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Abstract. The Audio-Visual Event Localization (AVEL) problem in-
volves tackling three core sub-tasks: the creation of efficient audio-visual
representations using cross-modal guidance, the formation of short-term
temporal feature aggregations, and its accumulation to achieve long-term
dependency resolution. These sub-tasks are often performed by tailored
modules, where the limited inter-module interaction restricts feature
learning to a serialized manner. Past works have traditionally viewed
videos as temporally sequenced multi-modal streams. We improve and
extend on this view by proposing a novel architecture, the Dual Per-
spective Network (DPNet), that - (1) additionally operates on an intu-
itive graph perspective of a video to simultaneously facilitate cross-modal
guidance and short-term temporal aggregation using a Graph Neural
Network (GNN), (2) deploys a Temporal Convolutional Network (TCN)
to achieve long-term dependency resolution, and (3) encourages interac-
tive feature learning using a cyclic feature refinement process that alter-
nates between the GNN and TCN. Further, we introduce the Relational
Graph Convolutional Transformer, a novel GNN integrated into the DP-
Net, to express and attend each segment node’s relational representation
with its different relational neighborhoods. Lastly, we diversify the in-
put to the DPNet through a new video augmentation technique called
Replicate and Link, which outputs semantically identical video blends
whose graph representations can be linked to that of the source videos.
Experiments reveal that our DPNet framework outperforms prior state-
of-the-art methods by large margins for the AVEL task on the public
AVE dataset, while extensive ablation studies corroborate the efficacy of
each proposed method.

1 Introduction

The rise of various multimedia platforms has resulted in the burgeon of videos
across various sectors. The presence of various modalities within a video ren-
ders it a rich source of information. Videos stemming from real-life scenes often
contain the audio and visual modalities in harmony. In order to understand,
recognize and reaffirm events in one modality, processing the other modality can
become a necessity. This is particularly true in the case of static sound sources



2 V. Rao et al.
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Fig. 1: (a) Serial vs cyclic feature refinement involved in the execution of the
three core AVEL sub-tasks: Cross-Modal Guidance (CMG), Short-Term Tempo-
ral Association (STTA), and Long-Term Dependency Resolution (LTDR). Serial
feature refinement limits interaction between sub-task modules to a single pass.
Valuable information acquired by the later modules are not conveyed to the
earlier modules. Cyclic feature refinement alternates between graph and sequen-
tial stream perspectives, enriching the modal features by increasing information
exchange between the modules. (b) Visualization of the graph perspective of a
sample video. Segment-wise audio and visual features are represented by separate
nodes, while edges constitute temporally directed and cross-modal relationships

such as an idling car, where it is difficult to recognize an audio-visual event
(AVE) of a static car running without the disambiguation provided by the audio
modality. The integrated processing of audio and visual modalities has bolstered
methods in various tasks such as sound source localization and separation [11,
1, 17], synthesis of audio from visual data/visual data from audio [5, 4], etc.

AVE Localization (AVEL) engulfs the core sub-tasks of (1) establishment of
efficient audio-visual representations of segments through cross-modal guidance,
(2) formation of short-term temporal associations to discern patches of event se-
quences and (3) their accumulation to store event contexts and resolve long-term
temporal dependencies. Prior works view videos as sequential modal streams and
devise separate modules to tackle these sub-tasks. The sub-network of [20] per-
forms (1), that of [10] perform (1) and (2), while that of [26] perform all three.
As illustrated in Fig. 1a, these modules seldom interact with each other apart
from the order in which the pipeline is constructed, resulting in the limited serial
feature refinement of a segment. Differently, we propose to view videos from an
additional graph perspective with modal segment representations as nodes and
their interconnections through temporally directed and cross-modal relationships
as edges, as shown in Fig. 1b. By using GNNs on the video’s graph, a node up-
date encourages a modal segment’s features to learn from its temporal neighbors
as well as its modal counterparts, hence simultaneously addressing sub-tasks (1)
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and (2). Although deeper GNNs operating on these video graphs have larger
temporal receptive fields, their innate nature induces the oversmoothing effect
[8], making them undesirable to perform sub-task (3). Instead, we process the se-
quential stream perspective of a video using Temporal Convolutional Networks
(TCNs) to implement long-term dependency resolution. Further, as shown in
Fig. 1a, we alternately process the graph and sequential perspectives, allowing
the three sub-tasks to co-refine the features to achieve cyclic feature refinement.
We term this procedure as dual perspective processing and the corresponding
network as the Dual Perspective Network (DPNet).

Since edges represent different relation types, we can leverage relational
GNNs to compose relation-specific node updates. Prior relational GNNs such as
Relational Graph Convolutional Network [15] and Relational Graph Attention
Networks [3] assume that inter-node relationships are independent. Subsequently,
the node updates are derived separately from each relational neighborhood be-
cause they are treated as isolated groups. However, in a video, the temporally
directed and cross-modal connections between audio and visual segments are se-
mantically related, hence breaking the assumption of relational independence. To
induce cross-relational learning, we create a novel GNN called Relational Graph
Convolutional Transformer (RGCT) which updates a segment node’s relational
representation by attending on and learning from its temporal and cross-modal
neighborhoods.

An issue with the graph perspective is that segment nodes have limited neigh-
bors of temporally directed and cross-modal nature. Given the segment labels,
an effective way to enrich the graph representations is through graph expansion
by interconnecting similar videos of the same event type. However, the expan-
sion would be restricted to identical segment sequences, possibly with limited
semantic context. Inspired by the CutMix technique [23], we devise a novel video
augmentation strategy called Replicate and Link, which preserves the event com-
position and the semantic context of the original segment sequence. The graphs
of the replicas and the originals can then be interlinked to achieve neighborhood
expansion for each segment, hence allowing for diversified node updates.

We deploy the DPNet framework to tackle the AVEL problem under the
supervised and weakly supervised setting on the public AVE dataset [18]. The
contributions of our work are summarized below:

– We propose the Dual Perspective Network (DPNet) to alternately process
videos as sequential modal streams, and as graphs. Different from prior
works, the DPNet design addresses all the sub-tasks of the AVEL problem
while achieving cyclic feature refinement.

– We introduce the Relational Graph Convolutional Transformer (RGCT) to
update a node’s relational representation by attending across the different
relational neighborhoods. RGCTs are used in the DPNet to perform cross-
modal guidance and short-term temporal aggregation.

– We design the Replicate and Link video augmentation technique to expand
the training set by generating semantically identical replica videos, and en-
rich a video’s graph representation through graph linkage with the replica.
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– Experiments show that the DPNet outperforms prior works under the con-
sidered settings on the AVE dataset.

2 Related Works

Graphs in Temporal Action Localization (TAL): In TAL, prior works ex-
ploit a GNN’s ability to perform neighborhood aggregation for refining segment
or action proposal features. In [24], the action proposal features are treated as
nodes and edges imply a significant temporal overlap or small inter-proposal
distance. GNNs perform classification and boundary regression on the node fea-
tures to achieve TAL. In [13], visual segments form the nodes and the edge
weights between all segments are learned with a similarity metric. The learnt
inter-segment relation assists in co-localization of similar actions. [22] construct
a novel GCNeXt block which splits and operates on snippet nodes using two
separate graphs to reflect temporal and semantic connectivity. The graphs are
then merged and the updated features are used for performing action localiza-
tion. Differently, to tackle the AVEL task, our graph constitutes segment nodes
and temporal and cross-modal edges. Our GNN, the RGCT, refines segment
features by attending across entire relational neighborhoods, rather than across
constituent nodes.

Audio-Visual Event Localization (AVEL): The AVEL task entails the iden-
tification of temporal regions in a video corresponding to events which are both
audible and visible. In [10], a unique Audio-Visual Transformer (AVT) produces
short-term spatially attended feature maps corresponding to the sound source
into an instance attention module to determine the extent of correlation between
the audio and visual components. In [21], an audio-guided spatial-channel at-
tention mechanism is used to refine visual features corresponding to the sound
source. The audio features and the attended visual features are processed by
blocks of cross-modal scaled dot product attention modules to co-refine modal
features before performing segment-wise classification. Recently, [26] introduced
a Positive Sample Propagation (PSP) module which calculates and thresholds a
similarity matrix between all audio and visual segments. The PSP module then
limits the refinement of segment features based on only the positively related
connections. Different from prior works, we leverage the graph representation
of videos to attend on short-term relationships defined according to temporal
and cross-modal directions using GNNs and learn long-term relationships on the
stream representation using temporal convolutions.

3 Methodology

3.1 Problem Statement

For the AVEL [18] task, each video sequence is split into N non-overlapping seg-

ments. The segment level event label is denoted by yt = {yct |yct ∈ {0, 1},
∑C−1

c=0 yct =
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Fig. 2: Illustration of the DPNet used for the AVEL task. Audio and visual
features are extracted from a video and fed to a series of Dual Perspective
Blocks (DPBlocks). Each DPBlock first processes the graph perspective of the
video using an RGCT layer and then processes the sequential stream perspective
using a TCN layer. The output audio-visual features are gated and then subject
to segment classification

1} while the video level event label is denoted by y = {yc|yc ∈ {0, 1},
∑C−1

c=0 yc =
1}. Here C denotes the number of event classes inclusive of a BG event indicat-
ing independently audible (or visible) events or the absence of an event. For
each video segment, the audio and visual features are extracted and denoted
as {fA

t , fV
t }Nt=1 respectively. Here fA

t ∈ Rda and fV
t ∈ Rdv×S where da is the

dimension of the audio features, dv and S are the dimension and the spatial size
of the visual feature maps respectively. Following [18], we fix the feature extrac-
tors and build our architecture on top of these local features. Supervised Event
Localization (SEL) and Weakly Supervised Event Localization (WSEL) tasks
entail the prediction of the segment level event label ŷt, wherein yt is available
to use for training in SEL and only the video level label y is available for WSEL.

3.2 Dual Perspective Network for AVE Localization

We address the three core sub-tasks of AVEL, namely, the establishment of effi-
cient audio-visual representations through cross-modal guidance, the formation
of short-term temporal associations, and their accumulation to store event con-
texts. The first two sub-tasks involve feature interaction within a small temporal
neighborhood while the last involves learning to resolve long-term dependen-
cies through the formation of a global understanding. To address the former,
we employ GNNs on a video’s graph perspective and we tackle the latter us-
ing modality-wise temporal convolutions on its sequential stream perspective.
A block that sequentially processes both perspectives once is termed as a Dual
Perspective Block (DPBlock) and the network with one or more DPBlocks as
the Dual Perspective Network (DPNet). We visualize the DPNet architecture
for the AVEL task in Fig. 2 and detail its mechanism below.

Graph Perspective: In the graph perspective of a video, a node represents an
audio or visual segment’s features local to the DPBlock. Concretely, we define
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a node representing a segment’s features of modality m and time step t within
a DPBlock of index b as nm

b,t = fm
b,t,m ∈ {A, V }, where fm

b,t represents the input
features to the graph perspective layer.

The edges between segment nodes are defined to be temporally directed and
cross-modal in nature. Node updates through temporally directed edges enable
the encoding of short-term event contexts within the same modality. These con-
texts can lead to the optimal usage of learnable parameters. E.g., event borders
can provide useful cues to neighboring segments regarding how to characterize
the start or end of an event. Node updates through cross-modal edges perform
cross-modal feature refinement which can assist to achieve a local consensus on
an ambiguous AVE. E.g., for static sound sources like idling cars or church bells
whose bell movements are occluded, the model can utilize the visual cue of the
presence of the static candidate sound source while leveraging the audio signal
to confirm the presence of the characteristic sound. All node updates execute
simultaneously when the graph is processed using a GNN.

We denote the edge set representing the temporally forward relationships
between segments of the same modality m as Em

b,rf
and temporally backward

relationships as Em
b,rb

. Further, we denote the edge set representing the audio to
visual and visual to audio relationships between audio and visual segments as
Eb,rAV

and Eb,rV A
respectively. We define Em

b,rf
, Em

b,rb
, Eb,rAV

and Eb,rV A
as:

Em
b,rf

= {(nm
b,t, n

m
b,t+1)|t ∈ {1, 2, .., N − 1}} (1)

Em
b,rb

= {(nm
b,t, n

m
b,t−1)|t ∈ {2, .., N − 1, N}} (2)

Eb,rAV
= {(nA

b,t, n
V
b,t)|t ∈ {1, 2, .., N}} (3)

Eb,rV A
= {(nV

b,t, n
A
b,t)|t ∈ {1, 2, .., N}} (4)

Summarizing the video’s graph local to a DPBlock of index b as Gb =
{Nb, Eb}, where Nb = {nm

b,t|m ∈ {A, V }, t ∈ {1, 2, .., N}} represents the modal
segment node set and Eb = Em

b,rf
∪Em

b,rb
∪Eb,rAV

∪Eb,rV A
represents the temporally

directed and cross-modal edge set. We process Gb using a suitable GNN, FGNN
b .

Sequential Stream Perspective: Here, a video is described exclusively by
modality-wise temporal sequences. By processing the video within a reference
modality, the network learns to assist in forming short-term modality-specific
contexts and gradually accumulates these to learn long-term dependencies. This
procedure is critical since AVEs can be temporally well spaced. An exemplar
case would be the animal sound AVEs which occur discontinuously and in short
bursts. The model needs to characterize the entire event and remember the event
context to recognize it if it occurs again within the video. We choose Temporal
Convolutional Networks (TCNs) over RNNs to process each modal stream, as
the former can potentially learn longer sequences than the latter [2].

Formally, we denote the input features of a segment of modality m ∈ {A, V }
and time step t to the sequential stream layer of DPBlock index b as f̃m

b,t. The

audio and visual streams are denoted respectively as FA
b = {f̃A

b,t, t ∈ {1, 2, .., N}}
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and FV
b = {f̃V

b,t, t ∈ {1, 2, .., N}}. We employ TCN layers FTCN
b,A and FTCN

b,V with

parameters WA
b and WV

b , kernel size k, and the Swish activation [12]:

FTCN
b,A = Swish(TCN(FA

b , k;WA
b )) (5)

FTCN
b,V = Swish(TCN(FV

b , k;WV
b )) (6)

Since FTCN
b,A and FTCN

b,V operate separately on audio and visual streams, we

denote their parallel execution as FTCN
b .

Dual Perspective Network: We first denote the DPBlock of index b as
FDPBlock

b and define it as the sequential execution of FGNN
b to FTCN

b . The
DPNet backbone FDPNet can be expressed as the sequence of B DPBlocks.
Formally,

FDPBlock
b = FGNN

b → FTCN
b (7)

FDPNet = FDPBlock
1 → FDPBlock

2 .. → FDPBlock
B (8)

For AVEL, we first subject fV
t to a Global Average Pooling layer, yielding a

condensed feature vector f̂V
t ∈ Rdv . An FC layer with parameters Wa ∈ Rda×dv

is applied to fA
t to yield f̂A

t ∈ Rdv . Next, we input {f̂A
t , f̂V

t }Nt=1 to the DPNet
backbone. The output audio and visual features of the DPNet backbone are

denoted as { ˆ̂fA
t ,

ˆ̂
fV
t }Nt=1. We then learn a gating function FG through an FC layer

parameterized by WG with a sigmoid activation that operates on a fusion of the
features of both modalities. Finally, we apply FG to yield the final localization
features as a weighted consensus through the convex combination of both the
modalities.

FG
t = σ(FC([

ˆ̂
fA
t ,

ˆ̂
fV
t ];WG)) (9)

GAV
t = FG

t ⊙ ˆ̂
fA
t + (1−FG

t )⊙ ˆ̂
fV
t (10)

where [.] denotes concatenation and ⊙ the element-wise product. We transform
GAV

t into localization predictions over C classes using an FC layer with a softmax
activation.

ŷt = Softmax(FC(GAV
t ;Wseg)) (11)

The WSEL is formulated as a Multi-Instance Learning (MIL) problem, so we use
MIL pooling to aggregate the segment predictions into a video level prediction
ŷ. We use the cross-entropy loss to supervise the SEL and WSEL tasks using
the segment-level (yt) and video-level (y) labels respectively.

3.3 Relational Graph Convolutional Transformer

Earlier, we deduced that the temporally directed and cross-modal edges between
audio and visual segment nodes are semantically related, which breaks the as-
sumption of relational independence that fuels the prior GNNs like Relational
Graph Convolutional Networks (RGCN) [15] and Relational Graph Attention



8 V. Rao et al.

Fig. 3: Visualization of the mechanism of the RGCT. Here, different colors indi-
cate the different relation types. A reference node “Ref” (audio/visual node) is
projected into its relational polymorphs as query vectors, while its neigbhorhood
aggregations are projected into key and value vectors. The cross-relational scaled
dot product attention is used to compose the node update from the relational
neighborhoods

Networks (RGAT) [3]. To leverage and extract the semantic relationships be-
tween the different edge types, we execute a cross-relational attention mecha-
nism via a novel GNN called the Relational Graph Convolutional Transformer
(RGCT), as shown in Fig. 3. The RGCT is deployed to the DPNet as the FGNN

b

in a DPBlock.
We simplify the graph notation by omitting reference to DPBlock b as G =

{N , E}. We denote the set of indices of the neighbor nodes to a reference node
ni under relation r as ηri , where r ∈ R, R = {rAf , rAb, rV f , rV b, rAV , rV A} rep-
resents the audio and visual temporally directed and cross-modal relationships
defined earlier. Next, the neighborhood aggregation of ηri is defined as:

NA(ηri ) =
1

|ηri |
∑
j∈ηr

i

nj (12)

Nodes can be expressed according to the different relationships it exhibits. These
expressions are called relational polymorphs and they act as reservoirs of relation-
specific details that can be captured from a node’s general representation. E.g., a
visual node of a person speaking can have the visual temporal forward polymorph
encode the presence of the person in the next segment, while the visual to audio
polymorph can associate the person’s open mouth with the audible speech.

We transform a node ni into a relational polymorph of type r using an FC
layer parameterized by W r

Q as a query vector Qr
i = FC(ni;W

r
Q). Following the

purpose of deriving cross-relational attention, we transform the neighborhood
aggregations into key and value vectors parameterized by W r

K and W r
V respec-

tively as Kr
i = FC(ηri ;W

r
K) and V r

i = FC(ηri ;W
r
V ). We collect the relational

polymorphs and neighborhood aggregations of ni, into single matrix represen-

tations as Qi =
r

∥ Qr
i , Ki =

r

∥ Kr
i and Vi =

r

∥ V r
i , where

r

∥ is the stack operation
over all r ∈ R, (Qr

i ,K
r
i , V

r
i ) ∈ Rd and (Qi,Ki, Vi) ∈ R|R|×d. We build the

cross-relational attention map Atti ∈ R|R|×|R| and the relation-weighted neigh-
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borhood aggregation NAatt using scaled dot product attention [19] as follows:

Atti = Softmax(
QiK

T
i√
d

) (13)

NAatt(ηi) = AttiVi (14)

To summarize NAatt(ηi), we average along the relation axis r as NAatt(ηi) =
avgr(NAatt(ηi)). Then, we project ni to the feature space of NAatt using an FC
layer parameterized by W1, followed by the Swish activation function. Finally,
we update the node ni to n′

i using an FC parameterized by W2:

n̂i = Swish(FC(ni;W1)) (15)

n′
i = Swish(FC(n̂i +DropOut(NAatt(ηi));W2)) (16)

3.4 Replicate and Link Video Augmentation

Eqs. 1-4 reveal that a node in the video’s graph possesses a small neighborhood.
Small neighborhoods limit node updates and encourage nodes to overfit by creat-
ing rigid relation templates. We can alleviate overfitting by increasing the GNN
layers to expose nodes to larger neighborhoods. However, on small graphs, this
leads to the over-smoothing phenomenon [8]. We tackle this issue by expanding
the neighborhood at run-time through the linkage of the graph representations
of the original video with that of the semantically identical replicas. We term this
video augmentation technique as Replicate and Link and visualize the process
through an example in Fig. 4.

Replica Creation: Analogous to action instances in [9], we observe that AVEs
can be decomposed into start, continuation, and end sub-events based on tempo-
ral progression. Sub-events of the same class type exhibit semantic similarities.
E.g., the start sub-event of the helicopter event involves its lift-off from the

(a) (b)

Fig. 4: (a) Illustration of the Replicate operation. A clip of a “Train” AVE is
broken down into start, continue and end sub-events. Then, a replica clip of the
same sub-event sequence is generated. Here, FG indicates the foreground train
event. (b) Visualization of the Link operation wherein reference audio and visual
nodes receive relevant edge connections from both the original and replica graphs
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Algorithm 1: Replica Creation

Input: Original video O of event type e, start, continue and end sub-event
databases

Output: Replica video RO of event type e
1: Identify a sub-event sequence for O as SEQO = se1, se2, ..seNse , such that

there exists sub-event samples of matching segment length for each
sei ∈ SEQO, in the sei database

2:3: Initialize RO to None
4: for i← 1 to Nse do
5: Choose a random sample v from sei database matching the segment

length of sei
6: Append v to RO

end

helipad while its end sub-event often involves its landing and the termination
of blade rotation. We propose that sub-event segments from different videos of
the same event type can be swapped to synthesize semantically identical videos
called replicas.

For each training set video of event type e, we first identify and extract
the start and end sub-event segments using a one-segment context window
around the event border. Next, we identify the continue sub-event segments
as those which are wedged between a start and end sub-event. We copy and
decompose a continue sub-event of length L into smaller continue sub-events of
length 1, 2, .., L − 1. We store the respective sub-events into separate sub-event
databases. Then, given an original video and the sub-event databases of event
type e, we generate the replica using Algorithm 1. The discontinuity in context
introduced by stitching sub-events from different videos allows the network to
hone in on the discriminative features specific to the sound source.

Graph Linkage: Given replica videos of identical event sequences, we mutually
expand the graph representations of the original and replica videos through
graph linkage. Formally, given the graphs of the original and replica as Gorig =
{N orig, Eorig} and Grep = {N rep, Erep}, we merge Gorig and Grep and then add
temporally directed and cross-modal edges between N orig and N rep to yield the
expanded graph as Glink = {N link, E link}. Here, N link = N orig∪N rep and E link

is defined below given that m ∈ {A, V }:

Ẽm
rf

= {(ñm
t , ñm

t+1)|t ∈ {1, 2, .., N − 1}, ñm
t ∈ N link} (17)

Ẽm
rb

= {(ñm
t , ñm

t−1)|t ∈ {2, .., N − 1, N}, ñm
t ∈ N link} (18)

ẼrAV
= {(ñA

t , ñ
V
t )|t ∈ {1, 2, .., N}, ñm

t ∈ N link} (19)

ẼrV A
= {(ñV

t , ñ
A
t )|t ∈ {1, 2, .., N}, ñm

t ∈ N link} (20)

E link = Ẽm
rf

∪ Ẽm
rb

∪ ẼrAV
∪ ẼrV A

(21)

Through graph linkage, we diversify the feature space of the aggregated neigh-
borhoods (refer Eq. 12) and correspondingly influence the node update in Eq. 16.
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4 Experiments

Dataset and Evaluation Metrics: The AVE dataset [18] is a subset of the
AudioSet [6] containing 4143 videos covering 28 real-life event classes such as
human speech, vehicle sounds, musical performances etc. Each video is evenly
partitioned into 10 segments and each segment is 1 second long. Event labels are
available at the segment and video level. AVEs are both audible and visible and
spans for at least two seconds. We adopt the same train/validation/test split
as [18]. Recently, [26] corrected the annotations for some test videos and report
their performance on this corrected test set. We refer to the AVE dataset with
the original test set as O-AVE and the one with the corrected version as C-
AVE. Following all prior works, we evaluate the localization performance using
the global classification accuracy of segment predictions.

Implementation Details: For a fair comparison with prior works, we utilize the
same extracted audio and visual features (provided with the AVE dataset) using
VGGish [7] and VGG19 [16] networks pretrained on AudioSet [6] and ImageNet
[14] respectively. We implement the DPNet using PyTorch Geometric library.
The DPNet is built with 4 DPBlocks, each with an RGCT operating first and
configured with a dropout probability of 0.2, followed by a TCN layer of kernel
size 3. The feature size is set to 768 for all transformations. We train the DPNet
using a mini-batch of 48 videos, and use cosine annealing with warm restarts to
cycle the learning rates every 20 epochs from 1 to 0.1 till epoch 300, and then to
0.01 till epoch 400. Only for the SEL setting, we dynamically generate and link
one replica for each video in the mini-batch. For all our experiments, we fix the
random seed values for all libraries to ensure reproducible results.

4.1 Quantitative Analysis

Comparisons with SoTA: We compare the AVEL performance of our DP-
Net on the AVE dataset under the SEL and WSEL settings with Audio-Visual
Transformer (AVT) [10], Cross Modal Relation Aware Network (CMRAN) [21]
and Positive Sample Propagation (PSP) Network [26]. Unlike prior works, DP-
Net uses GNNs and TCNs and performs cyclic feature refinement via dual per-
spective processing. As demonstrated in Table 1, the DPNet with our proposed
RGCT outperforms prior works, validating the superiority of cyclic feature re-
finement. Specifically, DPNet outperforms the previous SoTA, CMRAN, on the
O-AVE dataset by 1.53% on the SEL task and by 1.56% on the WSEL task.
Also, on the C-AVE dataset, it surpasses the previous SoTA, PSP, by 1.88% on
the SEL task and by 1.65% on the WSEL task.

Effectiveness of the Replicate and Link Augmentation: We investigate
the role of the Replicate and Link augmentation technique for the AVEL task
under the SEL setting and summarize the ablation in Table 2. We note that
the base DPNet performs competitively against prior SoTA methods for the
SEL task. We observe that the replication procedure brings a ∼0.6-0.7% boost.
On inspection, we observe large improvements (>10%) on events that have high
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Table 1: Performance comparison with SoTAs for the SEL and WSEL tasks on
the O-AVE and C-AVE datasets

AVEL Method Dataset WSEL Acc (%) SEL Acc (%)

AVT [10] O-AVE 70.20 76.80
PSP [26] O-AVE 72.93 76.84

CMRAN [21] O-AVE 72.94 77.40
PSP [26] C-AVE 73.50 77.80

DPNet (Ours w/ RGCT) O-AVE 74.50 78.93
DPNet (Ours w/ RGCT) C-AVE 75.15 79.68

Table 2: Ablation study for the Replicate and Link augmentation technique for
the SEL task on the O-AVE and C-AVE datasets. Replicate indicates inclusion
of the generated replicas during training. Link indicates the interconnection of
the graph representations of the original and replica videos

DPNet Replicate Link
O-AVE C-AVE

SEL Acc. (%) SEL Acc. (%)

✓ 77.50 78.08
✓ ✓ 78.08 78.78
✓ ✓ ✓ 78.93 79.68

scope to focus on common event contexts rather than the sound source. Example
contexts include the green fields where horses ride, uniformly colored walls where
clocks sit, and surrounding traffic with buses in between. Further, by applying the
link operation, we derive an additional ∼0.9% increase in overall performance
with major improvements visible on AVEs of rodents (+17%), female speech
(+8%), and motorcycle (+7%). We observe that these categories benefit from a
richer sound source localization due to the feature interpolation achieved during
the neighborhood aggregation on the expanded graph representation.

Perspective Combinations: Here, we investigate the influence of each per-
spective by analyzing the performance of similarly sized networks which cover
various perspective combinations. Results are presented in Table 3. Rows 1 and 2
respectively denote the RGAT [3] and RGCT only networks which process only
the video’s graph perspective. Row 3 denotes a TCN only network operating
separately on the audio and visual streams. Rows 4 and 5 present the networks
which respectively process the sequential stream (TCN) to graph perspectives
(RGCT) and vice versa. The DPNet with Parallel Perspective Block (PPBlock)
in row 6 performs parallel processing of both perspectives within a block using
the split-transform-merge strategy, instead of the serial style we follow in the
DPBlock. Finally, rows 7 and 8 indicate the DPNet with different RGCT-TCN
order within a DPBlock as defined in Equation 7. For all networks, the gating
mechanism described in Equations 9 and 10 performs the feature fusion for lo-
calization. We perform hyperparameter tuning separately on each network to
extract the best individual performances.

Within the graph-only perspective setting (rows 1 and 2), we observe that the
proposed RGCT only network significantly outperforms the RGAT only network,
highlighting the importance of executing the RGCT’s cross-relational attention



DPNet for AVE Localization 13

Table 3: Ablation study on the various networks tailored for different perspective
combinations. Performance is reported for the SEL and WSEL tasks on the O-
AVE dataset. For the SEL task, Base denotes performance of the network alone,
Rep. denotes addition of replica videos during training, and Link denotes the
inclusion of the link operation

Network
Perspective WSEL SEL Acc (%)
Setting Acc. (%) Base + Rep. + Link

1. RGAT Only One 51.83 56.11 58.91 60.47
2. RGCT Only Perspective 59.22 63.73 64.72 67.13
3. TCN Only Only 70.20 74.60 76.10 N/A

4. TCN → RGCT Two 59.40 64.17 66.80 70.08
5. RGCT → TCN Perspectives 65.52 65.37 70.50 71.07

6. DPNet w/ PPBlock Block-wise 71.42 74.82 76.32 77.36
7. DPNet w/ Graph Second Two 73.70 76.55 78.01 78.60
8. DPNet w/ Graph First Perspectives 74.50 77.50 78.08 78.93

mechanism for the semantically related relationships. Additionally, we discover
that the low results obtained using graph-based (sub)networks (rows 1, 2, 4, and
5) are caused by the oversmoothing effect by the GNN on the localization features
which results in similar event predictions for many continuous segments within
a video. Similarly, we observe that although the TCN layer in the last DPBlock
of the DPNet in row 7 produces discriminative features, the subsequent RGCT
layer smooths them across the temporal vicinity before localization, reducing
the segment-wise localization performance. Within the DPNet designs (rows 6-
8), although the DPNet w/ PPBlock is competitive, it falls short to that of
DPNet w/ DPBlock (row 7 and 8). We attribute this to the reduced interaction
between the parallel TCN and RGCT layers within a PPBlock as opposed to the
richer interaction achieved during their sequential execution within a DPBlock
of the DPNet. Finally, we observe that the inclusion of the Replicate and Link
augmentation boosts the performance of all methods wherever applicable, with
larger increments visible when the base network performance is relatively low.

4.2 Qualitative Analysis

For each relation r of a relevant audio/visual node ni, we utilize the Class Ac-
tivation Map [25] algorithm to visualize the Feature Activation Map (FAM) for
each relational polymorph, by taking the overall maximum activation (to avoid
region inversions) of the query vector Qr

i of the RGCT in the first DPBlock.
Although FAMs here cannot be compared directly to attention maps of prior
work, they offer insights into the model’s decision-making process. In Fig. 5, we
plot the FAMs of the relational polymorphs for segments from videos of different
AVE types. We observe that temporally forward polymorphs focus on locating
the spatial region(s) corresponding to the actual parts of the sound source, while
the temporally backward polymorphs often concentrate on ensuring the presence
of the sound source itself. E.g., the audio forward polymorph for the mandolin
AVE captures the contact of the player’s fingers with the mandolin, and that of
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Fig. 5: Visualizations of the Feature Activation Maps from query projections of
the audio and visual nodes into relational polymorphs. Each relational poly-
morph hones its focus onto spatial regions relevant to its semantic functionality,
contributing to a rich node update

the helicopter AVE focuses on the rotating blades. In contrast, the audio back-
ward polymorph of the mandolin AVE targets the entire mandolin, and that of
the helicopter focuses on the helicopter’s body. Similar patterns can be discerned
from the visual temporal polymorphs, although less consistently. Additionally,
we perceive that the cross-modal polymorphs disseminate information about the
sound source from the source modality’s perspective. E.g., the audio to visual
polymorph for the ukulele AVE focuses on both the player’s mouth and ukulele
since the person is singing and playing simultaneously. Similarly, for the flute
AVE, both the player’s mouth and the flute are targeted. In contrast, the visual
to audio polymorphs rather focuses on the player’s hand contact with the flute
and ukulele. It is lucid that the model can focus on different visual regions via
the relational polymorphs and this focus is calibrated according to the semantic
functionality of the relation type.

5 Conclusion

In this paper, we proposed the DPNet to perform the AVEL task on a video by
alternating between its sequential stream and the graph perspectives. By doing
so, we achieve cyclic feature refinement between the modules performing cross-
modal guidance, short-term temporal aggregation, and long-term dependency
resolution. The RGCT was introduced to operate on the graph perspective and
achieve cross-relational attention between the relational polymorphs of each node
and its relational neighborhoods. The visualizations plotted in the qualitative
analysis corroborate that the relational polymorphs implement focus on different
spatial regions to propagate relation-specific information during the node update.
For the SEL task, the Replicate and Link video augmentation technique enlarged
the AVE dataset through the production of semantically identical video replicas
and expanded the source video’s graph through the interconnection with that
of the replica’s. Ablation studies demonstrate that both the Replicate and Link
operations are effective in assisting the model for the SEL task. Additionally,
we validate the superiority of the DPNet structure over other network designs
which can operate on both video perspectives. Lastly, comparison results show
that the DPNet framework outperforms prior methods in both the SEL and
WSEL tasks by large margins.
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