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Fig. 2: Tllustration of how OAT makes action proposals from a new input frame.
The streaming video frames are encoded by the pre-trained feature encoder and
the extracted features are gathered in the input feature queue. The transformer
encoder generates queue-level features from the contents of the queue. With
the anchor queries and the encoded features, the transformer decoder makes
the anchor segment features of various anchor sizes. Each feature is fed into the
prediction module that classifies the action and regresses the offset and the length
for the action boundaries. To suppress repetitive proposals, we use the online
post-processing method that consists of per-frame NMS and online suppression
network.

Hosang et al. [10] suggested context-aware NMS methods for the purpose of
removing threshold hyperparameters. In this paper, we propose Online Suppres-
sion Network (OSN) to enable online post-processing that does not use future
context of videos.

3 Proposed Method

3.1 Problem Definition

Let V ={v;}; and ¥ = {4, }M_, = {(81m) €m, &m) }}¥_, denote an untrimmed
video with T frames and its corresponding M label sets that have start time s,,,
end time e,, and action category c,,. By the online constraint of On-TAL, we can
observe the partial video Vi.; = {v;}!_; at timestamp ¢(1 < ¢ < T). Given V1.,
our goal is to generate action proposals as soon as action ends are detected, and
recover ¥ in consecutive order. Once action proposals are generated, they are
not allowed to be repaired or removed under the online constraint, so NMS-like

post-processing cannot be applied to this task.

3.2 Architecture Overview

As depicted in Fig. OAT consists of 4 main components: (1) transformer
encoder, (2) transformer decoder, (3) prediction module, and (4) online post-
processing. To have compact processing of incoming video frames, we convert
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k consecutive raw video frames to a video feature vector by the pre-trained
feature encoder. The feature vectors are serially gathered in the input feature
queue of length L,. If there exist empty spaces in the queue, they are filled with
zeros. The transformer encoder encodes the feature sequence of the input queue
and makes queue-level representations. The transformer decoder receives anchor
queries as input along with queue-level representations, and produces decoded
representations of length K that represent pre-defined anchor segments in the
queue. Each representation is fed into the prediction module which consists of
the classification head and the boundary regression head. The classification head
classifies C' categories plus one background class, and the boundary regression
head refines the anchor segment boundaries only when the classification result of
the anchor segment is not the background class. As the post-processing method,
NMS is applied to K action proposals from OAT and its results are enqueued to
the proposal history. By looking at the proposal history, the online suppression
network (OSN) decides to use the current frame as the final output or suppress
the frame.

3.3 Transformer Encoder

Each video feature in the input feature queue is a locally encoded representation
that is extracted by the pre-trained feature encoder. We convert the local features
into the temporally contextual features by using a standard transformer encoder
as described in [24].

Given feature vectors from the input feature queue at timestamp ¢, the feature
sequence is fed into a linear projection layer and projected into D-dimensional
feature space. We denote this as X = {x;}{_,_,_,; € R"*P. To provide posi-
tional information, we apply the sinusoidal positional encoding PFE,

Then, P = {p; iL:“l is encoded by transformer encoder.
The transformer encoder is a sequence of N, blocks that are consist of multi-
head self-attention and feed forward network. One block of transformer encoder

f operates as:
f(X) =FFN(X') + X/, (2)
X" = MultiAtt(X) + X, (3)
where FFN is a feed forward network, and MultiAtt is a multi-head self-attention
layer. As our model have N, blocks of encoder, it outputs E = fy_o---0 f1(P) €
RLQ xD .
3.4 Transformer Decoder

For every new input video frame, our model generates K action proposals that
are learned by pre-defined anchors of the ground truth. Previously, the anchor
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segments of different length are physically cropped and reshaped into the same
feature shape by various pooling methods. Our model integrates those complex
steps, and generates anchor representations directly. The visualization of how
the decoder is trained is reported in the supplementary material.

From the representation sequence E of length L, from the encoder, we trans-
form it to K-length representation sequence by using a standard transformer
decoder. The transformer decoder has two types of inputs. One is a learnable
anchor query A € RE*P and the other is the encoded queue-level context E.
Passing through the N, blocks of multi-head self-attention (Eq. and FFN
(Eq. , the decoder outputs D € RE*P,

3.5 Prediction Module and Loss Function

The decoded anchor representation D is fed into the prediction module that
includes an action classification head and a boundary regression head. The clas-
sification head classifies the action category of the anchor segment including the
background class. The boundary regression head predicts the distance between
the target action end and the anchor segment’s end (offset), and the ratio be-
tween the target action length and the anchor segment’s length (length). Each
head is a two-layered feed forward network and outputs logit, € RE*(C+1) and
{logit,, logit;} € RE*2 respectively.

During the training, we give the supervision of pre-defined anchors to the out-
put of our model. We fix the end point of the anchors at the latest input frame,
and define K anchors of various length (e.g. {Ly/8,L,/4,L,/2,L,}). Then, we
check the ground truth instances overlapping with each anchor and calculate
Intersection-over-Union (IoU) between the ground truths and corresponding an-
chors. If IoU is higher than matching threshold 6,,, the anchor is matched to the
ground truth and the loss L is calculated as follows:

L= EK: CE(softmax(logit. ), ge,i)s (4)
l? Go,i — Qo,i
L, = ;Ll(logito,i - T% (5)
L= i L1(logit, ; — log 24) (6)
i=1 7 a;”
L="Le+ Lo+ Lo, (7)

where CE is the cross entropy loss, L1 is the L1 loss, g, 90,9, a0, a; are the
ground truth class, the ground truth action end, the ground truth action length,
the anchor segment end, and the anchor segment length, respectively. Otherwise,
the anchor is set to the background class and the boundary regression is omitted.

By fixing the end point of the anchors at the latest input frame, the proposals
with the background class are generated at the early part of actions, and the
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anchors are matched to their ground truth in the middle and the end of the
actions, which have enough context to predict precise action boundaries.

During the inference, our model makes K action proposals {(s;,e;, c;)}5
for every timestamp as follows:

¢; = softmax(logit. ), (8)
€ = Qo + ay;l0gits s, 9)
s; = e; — ayexp(logit ;). (10)

3.6 Online Post-processing

As OAT generates action proposals for every new input, suppressing the repeti-
tive proposals is critical to the detection performance. Conventional NMS that
are used in offline TAL methods cannot be applied to our framework due to the
online constraint. Without the access to the future information, the On-TAL
model has to pick the best proposal from the repetitive proposals in the video
time axis. Therefore, we apply a neural network that determines the best time
to register to the final instance set W, which is approximately similar frames as
the frames selected by NMS.

The proposed OAT model generates K action proposals for every new input
frames. Then, we remove the proposals with the background class and apply
NMS among the outputs of the single frame. The confidence scores of the action
proposals are enqueued to the proposal history queue g5, € [0, 1]%4*¢ which has
the same length as the window size L, and can store the confidence scores by
C classes separately. g, is fed into the neural network (FC-ReLU-FC-Sigmoid),
and the network outputs the NMS selection probability s € [0,1]¢. If s is a
value larger than the suppression threshold 6, the generated proposal of the
current frame is registered to the final action instance set ¥. Once registered to
the final set, all following proposal candidates with high IoU are ignored. The
step-by-step details are described in the supplementary material.

For the training, we made input tables ([0, 1]L**LaXC where L, is video
length) from the confidence scores of OAT outputs, and made ground truth
labels ({0,1}%+*¢) from the NMS-applied results of OAT. If the proposal that
generated on timestamp ¢ is selected by NMS, the frames of timestamp t—1,¢,t+
1 are set to 1, otherwise the frames are set to 0. OSN is trained by the binary
cross entropy loss.

By this method, our framework can approximate NMS only with the past
context that does not violate the online constraint. Note that our model can also
operate in the offline setting by switching to the post-processing method that
stacks all output proposals of all timestamp, and adopting NMS.

4 Experiments

4.1 Datasets

Following Kang et al. [12], we use THUMOS’14 [11] to evaluate our model. They
also cited ActivityNet v1.3 [6], but mentioned that it is not suitable for On-TAL
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since the main objective of On-TAL is to detect multiple action instances in the
streaming setting. Therefore, we find two more datasets with three conditions.
The dataset should have boundary labels, multiple instances per video, and
multiple classes per video. We use MUSES [19] and BBDB [20], which satisfy all
conditions for evaluating our model.

THUMOS’ 14 [I1] contains 200 training videos and 213 test videos with 20 ac-
tion classes. The videos are sport-related untrimmed videos and have an average
of 15 action instances per video.

MUSES [19] contains 3,697 videos, a total of 716 hours with 25 action classes.
The videos are from TV and movie dramas, and have an average of 8.5 action
instances and 3.3 action classes per video. The action instances are multi-shot
event, which makes the dataset challenging.

BBDB [20] contains 1,172 full baseball games, adding up to 4,254 hours of
videos with 30 classes. Since a single video is a full game, it has almost all classes
in one video. Also, it has an average of 405 action instances per video. The lengths
of videos are extremely long (over 2 hours), so the methods of processing whole
video at once are difficult to adopt to this dataset.

4.2 Evaluation Metric

For an easy comparison to existing On-TAL and offline TAL methods, we ag-
gregate all generated action proposals after processing all frames in videos and
use mean Average Precision (mAP) with different IoU thresholds. We chose IoU
threshold values in {0.3,0.4,0.5,0.6,0.7} to report.

Since mAP metric is calculated once after all frames are processed, it can-
not evaluate how reactive the model is. As the secondary evaluation metric,
we propose a new online-oriented metric, named Average Farly Detected Time
(AEDT).

Assume that we have the true positive action proposal set {(ps.i, Pe,i; Dg,is cz)}f\i’l’,
where ps, pe, pg, ¢, Ny are the action start time, the action end time, the pro-
posal generation time, the action class, and the number of true positives. Also,
we have its corresponding ground truth set {(gs., ge.s, cz)}f\g, where g, g are
the start time and the end time of ground truth actions. To calculate how early
the action proposal is generated, we subtract the ground truth action end time
from the generated time of the action proposal. Formally, AEDT is defined as
follows:

Nip
1
AEDT = 5= 3 (Pgi = 9e.)- (11)
P =1

4.3 Implementation Detail

As the video feature encoder for THUMOS’14, we use the two-stream TSN [25]
trained on Kinetics [I]. On MUSES, we use the I3D [I] feature extractor following
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the conventions of previous MUSES work [19]. On BBDB, we use the RGB-
stream of TSN (ResNet-50) after setting the videos into 6 fps.

For our network, we use D = 1024 feature dimensions for the transformer, 3
encoder blocks with 8 heads, and 5 decoder blocks with 4 heads. The threshold for
matching the ground truth with the proposal (6,,) is set to 0.5, the suppression
network threshold (6s) is set to 0.1, and overlapping threshold (,) is set to
0.3. For dataset specific parameters, we use the input queue size L, = 64 and
K = 6 anchors of size {4, 8,16, 32, 48,64} for THUMOS’14, L, =150 and K =7
anchors of {4,9,18,37,75,112,150} on MUSES, and L, = 32 and K = 4 anchors
of {4,8,16,32} on BBDB. For training of the main network, we use Adam [14]
optimizer with the learning rate of 0.0001, the weight decay of 0.0001, and the
batch size of 128. The suppression network is separately trained with Adam
optimizer with the learning rate of 0.0005, the weight decay of 0.0001, and the
batch size of 128.

For the online execution, the per-frame process must be finished until the
next frame comes. If a model executes faster than the frame sampling rate (e.g.
5 fps on THUMOS’14, 0.75 fps on MUSES, 1 fps on BBDB), it is applicable to
online execution. The execution speed of our model is 70.5 fps on Nvidia RTX
2080 Ti GPU, which can be executed online.

4.4 Online Performance Comparison

To evaluate on the On-TAL task, we compare our model with the previous work
(CAG-QIL) and the post-processing baseline (OAT-Naive). We set the post-
processing method of OAT-Naive as registering the first proposal of the higher
confidence score than the threshold to the final output set and ignore all following
overlapping proposals.

As shown in Table[I} OAT performs significantly better than CAG-QIL, due
to the advantages of the anchor-based approach. In Table[2] OAT can detect the
action instance before the action ends which can be observed as minus values of
AEDT. CAG-QIL, which is based on OAD grouping, shows near-zero values of
AEDT, meaning that it detect action instances near the end of actions.

Comparing the post-processing methods, the naive approach shows the fastest
detection of actions. However, the first detected proposal may not be accurate,
so the mAP of the naive approach have inferior performance compared to OSN.
On the other hand, OSN waits for the better proposal by approximating NMS,
so it shows higher mAP and slower AEDT than the naive approach.

4.5 Offline Performance Comparison

As On-TAL is a newly proposed task, only a limited amount of works are avail-
able for the comparison. Therefore, we also compare our work with offline TAL
methods in Table [3] and Table [d Although our work succeeded to narrow the
performance gap between online and offline methods, there is still a performance
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Dataset Method 03 04 05 06 0.7
CAG-QIL [12] 48.4 40.8 33.0 24.2 16.2
THUMOS’14 OAT-Naive 57.6 50.6 43.0 30.0 15.7
OAT-OSN 63.0 56.7 47.1 36.3 20.0
CAG-QIL [12] 85 6.5 4.2 28 1.9
MUSES OAT-Naive 20.3 16.6 129 7.7 3.6
OAT-OSN 22.1 18.5 14.2 8.9 4.7
CAG-QIL [12] 36.2 35.3 329 28.5 21.8
BBDB OAT-Naive 52.4 52.1 49.5 44.2 37.8
OAT-OSN 64.4 64.2 63.4 60.4 53.4

Table 1: Comparison of mAP (%) at different tIoU thresholds with On-TAL
baseline (CAG-QIL) on 3 datasets.

Dataset Method 0.3 0.4 0.5 0.6 0.7
CAG-QIL [I2] -0.11 -0.07 -0.08 -0.07 -0.04
THUMOS’14 OAT-Naive -1.65 -1.66 -1.68 -1.73 -1.75

OAT-OSN -1.28  -1.25 -1.256 -1.23 -1.21
CAG-QIL [I2] -1.03 -0.69 -0.77 -0.79 -0.54
MUSES OAT-Naive -18.57 -16.73 -13.31 -11.05 -9.80
OAT-OSN -17.29 -16.08 -13.99 -11.12 -9.53
CAG-QIL [12] -0.02 0.03 0.10 0.17  0.21
BBDB OAT-Naive -2.78 -2.78 -2.77 -2.75 -2.77
OAT-OSN -0.15  -0.16 -0.16 -0.19 -0.25

Table 2: Comparison of AEDT (second) at different tIoU thresholds with On-
TAL baseline (CAG-QIL) on 3 datasets.

gap to the state-of-the-art offline TAL methods. However, applying the video-
level post-processing (OAT-NMS) boosts the performance and shows compara-
ble performance to the state-of-the-art offline methods. For the post-processing
method, we stack all generated action proposals in a video and apply NMS
to make final action proposals. Note that other factors, including the network
design and hyperparameters, are the same except for the post-processing. Our
model is not applicable to global or multi-scale contexts due to the processing
constraints of online inputs, but the comparable performance to offline meth-
ods with the minor post-processing change shows that our model produces high
quality action proposals as offline methods. This indicates that the performance
gap between the online and the offline method may be minimized depending on
the improvement of the controlling algorithm for repetitive proposals.

4.6 Qualitative Evaluation

As the qualitative result, we compare the output proposal sets of CAG-QIL and
OAT-OSN in Fig. 3] For the OAD-based models like CAG-QIL, the per-frame
predictions of OAD raise fundamental difficulties to group them into accurate
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Method 0.3 0.4 0.5 0.6 0.7
CDC [21] 40.1 294 233 131 7.9
BSN [17] 53.5 45.0 36.9 284 20.0
TAL-Net [2] 53.2 485 428 338 208
BMN [I6] 56.0 47.4 388 297 205
G-TAD [28] 545 476 402 30.8 23.4
PBRNet [I§] 58.5 54.6 51.3 41.8 295
VSGN [31] 66.7 604 524 41.0 304
ContextLoc [34] 68.3 63.8 543 418 26.2
MUSES [19] 689 64.0 56.9 46.3 31.0
OAT-OSN 63.0 56.7 471 36.3 20.0
OAT-NMS 69.7 64.0 539 429 270

Table 3: Comparison of mAP (%) at different tIoU thresholds with offline TAL
methods on THUMOS’14.

Dataset Method 0.3 0.4 0.5 0.6 0.7
MR [32] 12.9 113 9.2 7.6 5.9
G-TAD [28] 19.1  14.8 11.1 7.4 4.7
P-GCN [30] 19.9 171 13.1 9.7 5.4
MUSES MUSES [19] 259 226 189 15.0 10.6
OAT-OSN 22.1 185 14.2 8.9 4.7
OAT-NMS 27.7 24.3 19.9 149 9.2
Single frame [20] 10.0 7.9 34 2.5 1.6
BBDB CDC [21] 26.1 222 11.3 9.5 6.1
OAT-OSN 64.4 642 634 604 53.4
OAT-NMS 66.6 66.5 65.8 63.5 56.7

Table 4: Comparison of mAP (%) at different tIoU thresholds with offfine TAL
methods on MUSES and BBDB.

action instances. In the case of the high confidence score on the non-action
frames, CAG-QIL makes short action proposals that is not related to the ground
truth actions (Fig.[3[(a)). In the opposite case of the low confidence score on the
action frames, it makes one ground truth action into several fragmented action
proposals (Fig.|3|(b)). OAD-base models also shows limitations when the actions
are overlapping or repeat with short intervals (Fig (3] (¢c)), as CAG-QIL shows
the merged proposals on consecutive actions. On the other hand, OAT uses
instance-level context from anchors and it shows the advantages of overcoming
the problems of tick, fragmentation, and merge.

5 Model Analysis

Rethinking steps of sliding window scheme To share our observations of re-
thinking sliding window scheme, we show step-by-step results by changing the
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Fig.3: Comparison on qualitative results of OAT-ONS with CAG-QIL [I2].
Green is the ground truth, red is the result of CAG-QIL, and blue is the re-
sult of OAT-ONS. The rows are the examples of tick (a), fragmentation (b), and
merge (c), respectively.

Method 0.3 0.4 0.5 0.6 0.7
Pooling-NMS 61.0 534 427 303 16.6
ConvNet-NMS 63.1 56.6 474 322 189
OAT-NMS 69.7 64.0 53.9 429 27.0

Table 5: Comparison of mAP (%) with step-by-step changes of the anchor en-
coding components on THUMOS’14.

component from the baseline method in Table[5] All methods in this experiment
shares the sliding window framework and the same post-processing for the fair
comparison.

Firstly, we set the baseline by changing the transformers into the pooling
layers for the anchor encoding (Pooling-NMS). As a straightforward extension
of TURN [7], Pooling-NMS divides each anchor segment into three parts, and the
features of each part are average-pooled, and the three features are concatenated
for the anchor encodings. It shows the performance of 42.7% @tIoU=0.5

For the next step, we try to use the convolutional networks for the anchor en-
coding (ConvNet-NMS). ConvNet-NMS has 2-layer convnets separately for each
anchors, and the output shape of each convnets are the same. The performance
gain of exploiting convnets is +4.7% @tIoU=0.5, mainly achieved by the richer
context than the average pooling.

Our method, OAT, shows +6.5% QtIoU=0.5 gain from ConvNet-NMS. The
sliding window includes background frames, so the transformer encoder makes
rich representations including non-action contexts and its anchor decodings can
make accurate action proposals. As the byproduct of finding the effective On-
TAL framework, we found the sliding window, which is considered to be outdated
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0.3 0.4 0.5 0.6 0.7 Avg. Props.

0.1 56.4 486 39.6 26.0 11.5 36.4 5247
0.2 57.2 49.5 40.7 282 13.6 37.8 4452
0.3 57.8 50.7 423 29.0 144 388 3991
0.4 57.6 506 43.0 30.0 157 39.4 3610
0.5 56.5 49.9 419 30.4 16.6 39.1 3269

0.6 53.2 470 398 296 158 371 2911

Table 6: mAP (%) with different thresholds (row), different tIoUs (column), the
average of columns (Avg.), and the number of proposals (Props.) of OAT-Naive
on THUMOS’14.

for the offline TAL, shows the comparable performance to state-of-the-art offline
TAL methods.

Naive thresholding To strengthen the effectiveness of ONS, we show the detailed
results of OAT-Naive by changing threshold values. Our final selection of the
threshold is 0.4, since it shows the best performance on average, as seen in
Table Bl

The smaller thresholds can catch the actions with the low confidence scores,
but increase the number of false positives causing the performance decrease at
high tIoU. As the thresholds get larger, the number of proposals decreases, and
the proposals with high confidence remain. However, it overlooks the detected
actions with low confidence, causing the performance drop at low tloU.

The simple change of thresholds cannot reach to the performance of NMS
and its approximation, ONS. Those methods select the maximum confidence,
which is a relative operation, and are able to suppress repetitive proposals of
both low and high confidence.

6 Conclusion

In this paper, we proposed the anchor-based action localization model, named
Online Anchor Transformer (OAT), to deal with Online Temporal Action Local-
ization. In addition to OAT, we also proposed the Online Suppression Network
which is an online-applicable post-processing method. Our model shows signif-
icantly better performance than the baseline in terms of both mAP and online
responsiveness. By changing the post-processing method, our model performs
comparably to state-of-the-art offline TAL methods, making inspirations for re-
thinking the sliding window scheme.
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