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Abstract. It is challenging for artificial intelligence systems to achieve
accurate video recognition under the scenario of low computation costs.
Adaptive inference based efficient video recognition methods typically
preview videos and focus on salient parts to reduce computation costs.
Most existing works focus on complex networks learning with video clas-
sification based objectives. Taking all frames as positive samples, few
of them pay attention to the discrimination between positive samples
(salient frames) and negative samples (non-salient frames) in supervi-
sions. To fill this gap, in this paper, we propose a novel Non-saliency
Suppression Network (NSNet), which effectively suppresses the re-
sponses of non-salient frames. Specifically, on the frame level, effective
pseudo labels that can distinguish between salient and non-salient frames
are generated to guide the frame saliency learning. On the video level, a
temporal attention module is learned under dual video-level supervisions
on both the salient and the non-salient representations. Saliency mea-
surements from both two levels are combined for exploitation of multi-
granularity complementary information. Extensive experiments conducted
on four well-known benchmarks verify our NSNet not only achieves the
state-of-the-art accuracy-efficiency trade-off but also present a signifi-
cantly faster (2.4∼4.3×) practical inference speed than state-of-the-art
methods. Our project page is at https://lawrencexia2008.github.io/
projects/nsnet.
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1 Introduction

The prevalence of digital devices exponentially increases the data amount of
video content. Meanwhile, the proliferation of videos poses great challenges for
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Fig. 1. A conceptual comparison between our proposed non-saliency sup-
pression based sampler and existing approaches. (a) Feature space learned by
sampler networks optimized by vanilla classification objectives with video labels. (b)
Feature space learned by proposed NSNet. A video of Hopscotch is used for illustration.
The arrows indicate the moving directions of frame features during training process. In
(a), the features of non-salient frames, the 1st, 2nd, 5th frames are forced to cluster near
the centroid of the category. In contrast, our approach introduce a non-salient cate-
gory and those low saliency frames are labeled as non-salient and function as negative
samples against the video category during training. In this way, features of the 1st, 2nd,
5th frames in (b) are pushed away to form another cluster of non-salient category.

existing video analysis systems, and consequently draws more and more atten-
tion from the research community. Thanks to the renaissance of deep neural
networks [12,16,45], a surge of progress has been made to promote the develop-
ment of advanced video understanding techniques [35,36,59,49,4,43,25,15]. Al-
though achieving promising performance on some benchmarks [18,2] with su-
pervised learning or unsupervised learning [14,6], many of them apply com-
putationally heavy networks, which hinders their deployment to the practical
applications, such as autonomous driving and personalized recommendations.
Accordingly, building an efficient video understanding system is a crucial step
towards widespread deployment in the real world.

To achieve efficient video recognition, a rich line of studies have been pro-
posed, which roughly fall into two paradigms: i) lightweight architecture
based methods and ii) adaptive inference based methods. The first cat-
egory of approaches [23,50] devote to reducing the computational cost via de-
signing lightweight networks. By contrast, another series of works propose to
achieve efficient recognition by leveraging adaptive inference strategy to flexi-
bly allocate resources according to the the saliency of frames. Specifically, the
adaptive inference mechanism has been applied on multiple dimensions of video,
including temporal sampling [20], spatial sampling [44,27], etc. Compared to the
former, the adaptive inference based methods is easier to be incorporated into
the existing advanced recognition backbones. For example, in the pipeline of a
adaptive temporal sampling method, a sampler network is first trained based on
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lightweight feature to sample key frames, and then an off-the-shell computation-
consuming recognizer is evoked on sampled frames for final recognition.

Semantic saliency of each frame is the fundamental basis for the adaptive
inference based methods [20,30]. Nonetheless, it is difficult to obtain explicit
supervision of frame-level saliency in the general setting of video recognition.
Therefore, existing methods are mainly based on either reinforce learning (RL)
or attention mechanism [56,51,27,10], where the agent (resp., attention module)
is optimized to take actions (resp., attend) to those salient frames by classifica-
tion objective based rewards (resp., loss). In this way, the sampler is trained to
determine the salient frames by using all frames as the positive samples of the
corresponding video category, as shown in Figure 1. Due to the lack of nega-
tive samples in training, it is hard for the sampler to accurately determine the
non-salient frames from the salient ones within one video, which may easily over-
estimate the saliency of the non-salient frames. As a result, it is reasonable to
introduce the negative samples for the frame-level video category classification
objective based learning, which helps suppress the response of the non-salient
frames to the video category during the sampling process.

To this end, we propose a novel Non-saliency Suppression (NS) mech-
anism, to provide negative-sample-aware supervision for saliency measurement,
which can effectivly suppress the response of non-salient frames in the adap-
tive inference based framework. Specifically, the key principle is that the salient
frames should belong to the corresponding video category while the non-salient
frames should fall into a special category, which is distinguishable from all video
categories. We term this special category as non-salient category, as shown in
Figure 1. As the video categories are the only annotation we can use during
training, in order to guarantee high-quality negative samples (i.e., the non-salient
frames) in the frame-level saliency learning, we propose a Frame Scrutinize Mod-
ule (FSM) to generate frame-level pseudo labels for supervision. By doing so,
the salient frames can be effectively distinguished from the non-salient frames.
In addition to the frame-level supervision, we then propose a temporal atten-
tion module named Video Glimpse Module (VGM) to compensate for high-level
information of video events by using video-level supervision. In order to intro-
duce NS mechanism on video level, we first formulate a video representation as
a linear combination of two components: the representation of the salient parts
and the representation of the non-salient parts of a video. Following the afore-
mentioned principle, we then assign the label of that salient representation as
current video label, and the label of non-salient representation as the special
non-salient category.

Overall, our contributions are three-folds:

– We introduce the Non-saliency Suppression mechanism for suppress-
ing the responses of non-salient frames, which considerably improve the dis-
crimination power of the temporally sampled video representations without
increment of computation overhead.

– We propose an discriminative and flexible multi-granularity frame sampling
framework Non-saliency Suppression Network (NSNet), which leverages
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supervisions from both video level and frame level to measure frame saliency.
We design two specific schemes for realizing Non-saliency Suppression mech-
anism on the two granularities.

– Extensive experiments are conducted with multiple backbone architectures
on four well-known benchmarks, i.e., ActivityNet, FCVID, Mini-Kinetics
and UCF101, which show that our NSNet achieves superior performance
over existing state-of-the-art methods with limited computational costs.

2 Related Work

Video Recognition. Video Recognition has made significant progress in past
decade for successful application of neural networks including 2D CNNs [42], 3D
CNNs [3] and Transformers [1,53]. Although decent results are achieved by pow-
erful spatiotemporal networks, it is still challenging for applying video recogni-
tion in resource-constraint scenarios for its superfluous computational complex-
ity. TSM [23], TEA [22], MVFNet [50], etc., try to realize temporal modelling
with pure 2D CNNs to improve efficiency by shifting operations, motion based
channel selection and multi views fusion. While P3D [31], S3D [58], R(2+1)D
[40], SlowFast [7], Ada3D [21], DSANet [54] are proposed to improve the effi-
ciency by decomposing 3D convolution or designing hybrid 2D-3D frameworks.
Different from these approaches, we seek to achieve efficient video recognition
by adaptively sampling salient frames and recognize selectively on a per-sample
basis.
Adaptive Inference. The core idea of adaptive inference is to dynamically
allocate computational resources (network layers, parameters, etc.) conditioned
on the input to improve the trade-off between performance and cost [11,52].
For video analysis, adaptive inference are realized in several perspectives includ-
ing temporal sampling, resolution, sub-networks and modality. FastForward [5],
FrameGlimpse [60], AdaFrame [56], MARL [51] and OCSampler [24] model tem-
poral sampling as a decision-making process, which is optimized by policy gradi-
ents or differentiable alternatives. ListenToLook [8], SMART [10], TSQNet [57]
design temporal frame samplers based on attention mechanism. Besides tempo-
ral sampling, AdaFocus series [44,46] samples salient patches for each frame to
reduce spatial redundancy. AR-Net [27], LiteEval [55], AdaMML [30] strategi-
cally allocate higher resolution, more powerful sub-networks, or more expensive
modality to more informative frames, respectively.

The most closely related work to ours is an adaptive temporal sampling
method, SCSampler [20], which proposes a frame-level classification task with
video label and measure saliency based on classification confidence. However,
there exist substantial differences between SCSampler and the proposed NSNet.
SCSampler assigns each frame with the video label, while we argue that only the
salient ones belong to video category, other ones should be labeled as a special
category distinguishable from all semantic categories. Besides, we also consider
to measure frame saliency with video level supervisions to enable context-aware
saliency measurements, which is overlooked by SCSampler. Compared with SC-



NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition 5

)𝒙 ∈ ℝ𝑻×𝒅

Fusion

Video Glimpse Module

Frame Scrutinize Module

(a) Architecture of NSNet

(b) Frame Scrutinize Module (FSM)

Recognizer

Salient Frame Sampler

Feature Emb.
Module

Salient
Frames

“Collecting Garbage”

(d) Video Glimpse Module (VGM)

1 2 3 4 5

FC

Features

(c) NS Pseudo Label Generation.
Prototype Distance

!𝑥!
"

𝑝#
𝑝$

𝑝%
One-hot Label 

TransformationRecognizer

�̂�𝒊

𝒔𝒊
𝒇 = 𝐦𝐚𝐱(�̂�𝒊,𝒋|𝒊∈ 𝟏,𝑪 )

Output

Test: 𝒔𝟏
𝒇

Train:𝓛𝒇
𝟏

Test: 𝒔𝟓
𝒇

Train:𝓛𝒇
𝟓C+1

MLP

C+1
MLP

C+1
MLP 𝓛𝒇

𝒊 =-∑𝒋=𝟏
𝑪%𝟏 𝑦𝒊,𝒋 𝐥𝐨𝐠 ̂𝑦𝒊,𝒋

Train

Test
Train

Test

Output
𝒔𝒊

𝒗= 𝜶𝒊

𝓛𝒗 = 𝓛𝒗
𝒔𝒂𝒍 + 𝓛𝒗

𝒏𝒔

⨁
"𝒙𝒔𝒂𝒍 "𝒙𝒏𝒔$𝑥#

$𝑥%

$𝑥'

$𝑥# $𝑥'$𝑥%$𝑥$ $𝑥(

Temp Attn

'𝜶𝟏 ) *𝜶𝟏 '𝜶𝟑 ' (𝜶𝟑 '𝜶𝟓 ' (𝜶𝟓… …

⨁

ℒ𝒗
𝒏𝒔ℒ𝒗

𝒔𝒂𝒍

𝒔𝒊
𝒇

𝒔𝒊
𝒗

Fig. 2. An overview of architecture of NSNet. (a) shows the whole architecture.
(b) shows the Frame Scrutinize Module (FSM), which estimates the saliency of each
frame by the prediction confidence in frame-level classification. (c) shows the proposed
Non-saliency Suppression (NS) frame-level pseudo label generation strategy based on
the distance between each frame and video category prototypes. (d) shows the Video
Glimpse module (VGM), which measures the saliency of each frame using temporal
attentions in video-level classification.

Sampler, our NSNet achieves significantly superior performance with much less
computational overhead.

3 Approach

3.1 Problem Definition

Let V = {xi}Ti=1 denote a video of T frames. Firstly, our NSNet is designed to
selectK most salient frames from all T frames. Then, theK salient frames are fed
into a recognizer model, the predictions of which are aggregated to yield the final
video-level prediction. The workflow of our system is illustrated in Figure 2a.
Note that we use an off-the-shell model as our recognizer, and therefore, the
problem can be formulated as how to effectively sample the most salient frames
from the input frames. In the following sections, we introduce the process of
salient frames selection for our NSNet.

3.2 The Overview of NSNet

In this section, we elaborate on the proposedNon-saliency SuppressionNetwork
(NSNet), which mainly consists of three components: a Feature Embedding
module (FEM), a Frame Scrutinize module (FSM), and aVideo Glimpse
module (VGM). The feature embedding module generates feature embedding
from the input video frames. The FSM (see Figure 2b) measures saliency of
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each frame by predicting the saliency confidence scores in frame-level classifica-
tion, and the VGM (see Figure 2d) models saliency of frames from the tempo-
ral attention weights used to aggregate attention-based feature for video-level
classification. To alleviate the lack of negative samples, we further apply NS
mechanism in the FSM and VGM in different ways. For each of these two mod-
ules, a non-salient category is attached onto the frame-level and the video-level
supervisions, respectively, resulting in a total of C + 1 categories for each su-
pervision, where C is the total number of the original video categories. In the
FSM, a Non-saliency Suppression frame-level pseudo label generation strategy
is proposed to separate the negative samples from the truly salient frames for
frame-level saliency learning. In the VGM, a Non-saliency Suppression loss is
proposed to impose an extra constraint of non-salient representations of videos
besides original classification objectives.

3.3 Feature Embedding Module (FEM)

Here we encode the input video frames {xi}Ti=1 into the robust feature sequence
{x̂i}Ti=1, which is then used by our FSM and VGM. Specifically, we first use the
off-the-shelf lightweight feature extractor, e.g., MobileNet, EfficientNet, etc, to
take the video frames as input and extract features for all frames. In order to
allow message passing among features for all frames, we then apply a transformer
encoder [41] on top of these features and output the feature sequence {x̂i}Ti=1.

3.4 Frame Scrutinize Module (FSM)

In our FSM, we first generate frame-level Non-saliency Supression (NS) pseudo
labels, and then use them as supervision to train our FSM to perform frame-
level saliency classification and produce saliency scores. Details of our FSM are
provided as follows.
Non-saliency Suppression Pseudo Label Generation. Here we denote the
label of a video of the c-th category as a C-dimension one-hot vector yv ∈ RC ,
where yv,c = 1 and yv,m = 0|m∈[1,C],m̸=c. To distinguish between the salient
frames and non-salient frames in frame labels, we then introduce a guiding
saliency score gi, which is obtained from the recognizer, i.e., the one we used
for final recognition as described in Section 3.1 (Figure 2a). Although the classi-
fication response produced by the pre-trained model (i.e., recognizer) is widely
used for pseudo labeling in weakly-supervised learning [39,29,47], we propose a
prototype-based strategy for more robust frame level pseudo label generation.
According to [33,61], a sample could be more representative when it is closer to
the centroid in feature space. As a result, we use distances of the feature for the
i-th frame from the prototype features of all categories to obtain gi. Specifically,
we first use the recognizer to extract features and confidence scores on ground-
truth category for all frames for each video in training set. Then the prototype
feature of each category is then calculated by averaging all video features in that
category. Here each video feature is obtained by applying average pooling on the
features of the top-K frames based on the predicted confidence scores (see our
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Appendix for more details). The guiding saliency score gi for the i-th frame is
as follows:

gi =
eϕ(x̃

g
i ,pc)∑C

j=1 e
ϕ(x̃g

i ,pj)
, (1)

where ϕ is a distance function measuring the similarity of two feature vectors,
e.g., Euclidean Distance, x̃g

i is the feature for the i-th frame extracted by the
recognizer, pj and pc are the prototype features of the j-th category and the
ground truth category, respectively. Finally, we use gi to generate the NS pseudo
label ynsi = [ giyv,1, giyv,2, ... giyv,C , 1− gi] ∈ RC+1.
Frame-level Saliency Classification. After generating the NS pseudo labels,
we then use them to train our FSM to perform frame-level saliency classification
over the feature sequence {x̂i}Ti=1. Mathematically, the frame-level classification
objective is defined as follows:

Lf = −
T∑

i=1

C+1∑
j=1

ynsi,j log(ŷ
ns
i,j), (2)

where ynsi,j is the element of the j-th category in ynsi , and ŷnsi,j is the classification
prediction. It is noteworthy that ynsi is a soft one-hot target, the cross entropy
loss of which is similar to label smooth [38]. During inference, the frames with
very high response to any one of C categories are identified as salient frames.
To this end, the maximum confidence across C semantic categories (except the
C +1-th category) of classification score after softmax normalization is used for
saliency measurement. We then apply additional softmax normalization along
the time axis to obtain final saliency score sfi .

3.5 Video Glimpse Module (VGM)

In our VGM, we first generate attention weights αi = TempAttn(x̂i) for the
features of all observed frames, where TempAttn(·) is implemented by a fully-
connected layer followed by a L1 normalization layer, which is used to rescale
attention weights to [0, 1] range. The features of all observed frames are then ag-
gregated with the attention weights to generate the video salient representation
x̂sal
v =

∑T
i=1 αix̂i. To perform video-level classification, the salient representa-

tion of the video x̂sal
v is fed to a fully-connected layer to compute the cross-

entropy loss with video label. In order to guide our VGM to separate negative
samples (non-salient frames) from positive samples (salient frames) of current
video category, we propose a Non-saliency Suppression (NS) loss to impose a
constraint other than the regular classification objective. During inference, the
attention weights are used as saliency scores {svi }Ti=1. The details of the NS loss
are described next.
Non-saliency Suppression Loss. It is obvious that all videos contains both
salient and non-salient frames for a specific video category. Therefore, it is nat-
ural that a holistic video representation x̂v can be formulated as a linear com-
bination of the salient representation x̂sal

v and the non-salient representation
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x̂ns
v [29], i.e., x̂v = x̂sal

v + γx̂ns
v . The non-salient representation x̂ns

v can be ob-
tained as follows. We first compute the complementary part of attention weights
αi =

1
T (1 − αi), and then aggregate the feature sequence with αi and produce

the non-salient representation x̂ns
v =

∑T
i=1 αix̂i. In this way, a video can be re-

garded as a positive sample of both its ground truth category and non-salient
category to different proportions, at the same time. Both x̂sal

v and x̂ns
v will be fed

into the classification fully-connected layer to get different predictions ŷsalv and
ŷnsv . Then we defines labels for both ŷsalv and ŷnsv : ynsv = [0, 0, ..., 0, 1] ∈ RC+1,
ysalv = [yv,1, yv,2, ...yv,C , 0] ∈ RC+1, where yv is the original video label. The
cross-entropy loss between ŷsalv and ysalv is the original classification loss Lcls,
and the one between ŷnsv and ynsv is the NS loss Lns. Consequently, the objective
function of this module is defined as follows, where γ is the weight of Lns.

Lv = Lcls + γLns, (3)

3.6 Learning Objectives

The overall objective function of our NSNet is formulated as follows:

L = Lv + Lf , (4)

where Lv and Lf denote the loss function of the VGM and the FSM, respec-
tively. This objective not only drives model to conduct discriminative saliency
measuring according to video semantics and frame discrepancy, but also facili-
tates information exchange between the video context and parts in shared feature
encoding.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our method on four large-scale video recognition benchmarks, i.e.,
ActivityNet, FCVID, Mini-Kinetics and UCF101. ActivityNet [2] contains 19994
videos of 200 categories of most popular actions in daily life. FCVID [17] con-
tains 91,223 videos collected from YouTube and divided into 239 classes covering
most common events, objects, and scenes in our daily lives. Mini-Kinetics [27] is a
subset of Kinetics [18] presented by [27], including 200 categories of videos of Ki-
netics, with 121k videos for training and 10k videos for validation. UCF101 [34]
has 101 classes of actions and 13K videos with short duration (7.2sec). Mean
Average Precision (mAP) is used as the main evaluation metric for Activi-
tyNet and FCVID, while Top-1 accuracy is used for Mini-Kinetics and UCf-101
following previous works. We also report the computational cost (in FLOPs)
to evaluate the efficiency of the proposed method. FLOPs of our method are
composed of following parts: Ptotal = Prec × K + Pfem + Pvgm + Pfsm, where
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Prec, Pfem, Pvgm, Pfsm represent the FLOPs of the recognizer, FEM, VGM and
FSM, respectively. An example of FLOPs computation of our model with the
setting in Table 2 is: 4.109×5 (ResNet-50 with 5 frames) + (0.320×16+0.315)
(MobileNetv2 with 16 frames+transformer) + 0.004 + 0.002 = 25.99(G).

4.2 Implementation Details

Training. Following previous works [10,56], we mainly use MobileNetv2 [32] as
the lightweight feature extractor in our FEM. Different high-capacity networks
trained on target datasets are used as recognizers at the same time: ResNet
family [12] and Swin-Transformer family [26], etc. For the transformer encoder
in our FEM, 2 encoder layers with 8 heads and learnable positional embedding
are used. The distance function ϕ in our FSM used for guiding saliency score is
Euclidean Distance. The non-saliency suppression loss weight γ is set to 0.2. See
Appendix for more details of training.
Inference. We fuse the results of FSM and VGM to obtain the final saliency
measurements. Score sum, max, mul and index union, intersect, join are con-
sidered for fusion. See Appendix for details.

4.3 Main Results

Comparison with Simple Baselines. As shown in Table 1, we compare
our approach with multiple hand-crafted sampling methods on ActivityNet and
UCF101 with ResNet-101 and ResNet-50 as recognizers (without TSN training
strategy [42]), respectively. The simple baselines include Uniform, Random,
Dense, and Top-K sampling. For uniform and random, we uniformly and
randomly sample 10 frames from all frames, respectively, while for Top-K, we
sample top 10 frames with highest predicted confidence scores (i.e., the maxi-
mum confidence among all categories), from all frames. For our method, we first
uniformly sample an observation number (100 for ActivityNet and 50 for UCF-
101) of frames as the observation frames from the input videos, and then use
our method to sample 5 frames from the observation frames. Dense sampling
makes use of all frames for recognition. We observe that our NSNet outperforms
all simple baselines by a large margin on both two datasets. In ActivityNet, our
method relatively outperforms the competitive but heavy Top-K baseline by
2.4% in terms of mAP with 11.7× less GFLOPs, which verifies the effectiveness
of our sampler. In UCF-101, the videos are much shorter than those in Ac-
tivityNet (7sec v.s. 119sec on average), which constructs a much more difficult
setting for sampler. However, the top-1 accuracy of our NSNet still relatively
exceeds that of the most competitive Dense baseline by 2.1% with much less
GFLOPs, which demonstrates NSNet can improve the video classification per-
formance on trimmed videos.
Comparison with SOTA on ActivityNet. We make a comprehensive com-
parison with recent state-of-the-art efficient video recognition methods on the
ActivityNet dataset in Table 2-3, and Figure 3. As shown in Table 2, we com-
pare our NSNet with other state-of-the-art efficient approaches using ResNet-50
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Table 1. Comparison with several hand-crafted sampling strategies. ResNet-101 and
ResNet-50 are adopted as the recognizers for ActivityNet and UCF-101, respectively.

ActivityNet UCF101

mAP(%) FLOPs Top-1(%) FLOPs

Uniform 68.6 195.8G 75.9 61.7G
Random 68.1 195.8G 75.7 61.7G
Dense 69.0 930.8G 76.1 753.4G
Top-K 72.5 930.8G 74.5 753.4G

Ours 74.9 73.2G 77.6 37.6G

Table 2. Comparisons with SOTA efficient video recognition methods with ResNet50
as the main recognizer on the ActivityNet dataset. The backbones used for sampler
and recognizer are reported. MBv2 denotes MobileNetv2.

Method Backbone mAP(%) FLOPs

SCSampler[20] MBv2+Res50 72.9 42.0G
AR-Net [27] MBv2+ResNets 73.8 33.5G

AdaMML [30] MBv2+Res50 73.9 94.0G
VideoIQ [37] MBv2+Res50 74.8 28.1G

AdaFocus [44] MBv2+Res50 75.0 26.6G
Dynamic-STE [19] Res18+Res50 75.9 30.5G

FrameExit [9] ResNet-50 76.1 26.1G

Ours MBv2+Res50 76.8 26.0G

as the recognizer. NSNet consistently outperforms all existing methods includ-
ing sampler-based and sampler-free approaches. When compared with AR-Net
[27], an adaptive resolution method, the mAP of our method improve by 3%
with much less computational cost (26.0G v.s. 33.5G). Our NSNet also out-
performs AdaMML [30], an adaptive modality approach, by 2.9% in terms of
mAP while having 3.6× less FLOPs. In addition, sampler-free approaches often
have relatively low FLOPs, because they do not need sampling process. How-
ever, although our NSNet has extra computational on the sampling process, it
can achieve higher accuracy than FrameExit [9](76.8% v.s. 76.1%), a compet-
ing sampler-free framework, with comparable FLOPs, which demonstrates our
sampler greatly improve the discrimination power of the video representation. In
Table 3, we show the results of the SOTAs using ResNet-152 and more advanced
backbones on the ActivityNet dataset. We can see that our NSNet outperforms
the sampler-free methods P3D [31], RRA [63] by at least 1.7% in terms of mAP.
When compared with competing sampler-based methods (MARL [51], Listen-
ToLook [8], SMART [10]), our method still shows superiority over them. Besides,
when using a more advanced transformer-based network Swin-Transformer [26]
as the recognizer in our NSNet, the mAP can be further promoted to 94.3%,
which is the highest performance on ActivityNet to our best knowledge.

Figure 3 illustrates the GFLOPs-mAP curve on the ActivityNet dataset. On
this curve, the observation number T is set to 50, while the number of sampled
frames K is tuned up as FLOPs budget increases. Following previous works
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Table 3. Comparisons with SOTA video recognition methods with ResNet152 and
more advanced networks as the recognizers on the ActivityNet dataset.

Method Recognizer Pretrain Top-1(%) mAP(%)

ResNet-152 w/ ImageNet
P3D [31] ResNet-152 ImageNet 75.1 78.9
RRA [63] ResNet-152 ImageNet 78.8 83.4

MARL [51] ResNet-152 ImageNet 79.8 83.8
ListenToLook [8] ResNet-152 ImageNet 80.3 84.2

Ours ResNet-152 ImageNet 80.7 85.1

ResNet-152 w/ Kinetics
SMART [10] ResNet-152 Kinetics - 84.4

Ours ResNet-152 Kinetics 84.5 88.7

More Advanced Networks w/ Kinetics
DSN [62] R(2+1)D-34 Kinetics 82.6 87.8

Ada3D [21] SlowOnly-50 Kinetics - 84.0
ListenToLook [8] R(2+1)D-152 Kinetics - 89.9

MARL [51] SEResNeXt-152 Kinetics 85.7 90.1
Ours Swin-B Kinetics 86.7 91.6
Ours Swin-L Kinetics 90.2 94.3

Fig. 3. Comparison with state-of-the-
art sampling methods on ActivityNet
dataset. Our proposed NSNet achieves
better mAP with much fewer GLOPs
(per video) than other methods. It is
worth noting that we compare these
methods with the same recognizer
ResNet-101, under different computa-
tion budgets. The results are quoted
from the published works [8,27].
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[56,55,8,51], we use ResNet-101 without TSN-style training as the recognizer.
Our NSNet presents significant accuracy improvement with much lower GFLOPs
than other methods.
Comparison with SOTA on FCVID and Mini-Kinetics. We further eval-
uate the performance of our method on two large-scale video recognition bench-
marks, i.e., FCVID and Mini-Kinetics, with ResNet-50 as the recognizer in Ta-
ble 4. We have a similar observation that our NSNet can achieve superior mAP
with the much lower computational cost, which demonstrate the efficacy of non-
saliency suppression (NS) mechanism in both untrimmed video and trimmed
video scenarios.
Practical Efficiency. We present the comparison results on inference speed
between our NSNet and two SotA methods, FrameExit [9] and AdaFocus [44], in
Table 5. Latency and throughput with batch size of 1 and 32 are reported1. It
can be observed that our method achieves significantly superior latency (42.0 ms)

1 The latency and throughput results of two SotA methods are obtained by running
their official code [9,44] on the same hardware (a NVIDIA 3090 GPU with a Intel
Xeon E5-2650 v3 @ 2.30GHz CPU) as ours.
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Table 4. Comparison with previous methods on FCVID and Mini-Kinetics. Our
NSNet consistently outperforms state-of-the-art in terms of accuracy and efficiency
using ResNet-50 as the recognizer.

Methods
FCVID Mini-Kinetics

mAP(%) FLOPs Top-1(%) FLOPs

LiteEval [55] 80.0 94.3G 61.0 99.0G
AdaFrame [56] 80.2 75.1G - -
SCSampler [20] 81.0 42.0G 70.8 42.0G

AR-Net [27] 81.3 35.1G 71.7 32.0G
AdaFuse [28] 81.6 45.0G 72.3 23.0G
SMART [10] 82.1 - - -
VideoIQ [37] 82.7 27.0G 72.3 20.4G

Dynamic-STE [19] - - 72.7 18.3G
FrameExit [9] - - 72.8 19.7G
AdaFocus [44] 83.4 26.6G 72.9 38.6G

Ours 83.9 26.0G 73.6 18.1G

Table 5. Comparison of practical efficiency between SotA methods.

Method mAP(%) GFLOPs
Latency
(bs=1)

Throughput
(bs=32)

AdaFocus [44] 75.0 26.6 181.8ms 73.8 vid/s
FrameExit [9] 76.1 26.1 102.0ms -

Ours 76.8 26.1 42.0ms 132.5 vid/s

and than two methods (2.4× than FrameExit [9] and 4.3× than AdaFocus [44]),
which demonstrate the superiority of our parallel temporal sampling framework
over existing methods on practical efficiency.

4.4 Ablation Studies

To comprehensively evaluate our NSNet, we provide extensive ablation studies
on ActivityNet in Table 6. Accordingly, the effectiveness of each component in
our framework is analyzed as follows. We use ResNet-101 without TSN style
training as the recognizer, as the same as in Table 1 and Figure 3 in Section 4.3.
Effectiveness of non-saliency suppression. We explore the effectiveness of
non-saliency suppression (NS) mechanism for two modules. For VGM, “base-
line” denotes the variant without Lns. For FSM, “baseline” denotes the variant
replacing our NS frame label with video label. As shown in Table 6a, for the
VGM, simply adding a non-salient class (from C classes to C + 1 classes) with-
out according supervisions can not elevate performance. In contrast, by applying
NS mechanism, the mAP significantly improves by 0.4%. In the FSM, we observe
that “baseline” present very low performance, similar to Uniform baseline(68.4
v.s. 68.6), which is because it imposes many label noises when assigning the label
of video to irrelevant or low-quality frames. We also observe that simply adding
the non-salient class cannot address the issue (68.6 v.s. 68.4). NS mechanism
elevates the performance significantly with effective and reasonable supervisions
(74.7 v.s. 68.4). More ablations in supervision signals of FSM are in Table 6d.
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Table 6. Ablation studies on ActivityNet with mAP (%) as the evaluation metric.
Unless otherwise specified, MobileNetv2 and ResNet-101 are used as the backbone for
observation network and recognizer respectively.

(a) Evaluation of the effectiveness of
NS mechanism.

Method VGM FSM

baseline 73.4 68.4
+ non-salient class 73.4 68.6

+ NS 73.8 74.7

(b) Performance of different number of
sampled frames.

#F VGM FSM NSNet

5 72.6 73.9 74.9

10 73.8 74.7 75.5

(c) Ablation of transformer encoder in
feature embedding module.

Network mAP(%)

1D Conv 73.6

LSTM 74.0

MLP 74.3

Transformer 75.5

(d) Results of FS module with different
learning objectives.

FS Objective mAP(%)

Baseline 68.4
Regression 72.0
Ranking 72.2

Baseline+ 73.7
Ours 74.7

Ablations of transformer encoder in feature embedding module. Ta-
ble 6c presents the results of different choice in FEM to passing message among
the features from the input frames, including Long short-term memory networks
(LSTM) [13], 1-D convolutional networks (1D Conv), multi-layer perceptron
(MLP) [48], Transformer Encoder (Transformer) [41]. Among all these choices,
the transformer encoder achieves the highest performance.

Different learning objectives of the FSM. In Table 6d we compare various
objectives of FSM mentioned in Section 1 and Section 2, including frame classifi-
cation with video labels (“baseline”, as the same one as in Table 6a), ranking [20],
and regression [10] with guiding saliency scores. With guiding saliency scores as
supervisions, “regression” and “ranking” model saliency sampling as saliency
score regression and ranking tasks respectively. They can achieve higher perfor-
mance than “baseline” (72.0% & 72.2%), whereas they overlook the exploitation
of class-specific information, which limits their performance. We modify “base-
line” by transforming hard one-hot video label to soft one-hot label using the
guiding saliency score, which is denoted as “baseline+”. This modification im-
proves the result significantly (73.7% v.s. 68.4%) by taking into account both
the discrimination between salient frames and non-salient frames and the use of
category-specific information. With the same setting of guiding saliency score,
our NS mechanism based objective outperforms ‘baseline+’ in a large margin
(74.7% v.s. 73.7%), which verifies the proposed supervisions offer more robust
saliency for supplying negative samples.

Different numbers of sampled frames. As shown in Table 6b, we report the
performance of different numbers of sampled frames for NSNet. We can see that
the fusion of two modules always improves the performance by 0.8% and 1.0%
when sampling 10 and 5 frames, respectively. It demonstrates the effectiveness
of our fusion strategies, especially when fewer frames are sampled. Besides, when
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Method Hopscotch Rock climbing Making an omelette

Uniform

Ours w/o NS

Ours

Fig. 4. Visualization of selected frames with different variants of our ap-
proach. 1st row: Uniform, 2nd row: Our approach without NS mechanism (Ours w/o
NS), 3rd row: Our approach (Ours). Intuitively salient frames are are outlined in aqua
while non-salient ones are outlined in red. Please zoom in for best view.

fewer frames are sampled, the performance of FSM degrades more slowly than
that of VGM (0.8% v.s. 1.2%), which is because FSM can distinguish between
salient frames and non-salient frames in finer granularity with the help of frame-
level supervisions.

4.5 Qualitative Analysis

Figure 4 shows frames sampled by different methods. Our NSNet can sample
more discriminative salient frames than uniform baseline and the variant without
non-saliency suppression. For example, in the 4th column, the 3rd row of this
column shows that “ours w/o NS” is mainly attracted by frames with scenes
of a cook, which is not discriminative for frequently appearing in other cooking
events. In contrast, 4th row shows NSNet can sample more indicative frames.

5 Conclusions

In this paper, we present the Non-saliency Suppression Network (NSNet) to mea-
sure the saliency of frames by leveraging both video-level and frame-level super-
visions. In Frame Scrutinize module, we propose a pseudo label generation strat-
egy to enable negative sample aware frame-level saliency learning. Meanwhile, in
Video Glimpse module, an attention module constrained by dual classification
objectives is presented to compensate high-level information. Experiments show
that our NSNet outperforms the state-of-the-arts on accuracy-efficiency trade-
off. In the future, we plan to explore non-saliency suppression on both spatial
and temporal dimensions to save more redundancy.
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