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1 Visualization of selection of the experts

We visualize the selection of experts on classes of NTU60 in Fig. 1. Samples from
similar classes retrieve similar experts, while dissimilar classes retrieve different
experts. This is qualitative evidence that the expert retrieval mechanism assigns
each expert similar samples, which forces them to specialize in subtle cues to
distinguish them. We show more quantitative analysis of this in the next section.
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Fig.1. Visualization of experts selection at 20% observation of the actions. Each
subplot contains information from an Expert Bank, where the horizontal axis represents
the M experts (where M = 5) and the vertical axis denotes their normalized matching
scores. (Left) At 20% observation ratio, actions “Punch/Slap” and “Point finger” are
similar, and their expert matching scores are also similar. (Right) At 20% observation
ratio, actions “Point finger” and “Kicking” are different, and their expert matching
scores are also different.
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2 Quantitative analysis of expert selection

In the section above, we have shown how samples from similar classes tend
to retrieve similar experts, while dissimilar classes retrieve different experts. In
order to show that this trend holds for more samples in general, here we perform
further quantitative analysis.

We first average the expert matching scores (for each of the d x M experts
within an ERA module) over all samples from C7, and represent it as a vector
s¢1 € R¥M which can be interpreted as the average expert matching scores
for a class C;. The same is done for the samples from Cy to obtain s©>. Then,
we calculate 7c, ¢, € [—1,1] as the cosine similarity between the vectors s
and s“2. The higher the ¢, ¢, values between the two classes, the higher the
tendency of samples from those classes to activate the same experts.

We analyse two action classes that look visually similar (“Punch/Slap” and
“Point finger”), and one action class that looks very different (“Kicking”), and
calculate r¢, ¢, between those classes in Table 1. The similar actions “Punch/Slap”
and “Point finger” have a high cosine similarity score of 0.83, compared to the
dissimilar actions “Punch/Slap” and “Kicking” with a score of -0.03, or “Point
finger” and “Kicking” with a score of -0.01, showing that similar classes tend to
share the same experts.

Table 1. Computed cosine similarity scores ¢, ,c, between action classes from NTUGO
dataset. r¢,,c, values tend to be higher for action classes that are more similar (e.g.
Punch/Slap vs Point finger), and tend to be lower for action classes that are less similar
(e.g. Point finger vs Kicking).

Cy = Punch/Slap|C> = Point finger|C> = Kicking
C; = Punch/Slap - 0.83 -0.03
C'1 = Point finger 0.83 - -0.01
C'1 = Kicking -0.03 -0.01 -

3 Latency during Testing

We display the latency during testing in Table 2, as measured on a Nvidia Geforce
RTX 3090 GPU. Replacing basic convolutional modules with ERA modules only
slightly increases the latency during testing. Note that performance in early
action prediction is improved significantly with our method, with improvement
of around 7 AUC points on NTU60 and NTU120, more than 5 AUC points on
SYSU and more than 4 AUC points for UCF101.

4 NTUGO early action prediction experiment details

We follow the experimental settings of [2] for the NTUGO dataset. We describe
it in more detail below.
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Table 2. Latency (ms) of testing a batch of samples. The testing latency for Baseline
and ERA-Net refer to latency incurred for one forward pass only. The Baseline model
uses the backbone without ERA modules, while ERA-Net replaces 25% of convolutional
layers with ERA modules.

Method Latency (ms) of testing a batch of 64 samples

Baseline 621
ERA-Net 701

For each of the 10 settings (from 10% to 100%), we simply select the cor-
responding number of consecutive frames from the full action sequence as the
partial sequence, starting from the first frame. During training, the observation
ratio of each sample in each batch is sampled randomly from a uniform distri-
bution (to select evenly from all the 10 settings). If a partial sequence has less
than 300 frames, the sequence is repeated until 300 frames is reached. During
evaluation, the different observation ratios are systematically tested according to
each setting (so we fix the observation ratios of input sequences). Input partial
sequences are also repeated in a similar manner, until there are 300 frames in
each input sequence.

For training and testing, we follow [2] where 20 subjects are employed for
training and the remaining 20 subjects are left for testing. We train a single
model to predict action labels at all the different observation ratios, and also
evaluate that model on all observation ratios.

5 UCF101 early action prediction experiment details

As stated in the paper, we follow the experimental settings of [4] for the UCF101
dataset. Below, we explain the procedures in more detail.

Firstly, from each full video, we obtain 10 clips of different lengths, ranging
from only using the first 10% of frames, to using the full 100% of frames. During
training, when the video is selected to be used as input data, one of the 10 clips
is randomly selected instead. From the clip, 16 frames are uniformly sampled,
and re-sized into a 3 X 16 x 112 x 112 tensor as input to the network. Notably,
a single model is trained to predict action labels at different observation ratios.
That single model is also evaluated on all observation ratios systematically.

For evaluation, we followed [1] and used the first 15 groups of videos in
UCF101 for training, while 3.6k action videos were used for testing.

6 Algorithm of Expert Learning Rate Optimization

In Algorithm 1, we show a summary of our Expert Learning Rate Optimization
method.
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Algorithm 1: Expert Learning Rate Optimization

Input: Training data D, batch size B, model learning rate «;

Output: Trained network 0;

Initialize network 6 with non-expert parameters w and experts £ randomly.
Initialize set of expert learning rate parameters 3, with each element set to «;

while not converge do

(1) Virtual Training:

{abr*, yir* L, = SampleMiniBatch(D) ;

Calculate loss Lira = 5 Zle L(w, E; x5, yi™);

Update non-experts w = w — aVyLira ;

With 8 frozen, update experts € = & — BVeLira ;

(2) Meta-Expert Optimization:

{zy, yv*'} 2, = SampleMiniBatch(D) ;

Calculate loss Lya; = % Zle L(w, é;w;’al, y;-’al);

With w and € frozen, update 8’ = 8 — aVLyal ;

(3) Model Training:

Update non-experts w’ = w — aVy Lira ;

Update experts &' =& — B'VeLlira ;

Setw=w',E=E,8=08

end

7 Replacement of Layers in Backbones

We select convolutional layers in the backbone models to replace with our ERA
modules. In this section, we explain more in detail which convolutional layers
were selected for replacement. For both of our backbones, we select convolutional
layers uniformly across the backbone, in order to learn subtle cues at different
levels (i.e. to learn low, mid, and high level subtle cues).

The 2s-AGCN [3] backbone model consists of two AGCN streams that utilize
two types of information (joint and bone). Both streams of 2s-AGCN consist of
stacked TCN-GCN blocks. We thus pick one block from every 4 TCN-GCN
blocks, and replace the convolutional layers within that block with our ERA
module.

The 3D ResNeXt-101 [1] backbone model uses 3D ResNeXt blocks as a basic
unit of its architecture. Thus, we select one block every 4 ResNext blocks, and
the convolutional layers within that block are replaced with our ERA module.
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