Temporal Saliency Query Network for Efficient
Video Recognition (Supplementary)
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A TImplementation Details

Here we provide some implementation details of TSQNet. We use MobileNetv2
and EfficientNet-B0 as the video encoder in VQM and object recognizer in TQM,
respectively. For video encoder in TQM, we use the ImageNet pre-trained model
and finetuned it on target datasets e.g., ActivityNet, etc., for 10 epochs. And
for Object recognizer, we directly use the officially released ImageNet model to
extract object score of the ImageNet 1000 classes. We use positional embedding
on frame sequence in transformer decoder to model temporal order information.

Next, we introduce how we obtain visual prototype based representation
for visual TSQ embeddings initialization. First we apply a classifier to get the
classification results for each frame. Then we select the top m percent of frames
which can correctly predict the ground truth video category, which are then
averaged to obtain the representation of each video. Finally, we pool all the
video representations of each category to get the prototype representation of
each category. We use m = 30 for all experiments in this paper.

Finally, we describe in detail how to fuse the VQM and TQM salient scores
into the final saliency measurement. Suppose we have the VQM salient scores
S € RT and TQM salient scores S* € R” of one video. We join the top saliency
score frames from two modalities to get final K salient frames. Specifically, the
number of selected frames from two modalities are determined by A\, K and A\ K,
respectively, where A\, +\; = 1. For example of selecting 5 frames from 16 frames
with A, = 0.6 situation, we select top 5 x 0.6 = 3 frames from VQM and top
5 — 3 = 2 ones are from TQM. And if there exists duplication, which results in
a final result of less than 5 frames, the selection will be deferred in the VQM
according to the descending order of S until meeting the 5-frame budget. We
use A, = 0.6 and \; = 0.4 in experiments.
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B Practical Inference Speed

To further verify the practical efficiency of our method, we compare the infer-
ence speed with two state-of-the-art methods FrameExit [1] and AdaFocus [2] on
ActivityNet. FrameExit [1] reduce computation cost by early stopping in tem-
poral sequential prediction. AdaFocus [2] suppose that the existing methods are
spatially redundant, so it only selects salient areas to classify for each frames.
We test the speed of two methods by running the official code released by the
authors. We evaluate the inference speed of all methods on a NVIDIA 3090 GPU
with Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz CPU. Results in two dif-
ferent settings with batch size of 1 and 32 are reported. Note that FrameExit
[1] exits from recognition at different time for different videos, so it cannot in-
ference in batch setting, which we only report the latency with batch size = 1
here. Experimental results in Table 2 show that our method not only saves much
theoretical computation complexity but also achieves the fastest actual inference
speed (121.1 video/s) on both single-sample and batch setting.

Table 2. Comparisons of practical inference speed with state-of-the-art methods on
ActivityNet.

Method  mAP (% ) FLOPs (G) Throughput(bs=1) Throughput(bs=32)

(videos/s) (videos/s)
AdaFocus [2] 75.0 26.6 5.5 73.8
FrameExit [1]  76.1 26.1 9.8 -
Ours 76.5 26.1 17.7 121.1

C Additional Ablation Study

In this section, more ablation experiments are conducted to supplement the
main paper. ResNet-101 is utilized for the recognition network as the same as
in ablation studies of the main paper.

C.1 Ablation of class-specific classifier

We show the illustrative examples of the combinations of the attention struc-
ture and the class-specific classifier under the situation of 200 class and 1280
feature dimensions in Figure 1. “CA + CA” represents the class-agnostic atten-
tion structure (with 1 query) combined with the class-agnostic classifier (with a
single FC). “CS + CA”, i.e. our TSQNet, the class-specific attention structure
(with C queries) combined with the class-agnostic classifier (with a single FC).
“CS + CS” represents the class-specific attention structure (with C' queries)
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Network output FC weight  Operator  Output
CA+CA 1280 ® 1280II200 transpose 200'1
1280 1 1
CSHCA 200=——— X 1280 None 200]
1280 1280 1

CSHCS 200 == (9) 200 == sumonraw  200]

200 means class number, 1280 represents for feature dim.

Fig. 1. Illustrative examples of three combinations between the attention structure and
the classifier of TSQNet, i.e. “CS+CA”, “CA+CA” and “CS+CS”.

combined with class-agnostic classifier (with C' FCs). It is interesting that the
performance of “CS+CA” (68.3) is much lower than that of “CA+CA” (73.3),
which seems like a more naive baseline than “CS+CA”. When using the class-
specific attention structure to obtain feature with shape of 200 x 1280, the FC
classifier (200 x 1280) must have a one-to-one correspondence with each class,
i.e., “CS+CS” (74.3), to achieve good results. If using one 1 x 1280 FC, i.e.,
“CS+CA”, to process all classes with the same parameters, discrimination power
are insufficient and accuracy will decrease dramatically, which will be even lower
than “CA+CA”.

C.2 Ablation study of a and 3

First, we explore the appropriate values for « and g, i.e., the ratios of £;_, and
L, in Table 3 and Table 4, respectively. We first fix a = 0 to find the best 5.
As shown in Table 3, as 3 increases, the performance of both TQM and TSQNet
rises up to a maximum at 8 = 0.6 and then falls down. The performance of
VQM remains unchanged, which demonstrates £;_,, mainly benefit TQM in in-
teractions. Then we fix § = 0.6 to explore the impacts of a. As presented in
Table 7?7, the performance shows similar trend and the best results of TQM,
VQM and TSQNet are achieved when « and S both equal to 0.6, which implies
L, benefits both TQM and VQM in interactions. After 8 = 0.6, the perfor-
mance of VQM breaks down, for prohibitively large 8 hinders the convergence
of the VQM.

C.3 Detailed Ablation study for transformer decoder structures

We further ablate the structure of the standard transformer decoder, viz., self-
attention, number of layers and heads. Typical transformer decoder contains
a self-attention layer on the top of query matrix and multiple cross-attention
layers with multi-head structure. In TSQNet, we use a quite brief version of
transformer decoder, containing a single-head cross-attention layer without self-
attention layers, to realize TSQ layer. Next we discuss the effectiveness of this
design.
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Table 3. Ablation study of 8 when fixing Table 4. Ablation study of @ when fixing
a=0. 5 =10.6.

B TSQNet TQM VQM a TSQNet TQM VQM

0.0 749 72.0 T74.6
0.2 749 72.3 T74.6
0.4 75.0 72.5 T74.6

0.0 751 727 74.6
0.2 75.0 72.8 74.6

06 75.1 2.7 T74.6 0.4 75.1 72.8 T4.7
0.8 748 72.6 74.6 0.6 75.3 73.1 74.8
1.0 74.7 72.6 74.6 0.8 71.2 725  67.5

Impact of Self-attention layer. On one hand, self-attention layer on queries
make each TSQ embedding interact with each other, which may cause the class-
specific information to mix with each other and deviates the class-specific nature
of TSQ embeddings. On the other hand, self-attention layers bring in extra
computation complexity of O(C?) , where C is the number of categories. As
shown in Table 5, adding self-attention layer presents lower performance, which
demonstrates that modelling relations between TSQ embeddings of categories
can not produce better saliency measuring results.

Table 5. Ablation study of the usage Table 6. Ablation study of Trans-
of self-attention. former Decoder layers and heads.
Methods mAP (%) Methods mAP (%)

w)/ self-atten 74.9 1 layer 8 head  73.7
2 layer 1 head 73.6
w/o self-atten  74.4 1layer 1 head 74.4

Number of layers and heads. In TSQNet, the number of cross-attention lay-
ers and heads are both one. We present ablation experiments of more layers with
more heads in Table 6. It is shown that both the increase of number of layers and
heads make the mAP drop. For multiple cross-attention layers, the performance
drop may attribute to lower discrepancy between queries in intermediate layers,
which makes attention weights lack discrimination power between categories.
For multi-head structure, the worse results may result from attention dimension
splitting operation when calculating the similarity between query matrix and key
matrix, which produces separate local similarities for multiple groups in feature
dimension rather than the holistic similarity of the feature dimension.

D Additional Qualitative Analysis

Figure 2 and Figure 3 show more qualitative results of TSQNet on ActivityNet
and FCVID. For each dataset, we selected six examples, first three of which



Temporal Saliency Query Network for Efficient Video Recognition 5

uniform Ours
_— —_ T i

Ballet
Ballet

Ballet

Beer-pong

Fixing
bicycle [ ® 1 fine
tuning

High jump S

Fig. 2. Qualitative Analysis on ActivityNet.

belongs to the same category and the last three belongs to different categories.
In Figure 2, we can see that our approach samples significantly more salient
frames than the uniform baseline. Similar in Figure 3, uniform baseline selects
many irrelevant frames, whereas our method selects more theme-related frames.

E Additional Visualization of TSQ Embeddings

In this section, we provide the complete t-SNE visualization for TSQ embeddings
of both the VQM and TQM on ActivityNet to supplement the local zooms
visualization in Section 4.5 of the main paper. Specifically, we visualize the start
and end states of training for the two modules in two different initialization
fashions, i.e., random and proposed initialization, respectively. For VQM, we
compare the random initialization with the visual common appearance feature
initialization. For TQM, we compare the random initialization with the class
name Bert embedding feature initialization.

TSQ embeddings of TQM. Figure 4 shows the visualization of TSQ em-
beddings of TQM with class name Bert embedding feature initialization before
training. Figure 5 shows the visualization of T'SQ embeddings of TQM with class
name Bert embedding feature initialization after training. Figure 6 shows the
visualization of TSQ embeddings of TQM with random initialization before
training. Figure 7 shows the visualization of TSQ embeddings of TQM with
random initialization after training.

TSQ embeddings of VQM. Figure 8 shows the visualization of TSQ embed-
dings of VQM with common appearance feature initialization before training.
Figure 9 shows the visualization of TSQ embeddings of VQM with common
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Fig. 3. Qualitative Analysis on FCVID.

appearance feature initialization after training. Figure 10 shows the visualiza-
tion of TSQ embeddings of VQM with random initialization before training.
Figure 11 shows the visualization of TSQ embeddings of VQM with random
initialization after training.
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Fig. 4. TSQ embeddings of TQM with class name Bert initialization before training.
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Fig. 5. TSQ embeddings of TQM with class name Bert initialization after training.
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Fig. 6. TSQ embeddings of TQM with random initialization before training.
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Fig. 8. TSQ embeddings of VQM with appearance initialization before training.
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Fig. 9. TSQ embeddings of VQM with common appearance initialization after training.
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Fig. 10. TSQ embeddings of VQM with random initialization before training.
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