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Abstract. We present a semi-supervised learning approach to the tem-
poral action segmentation task. The goal of the task is to temporally
detect and segment actions in long, untrimmed procedural videos, where
only a small set of videos are densely labelled, and a large collection of
videos are unlabelled. To this end, we propose two novel loss functions
for the unlabelled data: an action affinity loss and an action continuity
loss. The action affinity loss guides the unlabelled samples learning by
imposing the action priors induced from the labelled set. Action conti-
nuity loss enforces the temporal continuity of actions, which also pro-
vides frame-wise classification supervision. In addition, we propose an
Adaptive Boundary Smoothing (ABS) approach to build coarser action
boundaries for more robust and reliable learning. The proposed loss func-
tions and ABS were evaluated on three benchmarks. Results show that
they significantly improved action segmentation performance with a low
amount (5% and 10%) of labelled data and achieved comparable results
to full supervision with 50% labelled data. Furthermore, ABS succeeded
in boosting performance when integrated into fully-supervised learning.

1 Introduction

Temporal action segmentation aims to segment long, untrimmed procedural
video sequences into multiple actions and assign semantic labels for each frame.
This task requires the arduous collection of frame-wise labelling for minutes-long
videos. Previous works have reduced the annotation effort via weaker supervision
in the form of transcripts [15], action sets [10], and timestamp labels [21]. With
each method, annotators are still required to watch or scrub through each video
in the training set to provide labels for every training video. Different from the
previous methods, we work under a semi-supervised setting where frame-wise
annotations are provided for only a small portion (5% and 10%) of the videos in
the training set, while the remaining videos are unlabelled. This setting greatly
reduces the annotation efforts.

Semi-supervised learning has been studied extensively in image-based vision
tasks such as image classification [23], object detection [33], semantic segmenta-
tion [11], etc. Two popular semi-supervised learning techniques are consistency
regularization [25, 31] and pseudo-labelling [18]. Consistency regularization as-
sumes that realistic augmentations on the input data will not change the out-
put distribution. Psuedo-labelling generates labels for unlabelled data before
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Fig. 1: Overview of our two complementary loss functions. The Action Affinity loss
imposes the best matched (denoted by a check mark) prior of action compositions and
distributions from the labelled data. The Action Continuity Loss removes the fragments
of action labels.

training. These techniques are not suitable for video-based tasks for several
reasons. Firstly, it is non-trivial to perform realistic data augmentation oper-
ations required by consistency regularization methods as the prevailing practice
in temporal action segmentation is to use pre-computed feature vectors as input.
Furthermore, directly extending näıve pseudo-labelling on videos may result in
confirmation bias [1], i.e., overfitting to incorrect pseudo-labels.

Constructing conceivable supervision for unlabelled data in temporal action
segmentation task raises questions such as “What action compositions are likely
to occur?”, “What is a reasonable temporal proportion for each action to take?”
and “What kind of constraints should the action labels follow?” We propose
to tackle these questions by leveraging two unique observations we made on
procedural videos: 1) Action Affinity, procedural videos performing a specific
activity (e.g., ‘making coffee’) comprise correlated action units (e.g., ‘take cup’,
‘pour coffee’, ‘pour milk’, and ‘stir coffee’) and there exist pairs of videos that
have resembling temporal portions for action unit pairs; 2) Action Continuity,
action labels stay locally constant and action labels only transit at true bound-
aries. The former is an observation on relations between video instances, while
the latter is a video-wise trait. In this work, we propose two novel unsupervised
loss functions, action affinity loss and action continuity loss, each leveraging one
of these observations. An overview of our losses is depicted in Fig. 1.

As opposed to previous work [21], which uses sparse per-segment labelled
frames for every video, we use datasets that consist of a small set of densely
labelled videos and a large set of unlabelled videos. Dense labels do more than
just provide frame-level action labels in the video. They can also be used to
establish prior information about the action compositions and distributions. We
thus define for a labelled video a high-level representation – its action frequency,
i.e., the temporal proportion of actions. For unlabelled video without action
information, we adopt a soft version based on the network predictions. Action
frequency naturally indicates the relative action lengths as it is normalised by
video lengths. The fact that it does not constrain the action ordering allows for
flexibility as some actions do not necessarily follow a rigid sequence. Considering
the action frequency of labelled videos as action priors, we exploit the action
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affinities between labelled and unlabelled video samples in a heuristic way and
integrate them in the action affinity loss function for model training.

Fragmentation or over-segmentation is a common problem in action segmen-
tation [13], which is exacerbated in a semi-supervised setting when networks
train and overfit on few labelled samples. To mitigate this, we first propose an
action sequence extraction scheme that better captures the underlying action
ordering. These sequentially sub-sampled actions are later compared against the
original network predictions with dynamic time warping [24] to estimate our
action continuity loss. We show that the action continuity loss can take the
same form as the classification cross-entropy loss with a proper distance func-
tion adopted in dynamic time warping. Although our loss function also aims to
maintain the temporal continuity of actions, it differs from the commonly used
agnostic smoothing loss of [8]. Ours enforces a specific action ordering while
providing frame-wise action supervision.

To add robustness to the action boundaries found by dynamic time warping
for the unlabelled videos, we propose a soft transitional boundary. Specifically, we
smooth the rigid boundaries so that frames around the boundaries have a mixed
probability of belonging to both consecutive action classes. This was previously
explored in a weakly-supervised setting [6], albeit in a highly rigid form. In our
work, we vary the number of boundary frames depending on the action duration
and use a sigmoid function for mixing.

In summary, this paper offers four key contributions:

1. By investigating the correlation of actions between labelled and unlabelled
procedural videos, we propose an action affinity loss to integrate action priors
for semi-supervised learning.

2. Building on the continuity property of procedural actions, we propose an
action continuity loss to enforce action ordering constraints and provide clas-
sification supervision for unlabelled data.

3. For more robust and reliable learning, we propose a general adaptive bound-
ary smoothing (ABS) technique that generates smoothed coarse action prob-
abilities for boundary frames. Our ABS improves segmentation performance
in both semi- and fully-supervised settings.

4. Experimental results show that our proposed approach improves the segmen-
tation performance by a large margin with a small amount of labelled data
(5% and 10%) and achieve comparable performance to the fully-supervised
setting with 50% of labelled data.

2 Related Work

2.1 Temporal Action Segmentation

Temporal action segmentation in videos has been explored with various levels of
supervision. Fully-supervised approaches require the long videos in the train-
ing set to be densely annotated. The input and label pairs are fed into a Temporal
Convolution Network (TCN) to learn a mapping to frame-wise action labels [17,
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19, 8, 28]. Weakly-supervised methods use action lists [15] or action sets [22]
to learn the alignment between actions and frames. Specifically, D3TW [2] pro-
posed a differentiable dynamic time warping loss with continuous relaxation to
discriminatively learn the best alignment when multiple action lists were pro-
vided. Compared to their work, we do not use any action list supervision, and we
utilise DTW as an optimisation tool for making the best assignment that meets
the ordering constraints. A more recent weakly-supervised work [21] learns to
segment actions via a small percentage of action timestamps. Although weak
supervision reduces the effort in frame-wise action labelling, it is still necessary
to provide supervision for every video. Unsupervised approaches address ac-
tion segmentation by combining clustering methods with temporal models (e.g.,
Hidden Markov Model) [27, 16, 20]. While some work simply perform clustering
on the input features which do not involve any learning and achieve very com-
petitive results [26, 7]. Since no semantic labels are provided during learning,
performances are evaluated based on the best Hungarian matching scores. One
recent work ICC [29] proposed a contrastive learning approach for unsupervised
learning of frame-wise features. The learned representations are then adapted to
a semi-supervised setting by learning a post-hoc linear classifier. The classifier
incorporates the unlabelled data with näıve pseudo-labels, which weakens the
overall contribution to the semi-supervised learning area.

2.2 Semi-supervised Learning

Existing dominant approaches to image-based semi-supervised learning include
consistency regularization [25, 31] and pseudo-labelling [18]. Consistency regular-
ization methods, such as Temporal Ensembling [25] and Mean-teacher [31], aim
to learn the prediction consistency in different epochs or models with augmented
inputs. Applying augmentations analogous to the image domain such as flipping,
rotation, and transformation to videos for action segmentation is non-trivial as
the inputs are pre-computed feature vectors.

Pseudo-labelling methods generate labels for unlabelled data to guide learn-
ing [18]. To generate pseudo-labels, [5] leverages the sample similarity in the
feature space to assign soft labels, whereas [12] implements a graph-based label
propagation framework. Some researchers [4, 32] have attempted to apply semi-
supervised learning to video tasks by adapting image-based techniques to take
video input. However, little has been done to evaluate the effectiveness of semi-
supervised learning in temporal action segmentation. To address this research
gap, we propose two novel loss functions designed based on the observation of
two unique properties of procedural task videos.

3 Method

3.1 Preliminaries

We denote a labelled sample video sequence of temporal length T as {(xt, yt)}Tt=1,
where xt is the video frame feature indexed at time t and yt is its semantic
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action label. In a semi-supervised scenario, a labelled set DL = {(xi, yi)}Ni=1 of
N labelled videos and an unlabelled set DU = {(xj)}Mj=1 of M videos are given,
where M ≫ N . For every video in the small labelled set DL, each frame has a
label from one of K classes, i.e., yti ∈ {1, 2, . . . ,K}. The complete training set is
denoted by D = DL +DU .

To learn a semi-supervised action segmentation model M parameterised by
θ, we use the labelled and unlabelled videos with the following objective:

min
θ

∑
(x,y)∈DL

LL(x, y; θ) + α
∑

(x)∈DU

LU (x; θ) + β
∑

(x)∈D

RD(x; θ), (1)

where LL denotes a supervised loss (Sec. 3.2), LU denotes an unsupervised loss,
and RD is some regularization loss (Sec. 3.2), weighted by hyperparameters
α, β ∈ R>0. In the above objective, formulating the unsupervised loss Lu is
vital for effective semi-supervised learning. In this work, we designed two novel
loss functions for unlabelled data, i.e. action affinity loss (Sec. 3.3) and action
continuity loss (Sec. 3.4), each attending to one characteristic we observed in
procedural videos.

3.2 Supervised Temporal Action Segmentation

Existing supervised approaches [8, 17, 28] take sequences of video frames as in-
put and predict frame-wise action labels as a classification task. For the labelled
data, we follow the same scheme to train the segmentation model M that esti-
mates frame-wise action probabilities pt(k) = M(xt) with the classification loss
formulated as:

LL
cls =

1

T

∑
t

− log(pt(yt)) (2)

where pt ∈ RK is the estimated action class probability for frame xt. It is
also common to apply a smoothing loss with threshold τ to encourage smooth
transitions between frames:

Lsm =
1

TK

∑
t,k

∆̃2
t,k, ∆̃t,k =

{
∆t,k : ∆t,k ≤ τ

τ : otherwise
, (3)

∆t,k =
∣∣log pt(k)− log pt−1(k)

∣∣ . (4)

We follow [8] and set τ to 4.

3.3 Action Affinity

Videos performing the same (procedural) activity will share the same or a similar
set of composing actions. We assume we can find similar videos that match and
share resembling temporal proportions. With this motivation in mind, we define
for a labelled video i a video-level representation based on the action frequency:

qi(k) =
1

Ti

Ti∑
t

1(yti == k); k ∈ [1, . . . ,K] (5)
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Fig. 2: Action affinity loss overview. Action frequencies q, p are first built for both
labelled and unlabelled videos. The action affinity loss associates (red arrow) for pj its
nearest anchor q1 in labelled set and then imposes the action prior from q1 on pj to
supervise the learning. Our affinity loss allows variations of action ordering (green and
purple segments in GT and q1).

For an unlabelled video j, we define a soft action frequency based on the network
prediction outputs:

pj(k) =
1

Tj

Tj∑
t

ptj(k); k ∈ [1, . . . ,K]. (6)

Unless explicitly stated otherwise, we denote q, indexed by i, for labelled videos
and p with index j for unlabelled videos.

Anchor Association. We want to provide action-level supervision for un-
labelled videos by finding their most similar peers from the labelled set. Given
some distance function d(·), we refer to a labelled video i as an anchor aj for a
unlabelled video j if their action frequencies are the closest amongst the entire
labelled set, i.e.

aj = qi∗ , i∗ = argmin
i

d(qi, pj) (7)

Affinity Loss. Formally, we use the Kullback–Leibler (KL) divergence as
the distance criterion and define our action affinity loss as the affinity between
the best matched pairs (pj , aj), which is also the minimum distance between p
over the entire labelled set:

Laff =
∑
k

aj(k) log

(
aj(k)

pj(k)

)
= min

i

∑
k

qi(k) log

(
qi(k)

pj(k)

)
(8)

Minimising the above action affinity loss imposes pair-wise action frequency prior
from the labelled set; it guides network outputs to have similar action compo-
sition to labelled videos, which is especially important when using unlabelled
sequences for training. Fig. 2 depicts our affinity loss. Empirically, this loss com-
bined with a frame-wise entropy loss outperforms pseudo-labels (see. Sec. 4.4).
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Fig. 3: Action continuity loss overview. Given network predictions for an unlabeled
video pj , a sliding window sub-sampling is first performed to obtain an action se-
quence (order indicated by coloured arrows); the sequence is later compared against
pj to construct a cost matrix. The action continuity loss is the average cost along the
optimal assignment path (coloured segments in the cost matrix) found via dynamic
time warping.

3.4 Action Continuity

A simple way to generate pseudo-labels ŷ for unlabelled video sequences is to use
the class label with the maximum probability, which can be used to supervise
the learning of unlabelled data with the classification loss:

Lpse = − 1

T

∑
t

log(pt(ŷt)), where ŷt=argmax
k

pt(k). (9)

However, such näıve pseudo-labels directly inferred from network outputs tend
to be temporally over-fragmented [13]. This breaks the temporal continuity of
actions, i.e., label changes should occur only at (true) action boundaries. To
this end, we propose an action continuity loss to impose such action transi-
tion constraints. For an unlabelled video, this loss takes as input its frame-wise
predictions, sub-samples in time and then estimates the learning objective via
dynamic time warping as illustrated in Fig. 3.

Action Sequence Sub-sampling.We first generate action candidates which
have maximum average class probability within a sliding window of stride ω,

o = argmax
k

1

ω

t′+ω∑
t=t′

pt(k), (10)

where t′ is the previous temporal window location. Subsequently, we yield an

ordered sequence with ⌈T
ω ⌉ elements denoted as O = {ol}⌈

T
ω ⌉

l=1 . This sequence can
be further reduced in length by removing the adjacent action repetitions, i.e.,
ol = ol+1, to a length of L.

Dynamic Time Warping. Given an unlabelled video with its frame-wise
action probabilities pj of length T and its inferred action sequence O of length
L as described above, a cost matrix of alignment ∆ = {d(l, t)} ∈ RL×T can be
constructed with some distance function d(·, ·). Using dynamic time warping, we
find the best possible alignment Y ∗ defined by the following objective:

Y ∗ = argmin
Y

⟨Y,∆⟩ (11)
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where ⟨·, ·⟩ is the inner product and Y ⊂ {0, 1}L×T is a binary assignment
matrix. Ytl = 1 if frame t has the label ol and Ytl = 0 otherwise. Eq. (11) is
solved efficiently with dynamic programming. The label assignment ỹt for pt can
be then inferred by parsing Y ∗:

ỹt =
∑
l

ol1(Y ∗
lt == 1) (12)

Continuity Loss. An intuitive way of forming the continuity loss is to take
the optimal objective of dynamic time warping and minimise it:

Lcont = ⟨Y ∗, ∆⟩ (13)

We achieve this by choosing a specific distance function d. With a slight abuse of
notation, we denote the categorical label o (Eq. (10)) as its one-hot embedding
when written as o(k) and designate the distance function as the KL divergence:

d(l, t) = KL(ol||pt) =
∑
k

ol(k) log

(
ol(k)

pt(k)

)
. (14)

If we replace the ol with the final assignment ỹt for pt in Eq. (14), the cost for pt

in the optimal Y ∗ would become the negative log-likelihood − log(pt(ỹt)). Aver-
aging the cost over the entire video sequence leads to our final action continuity
loss formulation:

Lcont =
1

T
min
Y

⟨Y,∆⟩ = 1

T

∑
t

− log(pt(ỹt)). (15)

We note that with the KL divergence distance function, this continuity loss is
consistent with the frame-wise classification loss enforcing the network predic-
tions to approximate ỹ, which is temporally continuous.

Adopting Eq. (2) for labelled data (LL), Eq. (8) and Eq. (15) for the unla-
belled data (LU ), and Eq. (3) for the regularization (RD), we can rewrite Eq. (1)
as our semi-supervised learning objective with the following form:

L = LL
cls + αLU

aff + βLU
cont + γLD

sm (16)

where α, β, γ are trade-off parameters balancing the terms. The smoothing loss
LD
sm is imposed on the full set of data.

3.5 Adaptive Boundary Smoothing (ABS)

In our semi-supervised setting, the action boundaries of an unlabelled video in-
ferred from the best possible assignment Y ∗ or ỹ may still be inaccurate. As
such, we propose an adaptive boundary smoothing (ABS) technique to pro-
vide softer action boundary supervision for more robust and reliable learning.
Boundary smoothing was initially proposed in [6] and has been explored in the
weakly-supervised setting to improve the segmentation performance. Unlike [6],



Semi-supervised Temporal Action Segmentation 9

tsl
tb ter

0

0.5

1

time

p
r
o
b
a
b
il
it
y

Step function

(a) Standard One-hot Labels

tsl
tb ter

0

0.5

1

Vl Vr

time

Linear Interpolation

(b) Fixed-Duration Linear [6]

tsl
tb ter

0

0.5

1

Vl Vr

time

Adaptive Sigmoid

(c) ABS (Ours)

Fig. 4: Probability assignment approaches around the action boundary as a function
of time. Let tb denote the estimated boundary between the left action in [tsl , tb) and the
right action [tb, t

e
r). The blue and red shaded segments denote the boundary vicinities

Vl and Vr. (a) The standard one-hot labels adopt a step function and assign hard action
labels for all the frames. (b) The fixed-duration linear approach [6] mixes the action
probabilities linearly with a fixed slope around the boundary. (c) ABS (Ours) uses a
sigmoid function with a decay proportional to the action duration.

which uses a fixed linear-interpolation scheme for smoothing, we use an adaptive
scheme based on the estimated action duration. This allows us to elastically mix
action probabilities for frames within the vicinity of the boundary.

Duration Aware Boundary Vicinity. Given left and right action seg-
ments (Sl : [tsl , t

e
l , yl],Sr : [tsr, t

e
r, yr]) consecutive in time, let ts, te denote the

starting and ending timestamps of the action and y ∈ [1, . . . ,K] the corre-
sponding semantic label. The action boundary in between can be denoted as
tb = tsr = tel + 1. With a vicinity parameter v ∈ [0, 0.5], we define the boundary
vincinities or ranges Vl and Vr for the left and right actions respectively:

Vl = [tb − (tb − tsl ) ∗ v, tb), and Vr = [tb, tb + (ter − tb) ∗ v). (17)

Adaptive Sigmoid. Within each action boundary vicinity V , we utilize
an adaptive sigmoid function to assign mixed probabilities. For a frame within
the left boundary vicinity, i.e., t ∈ Vl, its smoothed probabilities for two action
classes (yl, yr) are written as:

yt(yl) =
1

1 + e
− ϵ

|Vl|
(t−tb)

, and yt(yr) = 1− yt(yl) (18)

where ϵ is a predefined parameter which is set to 5 to ensure that the furthest
frame to the boundary in a vicinity set has close to 1 probability for the ac-
tion label of the segment it belongs to. |V | denotes the temporal length of V .
Probability assignment for Vr is identical to Eq. (18) but with yr and yl changed.

ABS can be efficiently incorporated in our approach by replacing the one-
hot action probability within each boundary vicinity from ỹ (Eq. (12)) with the
above mixed probabilities. With v = 0, our ABS degenerates into the one-hot
setting. Fig. 4 compares three types of action probability assignments around
the action boundaries. One-hot labels (Fig. 4(a)) are standard in practice and
assume rigid action boundaries. Fixed-duration linear [6] (Fig. 4(b)) softens the
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boundary with linearly interpolated action probabilities in a fix-sized temporal
window. In contrast, our proposed ABS approach (Fig. 4(c)) allows the corre-
sponding action probabilities of vicinity frames from a longer action segment to
have a faster-descending speed when approaching the boundary and vice-versa.
Smoothing in a larger vicinity of longer segments provides more training samples
for shorter segments, while smoothing in a smaller vicinity of shorter segments
helps preserve more high confident middle frames for learning.

4 Experiments

4.1 Datasets, Protocols and Evaluation

Datasets. We conducted our experiments on the three benchmark datasets.
Breakfast Actions [14] comprises in total 1712 videos performing ten different
activities with 48 actions. On average, each video contains six action instances.
50Salads [30] has 50 videos with 17 action classes. GTEA [9] contains 28 videos
of seven kitchen activities composing 11 different actions.

Protocols. We used the standard train-test splits for each dataset; we randomly
selected 5%, 10% of the training set as the labelled set DL and regarded the re-
maining training videos as the unlabelled set DU . The labelled set was ensured to
contain at least one segment instance of each action. For 50Salads and GTEA,
3 and 5 videos were sampled in place of 5% and 10% of labelled data as the
datasets are relatively small.

Evaluation. We adopted the same evaluation metrics as fully-supervised ac-
tion segmentation and reported frame-wise accuracy (Acc), segmental edit score
(Edit), and segmental F1 score with varying overlap thresholds 10%, 25%, and
50%. For all datasets, we randomly sampled five labelled subsets from the orig-
inal training data. We cross-validated over the standard splits and reported the
average over the splits across the five runs.

4.2 Implementation Details

We use the multi-stage temporal convolutional network (MS-TCN) [8] as the
backbone segmentation model M. Our model was first warmed up with only
labelled data for 30 epochs, and then unlabelled data was incorporated for an-
other 20 epochs. The initial learning rate was set as 5e−4. We used the Adam
optimiser, with weights settings of α = 0.1, β = 0.01, and γ = 0.15, as per [8].
The action sequence sub-sampling stride ω was set to 20. We set the vicinity
parameter v = 0.05 for all three datasets.

4.3 Effectiveness

Table 1 reports the improvements of our method compared with the supervised
baseline (Base) and näıve pseudo-labelling approach (Pseudo) on three bench-
marks. Base is trained with only labelled data while Pseudo assigns pseudo-labels
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Table 1: Performance of our proposed approach on three benchmark datasets

%DL Method
Breakfast 50Salads GTEA

F1@{10, 25, 50} Edit Acc F1@{10, 25, 50} Edit Acc F1@{10, 25, 50} Edit Acc

5

Base 36.7 28.4 19.5 37.5 28.2 26.8 19.7 11.5 26.1 28.1 29.9 25.8 14.8 31.0 37.2
Pseudo 40.2 28.5 20.1 41.3 20.9 22.6 17.0 12.1 22.0 24.0 48.4 42.3 30.2 45.4 48.1
Ours 44.5 35.3 26.5 45.9 38.1 37.4 32.3 25.5 32.9 52.3 59.8 53.6 39.0 55.7 55.8
Gain 7.8 6.9 7.0 8.4 9.9 10.6 12.6 14.0 6.8 24.2 29.9 27.8 24.2 24.7 18.6

10

Base 46.8 41.1 29.2 50.9 37.1 27.6 24.3 16.0 27.4 32.0 38.1 29.6 15.3 39.6 41.1
Pseudo 49.3 44.8 33.9 49.7 40.2 36.2 32.4 24.5 33.5 41.1 65.5 60.7 45.8 59.9 57.9
Ours 56.9 51.3 39.0 57.7 49.5 47.3 42.7 31.8 43.6 58.0 71.5 66.0 52.9 67.2 62.6
Gain 10.1 10.2 9.8 6.8 12.4 19.7 18.4 15.8 16.2 26.0 33.4 36.4 37.6 27.6 21.5

Table 2: Comparison of frame accuracy
boost between different dataset variances

labelled 50Salads GTEA Breakfast

var - 8e−4 3e−3 6e−3

Gain 5% 24.2 18.6 9.9
Gain 10% 26.0 21.5 12.4

Table 3: Effect of activity labels on Break-
fast (5%)

F1@{10,25,50} Edit Acc

w/o activity 44.5 35.3 26.5 45.9 38.1
w/ activity 56.6 49.3 35.8 59.4 56.6
Gain 12.1 14.0 9.3 13.5 18.5

and trains with Lpse (Eq. (9)). In both the 5% and 10% settings, our model con-
sistently outperformed the Base model by a large margin. Specifically, on the
50Salads dataset, the accuracy of our model increased by 26% (from 32.0% →
58.0%). The overall increase in performance across datasets was greater when
more labelled data (5%→10%) was provided. It is noteworthy that on 50Salads
with 5% labelled data, the segmentation performances for Pseudo are lower than
the Base by around 3%, which shows that the model overfitted to inaccurate
pseudo-labels, likely due to confirmation bias. On the contrary, our proposed
approach can still significantly boost the accuracy performance by a large gain
of 24.2%. This verifies the effectiveness of the valuable action affinity prior in-
formation inferred from the rarely few labelled video samples.

Affinity Association. Amongst all three datasets in Table 1, the increase
in Acc performance was the greatest on 50Salads and the least on Breakfast. We
speculate that this is related to how accurate the affinity association (Eq. (7)) is
in finding the anchor videos from the labelled set. We validated this by calculat-
ing the total variance amongst the full set D. The total variance is defined as the
trace of the action frequency covariance matrix C ∈ RK×K normalized by the
number of actions, i.e., var = tr(C)/K. The lower the variance, the more likely
our affinity loss provided accurate supervision. The extreme case where the full
set of videos share the identical action composition and frequency (var=0) guar-
antees that the supervision by affinity loss is always accurate and precise. Table 2
verifies that datasets with smaller variances had higher accuracy gains. Break-
fast has the largest variance because it has 10 activities with slightly overlapping
composing actions. By extension, its dispersed action frequency representations
would cause the variance for a single action to be high.
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We also evaluated our approach on the Breakfast dataset with video-level
activity labels provided for all videos and reported the results in Table. 3. In
this setting, we only searched for anchors from labelled videos with the same
activity label. As we can see, when activity labels were given, the performance
had a striking improvement of 18.5% in accuracy. This is because these high-level
labels excluded the incorrect anchor associations across two different activities.
Such improvement validates our affinity observation in the same activity videos.

4.4 Ablation Studies

Loss Functions and ABS. Table 4 reports the ablation study results on dif-
ferent variants of loss functions and ABS. The first row is the baseline model
trained with only labelled data and Lcls. Results for näıve pseudo-labelling loss
Lpse (Eq. (9)) in the second row show a mild increase in F1 scores and accu-
racy compared to the baseline. While more unlabelled data was accessible for
learning, using them in the form of pseudo-labels brought little advantage. On
the other hand, our proposed action affinity loss Laff (third row) surpassed the
pseudo-labelling counterpart by a margin of around 2% on all metrics. We im-
posed an extra frame-wise entropy loss formulated as −

∑
k p

t
i(k) log p

t
i(k) in this

variant, which forced the network to produce confident frame-wise predictions
as the affinity loss does not provide frame-level supervision. The combination
of action affinity and näıve pseudo-labelling (fourth row) further enhanced the
performance. Such improvements show that our affinity loss Laff can improve
the quality of pseudo-labels, which we will evaluate in the following text. Our
model combining Laff and Lcont achieved better performance than all the above
variants. Lastly, as indicated by the last row, the integration of our proposed
ABS further boosted the segmentation performance on Breakfast.

Table 4: Loss function ablation study
on Breakfast (10%)

Lcls Lpse Laff Lcont ABS F1@{10, 25, 50} Edit Acc

✓ 47.9 40.6 28.6 51.8 36.8
✓ ✓ 49.3 44.8 33.9 49.7 40.2
✓ ✓ 52.0 46.5 34.3 53.4 44.0
✓ ✓ ✓ 54.1 46.7 34.9 54.1 47.8
✓ ✓ ✓ 53.8 50.1 37.6 56.6 49.2
✓ ✓ ✓ ✓ 56.9 51.3 39.0 57.7 49.5

30 35 40 45 50
20

40

60

Epochs

A
c
c

(
%

)

Lpse

Laff

Ours

Fig. 5: Pseudo-label accuracy against
training epochs on GTEA (10%).

Pseudo-labels. We studied the quality of estimated action classes on the
unlabelled data DU . Fig. 5 shows a plot of the pseudo-label accuracy between
training epochs. In the first epoch that unlabelled data was incorporated for
training, all variants achieved the same accuracy, but the scores diverged as the
training progressed. Imposing Laff led to better accuracy compared to Lpse, while
our full loss formulation predicted the most accurate pseudo-labels for unlabelled
data.
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Table 5: Sub-sampling stride ω on Break-
fast (10%)

ω 10 15 20 25 30 60

Acc 48.5 48.8 49.5 49.0 47.9 45.6

Table 6: Effect of α, β on GTEA (10%)

α

β 1 0.1 0.01 0.001

1 57.0 59.3 58.7 54.5
0.1 58.9 60.3 61.5 57.9
0.01 59.2 62.6 61.9 58.0
0.001 58.3 61.4 60.5 57.3

Table 7: Effectiveness of ABS for fully-supervised action segmentation

Breakfast 50Salads GTEA

F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc

Base 63.2 57.7 45.6 65.5 65.1 66.8 63.7 55.2 59.8 78.2 84.9 82.4 67.6 79.7 76.6
+ABS 71.3 65.9 52.2 71.8 68.9 72.5 70.1 61.8 66.8 79.8 87.6 85.4 71.7 82.8 77.4
Gain 8.1 8.2 6.6 6.3 3.8 5.7 6.4 6.6 7.0 1.6 2.7 3.0 4.1 3.1 0.8

Sub-sampling Stride ω. Table 5 shows the accuracy changes with respect
to the sub-sampling stride ω in Eq. (10) on Breakfast with 10% labelled data.
The frame accuracy fluctuates around 49% with small strides, but when the
stride becomes too large, e.g., ω=60, the performance dropped by a margin of
3.9% as some actions are likely to be fully skipped during sub-sampling. The
best accuracy of 49.5% was achieved when ω=20.

Loss Hyperparameters. The effect of hyperparameters is presented in Ta-
ble 6. A very small weight on our affinity loss (α = 0.001) led to the lowest
performance, as indicated by the last column. Increasing α boosted the perfor-
mance, which shows that the action priors from affinity loss is vital. The com-
parison between the rows indicates that a large weight for the action continuity
loss, e.g., β = 1, caused the model to overfit to the inaccurate pseudo-labels and
produced inferior results since it also provided frame-wise pseudo-supervision.
The overall best performance arrived at 62.6% with α = 0.1, β = 0.01.

Vicinity Parameter v. Table 8 compares ABS against One-hot and Fixed-
duration linear [6]. ASB with v = 0.05 enhanced the segmentation results by
1-2% compared to the baseline One-hot (v = 0). Fixed-duration linear [6] was
also helpful, but the performance gain was only marginal. Setting v = 0.1 doubles
the vicinity, which experienced a performance drop compared to v = 0.05; this
likely indicates that the smoothing range is too large.

ABS for Supervised Learning. Given that ABS is a general smoothing
technique, we further integrated ABS with the fully-supervised setting and re-
port the results in Table 7. A consistent increase in segmentation performance
compared to the baseline was observed across all three datasets. Also, the rela-
tively large improvements were made in segmental metrics (F1 and Edit scores).
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Table 8: Comparison of vicinity v
on Breakfast (10%)
Method F1@{10,25,50} Edit Acc

One-hot(v = 0) 53.8 50.1 37.6 56.6 49.2
Fixed-duration [6] 54.7 50.5 38.1 56.9 49.1
v = 0.05 56.9 51.3 39.0 57.7 49.5
v = 0.1 55.1 50.9 37.9 57.0 48.9

Table 9: Accuracy performance compari-
son with approaches under various supervi-
sions, * denotes test data used for training

Method Breakfast 50salads GTEA

F
u
ll

MSTCN [8] 65.1 78.2 76.6
SSTDA [3]* 70.2 83.2 79.8
Ours (100%)* 69.3 82.5 80.4

W
ea
k Timestamp [21] 64.1 75.6 66.4

SSTDA [3] (65%)* 65.8 80.7 75.7

S
em

i Ours (5%) 38.1 52.3 55.8
Ours (10%) 49.5 58.0 62.6
Ours (50%) 63.9 78.8 77.9

4.5 Comparison to State-of-the-Art Approaches

We list in Table 9 relevant state-of-the-art approaches adopting MS-TCN [8] or
its variants as the backbone for a fair comparison. We did not include ICC [29]
as their approach cannot work with the MS-TCN architecture. For the “Full”
comparison, we followed SSTDA [3] and applied our semi-supervised method to
100% labelled data. We used the test data as the unlabelled set and achieved
comparable performance. The frame accuracy of Timestamp [21], which uses
per-segment supervision for all video samples, is close to fully-supervised MS-
TCN [8] except on GTEA. With 50% labelled data, our approach managed to
achieve comparable or better performance compared to Timestamp [21], MS-
TCN [8] as well as SSTDA [3] using a larger percentage (65%) of labelled data.

5 Conclusion

Procedural videos performing the same tasks exhibit affinity in action compo-
sition and continuity in action duration. Based on these unique characteristics,
we proposed two novel loss functions for the semi-supervised temporal action
segmentation task. The action affinity loss harnessed the action priors from the
labelled set to supervise the unlabelled data. The action continuity loss function
sub-sampled action sequence to enforce the temporal continuity of actions and
provided frame-wise supervision. Furthermore, we proposed an adaptive bound-
ary smoothing technique for more robust action boundaries. Our approach sig-
nificantly improves the segmentation performance with a very small amount (5%
and 10%) of labelled data and reaches comparable performance to the full su-
pervision methods with 50% labelled videos.
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