
Supplementary for
NSNet: Non-saliency Suppression Sampler for

Efficient Video Recognition

In this supplementary, we provide more implementation details and experi-
mental results of our proposed NSNet. Accordingly, we organize the supplemen-
tary materials as follows.

– In Section A, we present more implementation details for training and infer-
ence of our method.

– In Section B, we provide more ablation studies to further analyze the capa-
bility of our proposed NSNet.

– In Section C, we present predicted saliency score distributions to qualita-
tively analyze the capability of proposed NSNet.

A Implementation Details

A.1 Training

Pre-processing. Following previous works, the frames fed to recognizer are
rescaled with a shorter side of 256 and center cropped to 224×224 for all datasets.
The resolution of frames fed into Feature Embedding module is 224 × 224 for
ActivityNet, FCVID and UCF101, and 112 × 112 for Mini-Kinetics. Note that
we only use the RGB frames of these datasets for experiments. Following [6],
before adaptive sampling by samplers, T frames are uniformly pre-sampled from
frame sequence. For those videos whose lengths are shorter than T , we repeat
multiple times and splice them to T frames.

Model training details and hyper-parameters. For transformer encoder,
the hidden dimensions of query, key and value is set to the ratio between the
number of input feature channels and the number of heads. The hidden dimen-
sion of FFN is set to be equal to the input feature channel number. Dropout [4] is
used to reduce over-fitting. In Video Glimpse module, dropout layers are placed
before classification fully-connected layer with ratio of 0.9 and after temporal
attention layer with 0.2, respectively. In transformer encoder, the dropout rate
after the positional encoding layer is set to 0.2. Temporal random shift is adopted
as data augmentation strategy. The model is trained using SGD optimizer with
momentum of 0.9 and batch size of 64 for 120 epochs. The learning rate is set
to starting at 10−2, decaying by the factor of 0.1 at the 50th and 75th epoch.
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Prototype generation. For a video xv, we first apply the recognizer for each
frame and obtain the predictions {ŷi ∈ RC}Ti=1 of all frames. Then we collect
the correctly predicted frames set from each video Xg = {xi|i∈[1,T ],argmax

j
ŷi,j=c},

where c is the ground truth category. We further select the top ϵ percent frames
with highest confidence on the c-th category ŷi,c from Xg and average pool
the frame features of them as the guiding video feature x̃g

v. Then, for the c-th
category, the prototype feature pc can be computed by average pooling the all
the guiding video features belonging to the c-th category. We use ϵ = 30 in all
experiments.

A.2 Inference

We describe the combination strategies in detail here.

A.3 Score Combination.

We consider 3 types of fusion operations, which includes addition, multiplication
and maximization. For addition, we fuse the saliency scores of two branches in
convex combination αsfi + (1−α)svi , where α is a combination ratio parameter.
For multiplication and maximization, we fuse the saliency scores of two branches
in element-wise muliplication sfi ∗svi and element-wise maximization max(sfi , s

v
i ),

respectively.

Index Combination. We consider three strategies, which involves intersection,
union and join. We firstly get frame index lists {πf

i }Ti=1 and {πv
i }Ti=1 by sorting

{sfi }Ti=1 and {svi }Ti=1 in descending order, respectively. In intersection, given a
budget of K salient frames at most, we firstly take top K frames from index
lists, {πf

i }Ki=1 and {πv
i }Ki=1 respectively and get the intersection of them I(K) =

{πf
i }Ki=1 ∩ {πf

i }Ki=1. When there exist coincident frames, we expand I with one

element from either {πf
i }Ti=K+1 or {πv

i }Ti=K+1 by turns for i′ steps, until |I(K +
i′)| = K. For union, following [1], we try to obtain a set of salient frames whose
length is represented by α|πf | + (1 − α)|πv|. We firstly get the union of top

saliency frames from two lists U(K) = {πf
i }

⌈K∗α⌉
i=1 ∪ {πv

i }
⌈K∗(1−α)⌉
i=1 . We expand

U(K) with one element from πf at a time for i′ steps until |U(K + i′)| = K.

For join, we concatenate {sfi }Ti=1 and {svi }Ti=1 to a list with a length of 2T , from
which K non-overlap top saliency score frames are selected as final salient frames
set.

We use α = 0.6 for score addition and index union in the ablation studies of
fusion strategies. Union fusion are used in all other experiments.

B Additional Ablation Studies

B.1 Different guiding saliency score.

In Table 1, we compare our prototype based guiding saliency score with an
alternative choice, where we use the classification response of the ground truth
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category produced by the recognizer to generate the NS pseudo labels, namely
response-based guiding saliency score. It is shown that the prototype based score
achieves better performance than response based one, which demonstrates that
the prototype distance in feature space can offer more robust saliency cues.

Table 1. Performance of different guiding saliency score in FS module.

Guiding Saliency Score mAP(%)

Response-based 74.1

Prototype-based 74.7

B.2 Different fusion strategies of two modules.

In Table 2, we show the impacts of different fusion strategies which are described
in Section A.2. We can observe that various fusion strategies consistently improve
the performance of single modules. The ‘index union’ fusion gets slightly higher
performance than others thus we choose it in all our experiments.

Table 2. Comparison of various fusion strategies.

Max Mul Add
Score 75.1 75.2 75.3

Join Inter Union
Index 75.1 74.9 75.5

B.3 Different lightweight Feature Extractor in FEM.

In Table 3 we compare various backbones for lightweight feature extractor in
FEM. As expected, the lightweight backbone with better performance is comple-
mentary to our method. Comparing with the ShuffleNetv2 [2] and MobileNetv2 [3]
counterparts, our NSNet gets additional improvement on EfficientNet-b0 [5] with
extra computation overhead. For fair comparisons with previous works, we use
the MobileNetv2 as the lightweight feature extractor by default.

B.4 Different recognizer.

In Table 4 we investigate the impacts of various backbones of the recognizer,
where we also report the training strategy of recognizer, i.e., with TSN or with-
out TSN. The model without TSN is trained by sampling one frame from each
video. It is shown that our method is complementary to more advanced recog-
nizers.
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Table 3. Study on different backbones for lightweight extractor in FEM. FLOPs/f
means FLOPs for each frame processed by the backbone.

Backbone mAP FLOPs/f

ShuffleNetv2 70.8 0.15G
MobileNetv2 75.5 0.31G

EfficientNet-b0 76.0 0.39G

Table 4. Study on different backbones for the recognizer. “Train” refers to training
strategy, viz., with TSN style training or without TSN style Training.

Backbone Train mAP(%)

ResNet-101 w/o TSN 75.5
ResNet-101 w/ TSN 80.8
ResNet-152 w/ TSN 83.0
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Fig. 1. Measured saliency distribution by different variants of our approach.
We show the average value over all samples for a category for 3 variants, viz., guiding
saliency score (Guid.), our approach without non-saliency suppression (Ours w/o NS)
and our approach(Ours). Our approach can generate saliency measurements close to
Guid. for all 3 categories. However, Ours w/o NS only produce a relatively flat line on
difficult categories like rock climbing and making an omelette, which shows it cannot
handle saliency measurement on difficult categories without NS mechansim. Predicted
saliency distributions are smoothed by Exponential Moving Average with weight of 0.8
for a better sense of trend.

C Qualitative Analysis

To take a closer look to how NS mechanism benefits saliency measurement, we
present temporal saliency distributions produced by variants of our approach on
the validation set of ActivityNet in Figure 1, which is computed by averaging
the temporal saliency distribution of all samples within a given class. We adopt
guiding saliency score (Guid.) as an alternative of saliency “ground truth”, for
it exploits labels of validation set and represents a upper bound of any sam-
pler, achieving mAP of 96.3 (v.s. 75.3 achieved by NSNet). We can see that the
saliency distribution of NSNet is more close to that of Guid. and achieving much
higher AP than that of NSNet w/o NS on all three categories. As the discrimina-
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tion difficulty increases, AP decreases dramatically from left sub-figures to right
ones in Figure 1. In the easiest category hopscotch, both NSNet and NSNet
w/o NS show similar saliency trends to Guid. to varying degrees. However, in
much more difficult categories with low AP, like rocking climbing and making
a omelette, the saliency scores measured by NSNet w/o NS tend to generate
temporal uniform distributions and NSNet still shows highly similar trends to
Guid., which demonstrates that proposed NS based supervisions can enhance
robustness of saliency measurements in many scenarios.
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